1
|
Zou AE, Kongthong S, Mueller AA, Brenner MB. Fibroblasts in immune responses, inflammatory diseases and therapeutic implications. Nat Rev Rheumatol 2025:10.1038/s41584-025-01259-0. [PMID: 40369134 DOI: 10.1038/s41584-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Once regarded as passive bystander cells of the tissue stroma, fibroblasts have emerged as active orchestrators of tissue homeostasis and disease. From regulating immunity and controlling tissue remodelling to governing cell growth and differentiation, fibroblasts assume myriad roles in guiding normal tissue development, maintenance and repair. By comparison, in chronic inflammatory diseases such as rheumatoid arthritis, fibroblasts recruit and sustain inflammatory leukocytes, become dominant producers of pro-inflammatory factors and catalyse tissue destruction. In other disease contexts, fibroblasts promote fibrosis and impair host control of cancer. Single-cell studies have uncovered striking transcriptional and functional heterogeneity exhibited by fibroblasts in both normal tissues and diseased tissues. In particular, advances in the understanding of fibroblast pathology in rheumatoid arthritis have shed light on pathogenic fibroblast states in other chronic diseases. The differentiation and activation of these fibroblast states is driven by diverse physical and chemical cues within the tissue microenvironment and by cell-intrinsic signalling and epigenetic mechanisms. These insights into fibroblast behaviour and regulation have illuminated therapeutic opportunities for the targeted deletion or modulation of pathogenic fibroblasts across many diseases.
Collapse
Affiliation(s)
- Angela E Zou
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Suppawat Kongthong
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alisa A Mueller
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA and Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Eun JW, Ahn HR, Baek GO, Yoon MG, Son JA, Weon JH, Yoon JH, Kim HS, Han JE, Kim SS, Cheong JY, Kim BW, Cho HJ. Aberrantly Expressed MicroRNAs in Cancer-Associated Fibroblasts and Their Target Oncogenic Signatures in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:4272. [PMID: 36901700 PMCID: PMC10002073 DOI: 10.3390/ijms24054272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) contribute to tumor progression, and microRNAs (miRs) play an important role in regulating the tumor-promoting properties of CAFs. The objectives of this study were to clarify the specific miR expression profile in CAFs of hepatocellular carcinoma (HCC) and identify its target gene signatures. Small-RNA-sequencing data were generated from nine pairs of CAFs and para-cancer fibroblasts isolated from human HCC and para-tumor tissues, respectively. Bioinformatic analyses were performed to identify the HCC-CAF-specific miR expression profile and the target gene signatures of the deregulated miRs in CAFs. Clinical and immunological implications of the target gene signatures were evaluated in The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA_LIHC) database using Cox regression and TIMER analysis. The expressions of hsa-miR-101-3p and hsa-miR-490-3p were significantly downregulated in HCC-CAFs. Their expression in HCC tissue gradually decreased as HCC stage progressed in the clinical staging analysis. Bioinformatic network analysis using miRWalks, miRDB, and miRTarBase databases pointed to TGFBR1 as a common target gene of hsa-miR-101-3p and hsa-miR-490-3p. TGFBR1 expression was negatively correlated with miR-101-3p and miR-490-3p expression in HCC tissues and was also decreased by ectopic miR-101-3p and miR-490-3p expression. HCC patients with TGFBR1 overexpression and downregulated hsa-miR-101-3p and hsa-miR-490-3p demonstrated a significantly poorer prognosis in TCGA_LIHC. TGFBR1 expression was positively correlated with the infiltration of myeloid-derived suppressor cells, regulatory T cells, and M2 macrophages in a TIMER analysis. In conclusion, hsa-miR-101-3p and hsa-miR-490-3p were substantially downregulated miRs in CAFs of HCC, and their common target gene was TGFBR1. The downregulation of hsa-miR-101-3p and hsa-miR-490-3p, as well as high TGFBR1 expression, was associated with poor clinical outcome in HCC patients. In addition, TGFBR1 expression was correlated with the infiltration of immunosuppressive immune cells.
Collapse
Affiliation(s)
- Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hye Ri Ahn
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Geum Ok Baek
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Moon Gyeong Yoon
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Ju A Son
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Ji Hyang Weon
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyung Seok Kim
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Ji Eun Han
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Bong-wan Kim
- Department of General Surgery, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Matos LL, Menderico Junior GM, Theodoro TR, Pasini FS, Ishikawa MDM, Ribeiro AAB, de Mello ES, Pinhal MADS, Moyses RA, Kulcsar MAV, Dedivitis RA, Cernea CR, Kowalski LP. Cancer-associated fibroblast regulation by microRNAs promotes invasion of oral squamous cell carcinoma. Oral Oncol 2020; 110:104909. [PMID: 32702628 DOI: 10.1016/j.oraloncology.2020.104909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022]
Abstract
The objective of the present study was to evaluate the role of microRNA-mediated remodeling of the extracellular matrix in the process of tumor invasion of oral squamous cell carcinoma and to evaluate its relationship with the prognosis of these patients. This was a retrospective study on material from the paraffin blocks of patients operated on for oral squamous cell carcinoma, in addition to a group of healthy oral mucosa samples of paired patients. miR-1-3p, miR-133-3p, and miR-21-5p were differentially expressed between the superficial and deep tumor groups. miR-21-5p was the one with the greatest accuracy in the differentiation between superficial and deep tumors. By immunohistochemistry, the group of deep tumors showed greater immunoreactivity to matrix metalloproteinases 2 and 9 and laminin α in tumor-associated fibroblasts, with consequent degradation of the basal membrane, measured by greater loss of continuity of type IV collagen. This process was also associated with lower and higher expression of miR-1-3p and miR-21-5p, respectively. There was also a trend toward better overall and disease-free survival rates in patients with higher miR-133a-3p. The present study showed the interaction between microRNAs and extracellular matrix remodeling in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Leandro Luongo Matos
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo (ICESP), Laboratório de Investigação Médica 28 (LIM28), University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | | | | | - Fatima Solange Pasini
- Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo, Brazil.
| | | | | | - Evandro Sobroza de Mello
- Pathology Department, Instituto do Câncer do Estado de São Paulo (ICESP), Laboratório de Investigação Médica 14 (LIM14), University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | | | - Raquel Ajub Moyses
- Head and Neck Surgery Department, Laboratório de Investigação Médica 28 (LIM28), University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | - Marco Aurelio Vamondes Kulcsar
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo (ICESP), University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | | | - Claudio Roberto Cernea
- Head and Neck Surgery Department, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | - Luiz Paulo Kowalski
- Head and Neck Surgery Department, University of Sao Paulo Medical School, Sao Paulo, Brazil; Study Developed at Head and Neck Surgery Discipline, Surgery Department, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil.
| |
Collapse
|
4
|
Emerging Therapeutic RNAs for the Targeting of Cancer Associated Fibroblasts. Cancers (Basel) 2020; 12:cancers12061365. [PMID: 32466591 PMCID: PMC7352655 DOI: 10.3390/cancers12061365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor mass consists of a complex ensemble of malignant cancer cells and a wide variety of resident and infiltrating cells, secreted factors, and extracellular matrix proteins that are referred as tumor microenvironment (TME). Cancer associated fibroblasts (CAFs) are key TME components that support tumor growth, generating a physical barrier against drugs and immune infiltration, and contributing to regulate malignant progression. Thus, it is largely accepted that therapeutic approaches aimed at hampering the interactions between tumor cells and CAFs can enhance the effectiveness of anti-cancer treatments. In this view, nucleic acid therapeutics have emerged as promising molecules. Here, we summarize recent knowledge about their role in the regulation of CAF transformation and tumor-promoting functions, highlighting their therapeutic utility and challenges.
Collapse
|
5
|
Frassanito MA, Desantis V, Di Marzo L, Craparotta I, Beltrame L, Marchini S, Annese T, Visino F, Arciuli M, Saltarella I, Lamanuzzi A, Solimando AG, Nico B, De Angelis M, Racanelli V, Mariggiò MA, Chiacchio R, Pizzuti M, Gallone A, Fumarulo R, D'Incalci M, Vacca A. Bone marrow fibroblasts overexpress miR-27b and miR-214 in step with multiple myeloma progression, dependent on tumour cell-derived exosomes. J Pathol 2019; 247:241-253. [PMID: 30357841 DOI: 10.1002/path.5187] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
Aberrant microRNA (miR) expression has an important role in tumour progression, but its involvement in bone marrow fibroblasts of multiple myeloma patients remains undefined. We demonstrate that a specific miR profile in bone marrow fibroblasts parallels the transition from monoclonal gammopathy of undetermined significance (MGUS) to myeloma. Overexpression of miR-27b-3p and miR-214-3p triggers proliferation and apoptosis resistance in myeloma fibroblasts via the FBXW7 and PTEN/AKT/GSK3 pathways, respectively. Transient transfection of miR-27b-3p and miR-214-3p inhibitors demonstrates a cooperation between these two miRNAs in the expression of the anti-apoptotic factor MCL1, suggesting that miR-27b-3p and miR-214-3p negatively regulate myeloma fibroblast apoptosis. Furthermore, myeloma cells modulate miR-27b-3p and miR-214-3p expression in fibroblasts through the release of exosomes. Indeed, tumour cell-derived exosomes induce an overexpression of both miRNAs in MGUS fibroblasts not through a simple transfer mechanism but by de novo synthesis triggered by the transfer of exosomal WWC2 protein that regulates the Hippo pathway. Increased levels of miR-27b-3p and miR-214-3p in MGUS fibroblasts co-cultured with myeloma cell-derived exosomes enhance the expression of fibroblast activation markers αSMA and FAP. These data show that the MGUS-to-myeloma transition entails an aberrant miRNA profile in marrow fibroblasts and highlight a key role of myeloma cells in modifying the bone marrow microenvironment by reprogramming the marrow fibroblasts' behaviour. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Lucia Di Marzo
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Ilaria Craparotta
- IRCCS - "Istituto di Ricerche Farmacologiche" Mario Negri, Milan, Italy
| | - Luca Beltrame
- IRCCS - "Istituto di Ricerche Farmacologiche" Mario Negri, Milan, Italy
| | - Sergio Marchini
- IRCCS - "Istituto di Ricerche Farmacologiche" Mario Negri, Milan, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Fabrizio Visino
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Marcella Arciuli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Antonio G Solimando
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Maria A Mariggiò
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Rosistella Chiacchio
- Unit of Pathologic Anatomy and Cytodiagnosis, San Carlo Hospital, Potenza, Italy
| | | | - Anna Gallone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Ruggiero Fumarulo
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro Medical School, Bari, Italy
| | | | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| |
Collapse
|
6
|
Tuo L, Chu X, Sha S, Zhang X. [MicroRNA and Lung Cancer: A Mini Review]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:727-730. [PMID: 30201074 PMCID: PMC6137002 DOI: 10.3779/j.issn.1009-3419.2018.09.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MicroRNAs (miRNAs) a class of non-coding RNAs about 22 nt in size that are found in a wide range of organisms from plants, viruses to humans. MicroRNA has a wide range of biological functions. It can recruit related RNA enzymes and lead to mRNA degradation after binding to mRNA specificity, thus blocking the expression of protein encoding genes and then affecting their biological functions. In recent years, microRNA has been found to be closely related to the biological behaviors, such as the occurrence, development, invasion and metastasis of multiple human malignant carcinomas, and play a regulatory role in the above biological phenotypes. Lung cancer is the highest incidence of malignancy. The exact molecular mechanism of its occurrence and development has not been fully elucidated. Previous studies have shown that microRNA plays an important role in lung tumor suppressor gene inactivation, oncogene activation and epigenetics. At the same time, there are also reports that there is a significant difference in the expression of microRNA in patients with lung cancer and benign lung diseases. This differential expression provides a basis for the feasibility of microRNA as a diagnostic and pre biological marker for lung cancer.
.
Collapse
Affiliation(s)
- Lei Tuo
- Department of Thoracic and Cardiovascular Surgery, Weifang Yidu Central Hospital, Weifang 262500, China
| | - Xiaoshuai Chu
- Department of Thoracic and Cardiovascular Surgery, Weifang Yidu Central Hospital, Weifang 262500, China
| | - Sha Sha
- Department of Thoracic and Cardiovascular Surgery, Weifang Yidu Central Hospital, Weifang 262500, China
| | - Xun Zhang
- Department of Thoracic Surgery, Tianjin Chest Hosptial, Tianjin 300051, China
| |
Collapse
|
7
|
Al-Harbi B, Hendrayani SF, Silva G, Aboussekhra A. Let-7b inhibits cancer-promoting effects of breast cancer-associated fibroblasts through IL-8 repression. Oncotarget 2018; 9:17825-17838. [PMID: 29707149 PMCID: PMC5915157 DOI: 10.18632/oncotarget.24895] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are major players in the development and spread of breast carcinomas through non-cell-autonomous signaling. These paracrine effects are under the control of several genes and microRNAs. We present here clear evidence that let-7b, a tumor suppressor microRNA, plays key roles in the persistent activation of breast stromal fibroblasts and their functional interplay with cancer cells. We have first shown that let-7b is down-regulated in CAFs as compared to their corresponding normal adjacent fibroblasts, and transient specific let-7b inhibition permanently activated breast fibroblasts through induction of the IL-6-related positive feedback loop. More importantly, let-7b-deficient cells promoted the epithelial-to-mesenchymal transition process in breast cancer cells in an IL-8-dependent manner, and also enhanced orthotopic tumor growth in vivo. On the other hand, overexpression of let-7b by mimic permanently suppressed breast myofibroblasts through blocking the positive feedback loop, which inhibited their paracrine pro-carcinogenic effects. Furthermore, we have shown that let-7b negatively controls IL-8, which showed higher expression in the majority of CAF cells as compared to their adjacent normal counterparts, indicating that IL-8 plays a major role in the carcinoma/stroma cross-talk. These findings support targeting active stromal fibroblasts through restoration of let-7b/IL-8 expression as a therapeutic option for breast carcinomas.
Collapse
Affiliation(s)
- Bothina Al-Harbi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Siti-Fauziah Hendrayani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Gabriela Silva
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Current/Present address: Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Ishii K, Takahashi S, Sugimura Y, Watanabe M. Role of Stromal Paracrine Signals in Proliferative Diseases of the Aging Human Prostate. J Clin Med 2018; 7:jcm7040068. [PMID: 29614830 PMCID: PMC5920442 DOI: 10.3390/jcm7040068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
Androgens are essential for the development, differentiation, growth, and function of the prostate through epithelial–stromal interactions. However, androgen concentrations in the hypertrophic human prostate decrease significantly with age, suggesting an inverse correlation between androgen levels and proliferative diseases of the aging prostate. In elderly males, age- and/or androgen-related stromal remodeling is spontaneously induced, i.e., increased fibroblast and myofibroblast numbers, but decreased smooth muscle cell numbers in the prostatic stroma. These fibroblasts produce not only growth factors, cytokines, and extracellular matrix proteins, but also microRNAs as stromal paracrine signals that stimulate prostate epithelial cell proliferation. Surgical or chemical castration is the standard systemic therapy for patients with advanced prostate cancer. Androgen deprivation therapy induces temporary remission, but the majority of patients eventually progress to castration-resistant prostate cancer, which is associated with a high mortality rate. Androgen deprivation therapy-induced stromal remodeling may be involved in the development and progression of castration-resistant prostate cancer. In the tumor microenvironment, activated fibroblasts stimulating prostate cancer cell proliferation are called carcinoma-associated fibroblasts. In this review, we summarize the role of stromal paracrine signals in proliferative diseases of the aging human prostate and discuss the potential clinical applications of carcinoma-associated fibroblast-derived exosomal microRNAs as promising biomarkers.
Collapse
Affiliation(s)
- Kenichiro Ishii
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Sanai Takahashi
- Laboratory for Medical Engineering, Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.
| | - Yoshiki Sugimura
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
- Laboratory for Medical Engineering, Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.
| |
Collapse
|
9
|
Shen Z, Qin X, Yan M, Li R, Chen G, Zhang J, Chen W. Cancer-associated fibroblasts promote cancer cell growth through a miR-7-RASSF2-PAR-4 axis in the tumor microenvironment. Oncotarget 2018; 8:1290-1303. [PMID: 27901488 PMCID: PMC5352055 DOI: 10.18632/oncotarget.13609] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a major component of cancer stroma, play an important role in cancer progression but little is known about how CAFs affect tumorigenesis and development. MicroRNAs (miRNAs) are small non-coding RNAs that can negatively regulate target mRNA expression at post-transcriptional levels. In head and neck cancer (HNC), our analysis of miRNA arrays showed that miR-7, miR-196 and miR-335 were significantly up-regulated in CAFs when compared with their paired normal fibroblasts (NFs). FAP, α-SMA and FSP, specific markers of CAFs, were significantly expressed in CAFs. Functionally, exogenous expression of miR-7 in NFs induced a functional conversion of NFs into CAFs. In contrast, inhibition of miR-7 expression in CAFs could induce a functional conversion of CAFs into NFs. Our study demonstrated that overexpression of miR-7 in NFs significantly increased the migration activity and growth rates of cancer cells in co-culture experiments. Mechanistically, we confirmed that the RASSF2-PAR-4 axis was mainly responsible for miR-7 functions in CAFs using bioinformatics methods. Overexpression of miR-7 in CAFs led to down-regulation of RASSF2, which dramatically decreased the secretion of PAR-4 from CAFs and then enhanced the proliferation and migration of the co-cultured cancer cells. Thus, these results reveal that the inactivation of the RASSF2-PAR-4 axis controlled by miR-7 may be a novel strategy for gene therapy in HNCs.
Collapse
Affiliation(s)
- Zongze Shen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xing Qin
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Ming Yan
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Rongrong Li
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Gang Chen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
10
|
Sandiford OA, Moore CA, Du J, Boulad M, Gergues M, Eltouky H, Rameshwar P. Human Aging and Cancer: Role of miRNA in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:137-152. [PMID: 29754179 DOI: 10.1007/978-3-319-74470-4_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human aging is an inevitable and complex phenomenon characterized by a progressive, gradual degradation of physiological and cellular processes that leads from vulnerability to death. Mammalian somatic cells display limited proliferative properties in vitro that results in a process of permanent cell cycle arrest commonly known as senescence. Events leading to cellular senescence are complex but may be due to the increase in tumor suppressor genes, caused by lifetime somatic mutations. Cumulative mutation leaves an imprint on the genome of the cell, an important risk factor for the occurrence of cancer. Adults over the age of 65+ are vulnerable to age related diseases such as cancers but such changes may begin at middle age. MicroRNAs (miRNAs), which are small non-coding RNA, can regulate cancer progression, recurrence and metastasis. This chapter discusses the role of miRNA in tumor microenvironment, consequent to aging.
Collapse
Affiliation(s)
- Oleta A Sandiford
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Caitlyn A Moore
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Jun Du
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Mathieu Boulad
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Marina Gergues
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Hussam Eltouky
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Pranela Rameshwar
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA.
| |
Collapse
|
11
|
Jahagirdar D, Purohit S, Jain A, Sharma NK. Export of microRNAs: A Bridge between Breast Carcinoma and Their Neighboring Cells. Front Oncol 2016; 6:147. [PMID: 27379209 PMCID: PMC4913210 DOI: 10.3389/fonc.2016.00147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a leading type of cancer among women in India as well as worldwide. According to the WHO 2015 report, it has been anticipated that there would be a twofold rise in the death due to breast cancer among women. The heterogeneous property of breast carcinoma has been suggested to be linked with dedicated set of communication and signaling pathway with their surroundings, which culminate into progression and development of the cancer. Among the plethora of communication tools in the hand of breast carcinoma cells is the recently appreciated exocytosis of the tightly packed short non-coding RNA molecules, predominantly the microRNAs (miRNAs). Recent studies suggest that miRNAs may work as courier messengers to participate in endocrine and paracrine signaling to facilitate information transfer between breast carcinoma and their neighboring cells. Evidence suggests that breast tumor cells communicate via packaged miRNAs in the tumor-released microvesicles, which enrich the tumor microenvironment. There is a strong view that dissecting out the mechanistic and regulatory aspects of miRNA export and role may uncover many prospects for overcoming the signaling defects and thereby controlling aberrant cell division. The detection of circulating miRNAs associated with breast carcinoma can also be used as biomarkers for early diagnosis. This review article is an attempt to provide updated knowledge on implications of short RNAs and their transport in the breast cancer pathophysiology.
Collapse
Affiliation(s)
- Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Shruti Purohit
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Aayushi Jain
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
12
|
Lee KS, Nam SK, Koh J, Kim DW, Kang SB, Choe G, Kim WH, Lee HS. Stromal Expression of MicroRNA-21 in Advanced Colorectal Cancer Patients with Distant Metastases. J Pathol Transl Med 2016; 50:270-7. [PMID: 27240857 PMCID: PMC4963969 DOI: 10.4132/jptm.2016.03.19] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the regional heterogeneity and clinicopathological significance of microRNA-21 (miR-21) in advanced colorectal cancer (CRC) patients with distant metastasis. METHODS miR-21 expression was investigated by using locked nucleic acid- fluorescence in situ hybridization in the center and periphery of the primary cancer and in distant metastasis from 170 patients with advanced CRC. In addition, α-smooth muscle actin and desmin were evaluated to identify cancer-associated fibroblasts (CAFs) by using immunohistochemistry. RESULTS The miR-21 signal was observed in the cancer stroma. The expression of miR-21 (a score of 1-4) in the center and periphery of the primary cancer and in distant metastasis was observed in specimens from 133 (78.2%), 105 (61.8%), and 91 (53.5%) patients, respectively. miR-21 expression was heterogeneous in advanced CRC. Discordance between miR-21 expression in the center of the primary cancer and either the periphery of the primary cancer or distant metastasis was 31.7% or 44.7%, respectively. miR-21 stromal expression in the periphery of the primary cancer was significantly associated with a better prognosis (p=.004). miR-21 expression was significantly associated with CAFs in the center of the primary cancer (p=.001) and distant metastases (p=.041). CONCLUSIONS miR-21 expression is observed in cancer stroma related to the CAF quantity and frequently presents regional heterogeneity in CRC. Our findings indicate that the role of miR-21 in predicting prognosis may be controversial but provide a new perspective of miR-21 level measurement in cancer specimens.
Collapse
Affiliation(s)
- Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Soo Kyung Nam
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
13
|
Li J, Guan J, Long X, Wang Y, Xiang X. mir-1-mediated paracrine effect of cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance. Oncol Rep 2016; 35:3523-31. [PMID: 27035564 DOI: 10.3892/or.2016.4714] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in humans worldwide. Moreover, the overall 5-year survival rate is only 15%. Pathologically almost 80% of all lung cancer cases are non-small cell lung cancer (NSCLC). Cancer-associated fibroblasts (CAFs) have been found to exist in a large number of NSCLCs. CAFs have been proven to promote tumor progression, metastasis and resistance to therapy through paracrine effects in most solid tumors. In the present study, firstly we isolated CAFs from patient tissues and demonstrated that they promoted cell proliferation and chemoresistance to cisplatin in the lung cancer cell lines A549 and 95D in a paracrine manner. Secondly, using ELISA and quantative PCR, we found that a higher amount of stromal cell-derived factor 1 (SDF-1) existed in the CAFs rather than that observed in the normal fibroblasts (NFs). Thirdly, we detected that SDF-1 facilitated lung cancer cell proliferation and drug resistance via the CXCR4-mediated signaling pathway which involved NF-κB and Bcl-xL. Moreover, we also confirmed that the expression level of SDF-1 in the CAFs was negatively regulated by microRNA mir-1 through microRNA overexpression and quantitative PCR. Overall, our data provide one explanation for the effects of CAFs on lung cancer cells. Meanwhile, our results also suggest CAFs as a potential therapeutic target in tumor treatment.
Collapse
Affiliation(s)
- Jianmin Li
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jing Guan
- Department of Emergency Medicine, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Xiaoping Long
- Department of Respiratory Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan 421000, P.R. China
| | - Yang Wang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xudong Xiang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
14
|
Kuninty PR, Schnittert J, Storm G, Prakash J. MicroRNA Targeting to Modulate Tumor Microenvironment. Front Oncol 2016; 6:3. [PMID: 26835418 PMCID: PMC4717414 DOI: 10.3389/fonc.2016.00003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/03/2016] [Indexed: 02/02/2023] Open
Abstract
Communication between stromal cells and tumor cells initiates tumor growth, angiogenesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune cells. MicroRNAs (miRNAs) in the tumor microenvironment have emerged as key players involved in the development of cancer and its progression. miRNAs are small endogenous non-protein-coding RNAs that negatively regulate the expression of multiple target genes at post-transcriptional level and thereby control many cellular processes. In this review, we provide a comprehensive overview of miRNAs dysregulated in different stromal cells and their impact on the regulation of intercellular crosstalk in the tumor microenvironment. We also discuss the therapeutic significance potential of miRNAs to modulate the tumor microenvironment. Since miRNA delivery is quite challenging and the biggest hurdle for clinical translation of miRNA therapeutics, we review various non-viral miRNA delivery systems that can potentially be used for targeting miRNA to stromal cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Praneeth R Kuninty
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede , Netherlands
| | - Jonas Schnittert
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede , Netherlands
| | - Gert Storm
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands; Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Jai Prakash
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede , Netherlands
| |
Collapse
|
15
|
Min A, Zhu C, Peng S, Shuai C, Sun L, Han Y, Qian Y, Gao S, Su T. Downregulation of Microrna-148a in Cancer-Associated Fibroblasts from Oral Cancer Promotes Cancer Cell Migration and Invasion by Targeting Wnt10b. J Biochem Mol Toxicol 2015; 30:186-91. [PMID: 26709120 DOI: 10.1002/jbt.21777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/09/2015] [Accepted: 10/23/2015] [Indexed: 01/15/2023]
Abstract
It is well established that crosstalk between cancer-associated fibroblasts (CAFs) and cancer cells plays a critical role in the occurrence and development of oral squamous cell carcinoma (OSCC). The molecular mechanisms underlying such interaction, however, remain far from clear. Accumulating data have indicated that microRNAs involved in tumor microenvironment, particularly in CAFs, contribute to the activation of fibroblasts and metastasis of cancer cells. Here, we showed that miR-148a was downregulated in CAFs compared with normal fibroblasts isolated from clinical OSCC tissue. Investigation of miR-148a function in fibroblasts demonstrated that overexpression of miR-148a in CAFs significantly impaired the migration and invasion of oral carcinoma cells (SCC-25) by directly targeting WNT10B. Taken together, these data suggested that miR-148a might be a novel candidate target for the treatment of OSCC.
Collapse
Affiliation(s)
- Anjie Min
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China.
| | - Chao Zhu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China.,School of Stomatology, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Shuping Peng
- Cancer Research Institute, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Lu Sun
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China.,School of Stomatology, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ying Han
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China.,School of Stomatology, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Yunmei Qian
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China.,School of Stomatology, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Shan Gao
- The Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, University of Aarhus, Aarhus C DK-8000, Denmark.,School of Stomatology, Tianjin Medical University, Tianjin, 300000, People's Republic of China
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| |
Collapse
|
16
|
Sun Y, Ge Y, Fu Y, Yan L, Cai J, Shi K, Cao X, Lu C. Mitomycin C induces fibroblasts apoptosis and reduces epidural fibrosis by regulating miR-200b and its targeting of RhoE. Eur J Pharmacol 2015; 765:198-208. [DOI: 10.1016/j.ejphar.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 01/28/2023]
|
17
|
Chen D, Che G. [Advancement of phenotype transformation of cancer-associated fibroblasts:
from genetic alterations to epigenetic modification]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:117-22. [PMID: 25676407 PMCID: PMC5999850 DOI: 10.3779/j.issn.1009-3419.2015.02.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the field of human cancer research, even though the vast majority attentions were paid to tumor cells as "the seeds", the roles of tumor microenvironments as "the soil" are gradually explored in recent years. As a dominant compartment of tumor microenvironments, cancer-associated fibroblasts (CAFs) were discovered to correlated with tumorigenesis, tumor progression and prognosis. And the exploration of the mechanisms of CAF phenotype transformation would conducive to the further understand of the CAFs function in human cancers. As we known that CAFs have four main origins, including epithelial cells, endothelial cells, mesenchymal stem cells (MSCs) and local mesenchymal cells. However, researchers found that all these origins finally conduct similiar phenotypes from intrinsic to extrinsic ones. Thus, what and how a mechanism can conduct the phenotype transformation of CAFs with different origins? Two viewpoints are proposed to try to answer the quetsion, involving genetic alterations and epigenetic modifications. This review will systematically summarize the advancement of mechanisms of CAF phenotype transformations in the aspect of genentic and epigenetic modifications.
Collapse
Affiliation(s)
- Dali Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 2015; 81:128-41. [PMID: 24859533 PMCID: PMC5009470 DOI: 10.1016/j.addr.2014.05.009] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/15/2014] [Accepted: 05/15/2014] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs), small non-coding RNAs, can regulate post-transcriptional gene expressions and silence a broad set of target genes. miRNAs, aberrantly expressed in cancer cells, play an important role in modulating gene expressions, thereby regulating downstream signaling pathways and affecting cancer formation and progression. Oncogenes or tumor suppressor genes regulated by miRNAs mediate cell cycle progression, metabolism, cell death, angiogenesis, metastasis and immunosuppression in cancer. Recently, miRNAs have emerged as therapeutic targets or tools and biomarkers for diagnosis and therapy monitoring in cancer. Since miRNAs can regulate multiple cancer-related genes simultaneously, using miRNAs as a therapeutic approach plays an important role in cancer therapy. However, one of the major challenges of miRNA-based cancer therapy is to achieve specific, efficient and safe systemic delivery of therapeutic miRNAs in vivo. This review discusses the key challenges to the development of the carriers for miRNA-based therapy and explores current strategies to systemically deliver miRNAs to cancer without induction of toxicity.
Collapse
Affiliation(s)
- Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC.
| | - Dong-Yu Gao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Leaf Huang
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Wang Y, Wang Q, Zhang N, Ma H, Gu Y, Tang H, Xu Z, Gao Y. Identification of microRNAs as novel biomarkers for detecting esophageal squamous cell carcinoma in Asians: a meta-analysis. Tumour Biol 2014; 35:11595-604. [PMID: 25135426 DOI: 10.1007/s13277-014-2350-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/13/2014] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence has suggested that microRNAs (miRNAs) may play potential role as ideal diagnostic indicators of esophageal squamous cell carcinoma (ESCC). However, previous studies have met discrepant results. Thus, we conducted this meta-analysis to assess the potential diagnostic value of miRNAs for ESCC. A systematic literature search was conducted in PubMed and other databases. The pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to evaluate the overall test performance. The Q statistic and the I(2) test were used to assess between-study heterogeneity. The potential sources of heterogeneity were further analyzed by subgroup analyses and meta-regression. Seventeen studies from eight articles, including 995 ESCC patients and 733 healthy controls, were included in this meta-analysis. The pooled SEN and SPE were 0.81 (95% confidence interval (CI) 0.76-0.85) and 0.83 (95 % CI 0.76-0.88), respectively. The pooled PLR was 4.6 (95% CI 3.3-6.5), NLR was 0.23 (95% CI 0.19-0.29), and DOR was 20 (95% CI 13-31). The pooled AUC was 0.91 (95% CI 0.88-0.93). Subgroup analyses indicated that blood-based miRNA assay displays better diagnostic accuracy than saliva-based miRNA assay. In summary, miRNA analysis may serve as novel noninvasive biomarkers for ESCC with excellent diagnostic characteristic. In addition, subgroup analysis suggested that blood-based assay yields better diagnostic characteristics than saliva-based assay. However, many issues should be managed before these findings can be translated into a clinically useful detection method for ESCC.
Collapse
Affiliation(s)
- Yanying Wang
- Department of Gastroenterology, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang TS, Yang XH, Chen X, Wang XD, Hua J, Zhou DL, Zhou B, Song ZS. MicroRNA-106b in cancer-associated fibroblasts from gastric cancer promotes cell migration and invasion by targeting PTEN. FEBS Lett 2014; 588:2162-9. [PMID: 24842611 DOI: 10.1016/j.febslet.2014.04.050] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/02/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022]
Abstract
It is well established that the interaction between cancer cells and microenvironment has a critical role in tumor development, but the roles of miRNAs in this interaction are rarely known. Here, we have shown that miR-106b is up-regulated in cancer associated fibroblasts compared with normal fibroblasts established from patients with gastric cancer, the expression level of miR-106b is associated with poor prognosis of patients, and CAFs with down-regulated miR-106b could significantly inhibit gastric cancer cell migration and invasion by targeting PTEN. Taken together, these data suggest that miR-106b might be a novel candidate target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ting-Song Yang
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Xiao-Hu Yang
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Xi Chen
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Xu-Dong Wang
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Jie Hua
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Dong-Lei Zhou
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Bo Zhou
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Zhen-Shun Song
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
21
|
Su Y, Li X, Ji W, Sun B, Xu C, Li Z, Qian G, Su C. Small molecule with big role: MicroRNAs in cancer metastatic microenvironments. Cancer Lett 2013; 344:147-56. [PMID: 24184826 DOI: 10.1016/j.canlet.2013.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 12/19/2022]
Abstract
Cancer metastasis is closely related to tumor cell microenvironments. Cancer cells and stromal cells interact with one another through extracellular matrix (ECM) and jointly participate in establishing the microenvironments. However, many questions remain to be addressed, in particular, a crucial question is which messengers mediate the mutual interaction and regulation between cancer cells and stromal cells. MicroRNAs (miRNAs), as oncogenic and oncosuppressor genes, regulate the expression and function of their related target genes to affect the biological behaviors of cancer cells and stromal cells, which may play an important role in cancer metastasis. Many miRNAs associated with cancer metastasis have been identified. The molecules of miRNAs are small and relatively easy to be secreted into extracellular microenvironments and devoured by nearby cells. As the regulatory messengers between cells, the secreted miRNAs function to regulate cancer cell proliferation, migration, intercellular communication and stromal modification, thereby helping cancer cells to establish their microenvironments for metastasis. In conclusion, miRNAs are small molecules, but they play a powerful role in regulating cancer metastatic ability by construction and modification of microenvironments.
Collapse
Affiliation(s)
- Yinghan Su
- Department of Biology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xiaoya Li
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guojun Qian
- Department of Minimal Invasion Therapy, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China.
| |
Collapse
|
22
|
Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, Ikeda N, Isozaki Y, Maruyama T, Akanuma N, Komatsu A, Jitsukawa M, Matsubara H. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer 2013; 108:644-52. [PMID: 23361059 PMCID: PMC3593570 DOI: 10.1038/bjc.2013.8] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent studies have demonstrated that microRNAs (miRNAs) are stably detectable in blood and can serve as useful biomarkers for cancer. METHODS We performed an miRNA array using serum samples obtained from oesophageal squamous cell carcinoma (ESCC) patients or healthy controls. MiR-1246 was the most markedly elevated in ESCC patients. Therefore, miR-1246 was selected as a candidate for further analysis. The serum miR-1246 level in 46 healthy controls and 101 ESCC patients was evaluated and compared among various clinicopathological characteristics. MiR-1246 expressions in tissue, exosomal, and cellular samples were also examined. RESULTS Serum miR-1246 alone yielded an receiver-operating characteristic curve area of 0.754, with 71.3% sensitivity and 73.9% specificity for distinguishing ESCC patients from healthy controls. Serum miR-1246 was significantly correlated with the TNM stage and showed to be the strongest independent risk factor for poor survival (HR, 4.032; P=0.017). Unlike the tendency shown in previous reports, miR-1246 was not upregulated in ESCC tissue samples. Furthermore, exosomal miR-1246 did not reflect the abundance in the cell of origin. CONCLUSION These data support our contention that serum miR-1246 has strong potential as a novel diagnostic and prognostic biomarker in ESCC, and its releasing mechanism is selective and independent of tissue miRNA abundance.
Collapse
Affiliation(s)
- N Takeshita
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - I Hoshino
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - M Mori
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - Y Akutsu
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - N Hanari
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - Y Yoneyama
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - N Ikeda
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - Y Isozaki
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - T Maruyama
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - N Akanuma
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - A Komatsu
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - M Jitsukawa
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| | - H Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260 8670, Japan
| |
Collapse
|
23
|
De Palma M, Hanahan D. The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol 2012; 6:111-27. [PMID: 22360993 PMCID: PMC5528366 DOI: 10.1016/j.molonc.2012.01.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 01/29/2012] [Indexed: 12/14/2022] Open
Abstract
It is a time of great promise and expectation for the applications of knowledge about mechanisms of cancer toward more effective and enduring therapies for human disease. Conceptualizations such as the hallmarks of cancer are providing an organizing principle with which to distill and rationalize the abject complexities of cancer phenotypes and genotypes across the spectrum of the human disease. A countervailing reality, however, involves the variable and often transitory responses to most mechanism-based targeted therapies, returning full circle to the complexity, arguing that the unique biology and genetics of a patient's tumor will in the future necessarily need to be incorporated into the decisions about optimal treatment strategies, the frontier of personalized cancer medicine. This perspective highlights considerations, metrics, and methods that may prove instrumental in charting the landscape of evaluating individual tumors so to better inform diagnosis, prognosis, and therapy. Integral to the consideration is remarkable heterogeneity and variability, evidently embedded in cancer cells, but likely also in the cell types composing the supportive and interactive stroma of the tumor microenvironment (e.g., leukocytes and fibroblasts), whose diversity in form, regulation, function, and abundance may prove to rival that of the cancer cells themselves. By comprehensively interrogating both parenchyma and stroma of patients' cancers with a suite of parametric tools, the promise of mechanism-based therapy may truly be realized.
Collapse
Affiliation(s)
- Michele De Palma
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Douglas Hanahan
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|