1
|
Beretta GL, Cassinelli G, Rossi G, Azzariti A, Corbeau I, Tosi D, Perego P. Novel insights into taxane pharmacology: An update on drug resistance mechanisms, immunomodulation and drug delivery strategies. Drug Resist Updat 2025; 81:101223. [PMID: 40086175 DOI: 10.1016/j.drup.2025.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Taxanes are effective in several solid tumors. Paclitaxel, the main clinically available taxane, was approved in the early nineties, for the treatment of ovarian cancer and later on, together with the analogs docetaxel and cabazitaxel, for other malignancies. By interfering with microtubule function and impairing the separation of sister cells at mitosis, taxanes act as antimitotic agents, thereby counteracting the high proliferation rate of cancer cells. The action of taxanes goes beyond their antimitotic function because their main cellular targets, the microtubules, participate in multiple processes such as intracellular transport and cell shape maintenance. The clinical efficacy of taxanes is limited by the development of multiple resistance mechanisms. Among these, extracellular vesicles have emerged as new players. In addition, taxane metronomic schedules shows an impact on the tumor microenvironment reflected by antiangiogenic and immunomodulatory effects, an aspect of growing interest considering their inclusion in treatment regimens with immunotherapeutics. Preclinical studies have paved the bases for synergistic combinations of taxanes both with conventional and targeted agents. A variety of drug delivery strategies have provided novel opportunities to increase the drug activity. The ability of taxanes to orchestrate different cellular effects amenable to modulation suggests novel options to improve cures in lethal malignancies.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giacomina Rossi
- Unit of Neurology 8, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari 70124, Italy.
| | - Iléana Corbeau
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Diego Tosi
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| |
Collapse
|
2
|
Sato R, Yamaki H, Komatsuda H, Wakisaka R, Inoue T, Kumai T, Takahara M. Exploring Immunological Effects and Novel Immune Adjuvants in Immunotherapy for Salivary Gland Cancers. Cancers (Basel) 2024; 16:1205. [PMID: 38539539 PMCID: PMC10969392 DOI: 10.3390/cancers16061205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 11/11/2024] Open
Abstract
Salivary gland cancer (SGC) is rare and comprises over 20 histological subtypes. Recently, clinical experience regarding immunotherapies for SGCs has been accumulating, yet their efficacy remains controversial. Understanding the tumor microenvironment (TME), including the expression of immune checkpoint molecules in SGC, is crucial to optimizing immunotherapy. In this review, we demonstrate that high-grade mucoepidermoid carcinoma and salivary duct carcinoma generally exhibit immune-hot TME with high immune cell infiltration, frequent genetic mutations, and robust immune checkpoint molecule expression. In contrast, adenoid cystic carcinomas exhibit an immune-cold TME. While the reported efficacy of immune checkpoint inhibitors (ICIs) for SGCs is generally poor, several studies showed promising clinical efficacy of ICIs, with an objective response rate ranging from 20.0-33.3%, indicating that ICIs might be beneficial for a specific population of SGC. Molecule-targeted therapies including anti-human epidermal growth factor receptor 2 and anti-androgen receptor therapies have shown promising clinical efficacy against SGC. Recent evidence indicates that these molecules could be targets for antigen-specific immunotherapies including chimeric antigen receptor-T therapy and cancer vaccines. This review discusses the current understanding and future directions of immunotherapies for SGCs, including ongoing clinical trials.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Takahiro Inoue
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 0788510, Japan
| |
Collapse
|
3
|
Atay C, Medina-Echeverz J, Hochrein H, Suter M, Hinterberger M. Armored modified vaccinia Ankara in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:87-142. [PMID: 37541728 DOI: 10.1016/bs.ircmb.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Cancer immunotherapy relies on unleashing the patient´s immune system against tumor cells. Cancer vaccines aim to stimulate both the innate and adaptive arms of immunity to achieve durable clinical responses. Some roadblocks for a successful cancer vaccine in the clinic include the tumor antigen of choice, the adjuvants employed to strengthen antitumor-specific immune responses, and the risks associated with enhancing immune-related adverse effects in patients. Modified vaccinia Ankara (MVA) belongs to the family of poxviruses and is a versatile vaccine platform that combines several attributes crucial for cancer therapy. First, MVA is an excellent inducer of innate immune responses leading to type I interferon secretion and induction of T helper cell type 1 (Th1) immune responses. Second, it elicits robust and durable humoral and cellular immunity against vector-encoded heterologous antigens. Third, MVA has enormous genomic flexibility, which allows for the expression of multiple antigenic and costimulatory entities. And fourth, its replication deficit in human cells ensures a excellent safety profile. In this review, we summarize the current understanding of how MVA induces innate and adaptive immune responses. Furthermore, we will give an overview of the tumor-associated antigens and immunomodulatory molecules that have been used to armor MVA and describe their clinical use. Finally, the route of MVA immunization and its impact on therapeutic efficacy depending on the immunomodulatory molecules expressed will be discussed.
Collapse
Affiliation(s)
- Cigdem Atay
- Bavarian Nordic GmbH, Fraunhoferstr.13, Planegg, Germany
| | | | | | - Mark Suter
- Prof. em. University of Zurich, Switzerland
| | | |
Collapse
|
4
|
Kothari N, Postwala H, Pandya A, Shah A, Shah Y, Chorawala MR. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 2023; 40:135. [PMID: 37014489 DOI: 10.1007/s12032-023-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.
Collapse
Affiliation(s)
- Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| |
Collapse
|
5
|
Development of Cancer Immunotherapies. Cancer Treat Res 2022; 183:1-48. [PMID: 35551655 DOI: 10.1007/978-3-030-96376-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cancer immunotherapy, or the utilization of components of the immune system to target and eliminate cancer, has become a highly active area of research in the past several decades and a common treatment strategy for several cancer types. The concept of harnessing the immune system for this purpose originated over 100 years ago when a physician by the name of William Coley successfully treated several of his cancer patients with a combination of live and attenuated bacteria, later known as "Coley's Toxins", after observing a subset of prior patients enter remission following their diagnosis with the common bacterial infection, erysipelas. However, it was not until late in the twentieth century that cancer immunotherapies were developed for widespread use, thereby transforming the treatment landscape of numerous cancer types. Pivotal studies elucidating molecular and cellular functions of immune cells, such as the discovery of IL-2 and production of monoclonal antibodies, fostered the development of novel techniques for studying the immune system and ultimately the development and approval of several cancer immunotherapies by the United States Food and Drug Association in the 1980s and 1990s, including the tuberculosis vaccine-Bacillus Calmette-Guérin, IL-2, and the CD20-targeting monoclonal antibody. Approval of the first therapeutic cancer vaccine, Sipuleucel-T, for the treatment of metastatic castration-resistant prostate cancer and the groundbreaking success and approval of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy in the last decade, have driven an explosion of interest in and pursuit of novel cancer immunotherapy strategies. A broad range of modalities ranging from antibodies to adoptive T cell therapies is under investigation for the generalized treatment of a broad spectrum of cancers as well as personalized medicine. This chapter will focus on the recent advances, current strategies, and future outlook of immunotherapy development for the treatment of cancer.
Collapse
|
6
|
Rezaei M, Danilova ND, Soltani M, Savvateeva LV, V Tarasov V, Ganjalikhani-Hakemi M, V Bazhinf A, A Zamyatnin A. Cancer Vaccine in Cold Tumors: Clinical Landscape, Challenges, and Opportunities. Curr Cancer Drug Targets 2022; 22:437-453. [PMID: 35156572 DOI: 10.2174/1568009622666220214103533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
The idea of cancer immunotherapy is to stimulate the immune system to fight tumors without destroying normal cells. One of the anticancer therapy methods, among many, is based on the use of cancer vaccines that contain tumor antigens in order to induce immune responses against tumors. However, clinical trials have shown that the use of such vaccines as a monotherapy is ineffective in many cases, since they do not cause a strong immune response. Particular tumors are resistant to immunotherapy due to the absence or insufficient infiltration of tumors with CD8+ T cells, and hence, they are called cold or non-inflamed tumors. Cold tumors are characterized by a lack of CD8+ T cell infiltration, the presence of anti-inflammatory myeloid cells, tumor-associated M2 macrophages, and regulatory T cells. It is very important to understand which stage of the antitumor response does not work properly in order to use the right strategy for the treatment of patients. Applying other therapeutic methods alongside cancer vaccines can be more rational for cold tumors which do not provoke the immune system strongly. Herein, we indicate some combinational therapies that have been used or are in progress for cold tumor treatment alongside vaccines.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mozhdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mazdak Ganjalikhani-Hakemi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexandr V Bazhinf
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
7
|
Maiorano BA, Schinzari G, Ciardiello D, Rodriquenz MG, Cisternino A, Tortora G, Maiello E. Cancer Vaccines for Genitourinary Tumors: Recent Progresses and Future Possibilities. Vaccines (Basel) 2021; 9:623. [PMID: 34207536 PMCID: PMC8228524 DOI: 10.3390/vaccines9060623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In the last years, many new treatment options have widened the therapeutic scenario of genitourinary malignancies. Immunotherapy has shown efficacy, especially in the urothelial and renal cell carcinomas, with no particular relevance in prostate cancer. However, despite the use of immune checkpoint inhibitors, there is still high morbidity and mortality among these neoplasms. Cancer vaccines represent another way to activate the immune system. We sought to summarize the most recent advances in vaccine therapy for genitourinary malignancies with this review. METHODS We searched PubMed, Embase and Cochrane Database for clinical trials conducted in the last ten years, focusing on cancer vaccines in the prostate, urothelial and renal cancer. RESULTS Various therapeutic vaccines, including DNA-based, RNA-based, peptide-based, dendritic cells, viral vectors and modified tumor cells, have been demonstrated to induce specific immune responses in a variable percentage of patients. However, these responses rarely corresponded to significant survival improvements. CONCLUSIONS Further preclinical and clinical studies will improve the knowledge about cancer vaccines in genitourinary malignancies to optimize dosage, select targets with a driver role for tumor development and growth, and finally overcome resistance mechanisms. Combination strategies represent possibly more effective and long-lasting treatments.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
| | - Giovanni Schinzari
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
- Medical Oncology Unit, Comprehensive Cancer Center, Foundation A. Gemelli Policlinic IRCCS, 00168 Rome, Italy
| | - Davide Ciardiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
- Medical Oncology, Department of Precision Medicine, Luigi Vanvitelli University of Campania, 80131 Naples, Italy
| | - Maria Grazia Rodriquenz
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
| | - Antonio Cisternino
- Urology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy;
| | - Giampaolo Tortora
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
- Medical Oncology Unit, Comprehensive Cancer Center, Foundation A. Gemelli Policlinic IRCCS, 00168 Rome, Italy
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
| |
Collapse
|
8
|
Lin W, Zhao Y, Zhong L. Current strategies of virotherapy in clinical trials for cancer treatment. J Med Virol 2021; 93:4668-4692. [PMID: 33738818 DOI: 10.1002/jmv.26947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
As a novel immune-active agent for cancer treatment, viruses have the ability of infecting and replicating in tumor cells. The safety and efficacy of viruses has been tested and confirmed in preclinical and clinical trials. In the last decade, virotherapy has been adopted as a monotherapy or combined therapy with immunotherapy, chemotherapy, or radiotherapy, showing promising outcomes against cancer. In this review, the current strategies of viruses used in clinical trials are classified and described. Besides this, the challenge and future prospects of virotherapy in the management for cancer patients are discussed in this review.
Collapse
Affiliation(s)
- Weijian Lin
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Wan YL, Sapra P, Bolton J, Chua JX, Durrant LG, Stern PL. Combination Treatment with an Antibody-Drug Conjugate (A1mcMMAF) Targeting the Oncofetal Glycoprotein 5T4 and Carboplatin Improves Survival in a Xenograft Model of Ovarian Cancer. Target Oncol 2020; 14:465-477. [PMID: 31332693 PMCID: PMC6684567 DOI: 10.1007/s11523-019-00650-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Recurrence occurs in over 75% of women with epithelial ovarian cancer despite optimal treatment. Selectively killing tumour cells thought to initiate relapse using an antibody–drug conjugate could prolong progression-free survival and offer an improved side-effect profile. A1mcMMAF is an antibody–drug conjugate designed to target cells expressing the tumour-associated antigen 5T4. It has shown to be efficacious in various cell line models and have a greater impact when combined with routine chemotherapeutic regimes. Objectives This study aims to explore the potential for the use of a 5T4 antibody–drug conjugate in women with ovarian cancer both as a monotherapy and in combination with platinum-based chemotherapy. Methods Immunohistochemical analysis was used to assess 5T4 expression in tumours from patients with ovarian cancer. Effectiveness of A1mcMMAF therapy as a single agent and in combination with carboplatin was assessed in vitro in the ovarian cancer cell line SKOV3 and confirmed in vivo using a serial bioluminescence assay in a SKOV3 xenograft model of ovarian cancer. Results 5T4 is confirmed as suitably expressed in epithelial ovarian cancers prior to adjuvant therapy and is an independent predictor of poor survival. A1mcMMAF showed specific activity, both in vitro and in vivo, against SKOV3 ovarian cancer cells. When used in combination with carboplatin, in vivo tumour growth was inhibited resulting in prolonged survival in a SKOV3 xenograft model. Conclusions These data support further investigation of A1mcMMAF in combination with platinum-based chemotherapy in ovarian and other cancer treatments. Electronic supplementary material The online version of this article (10.1007/s11523-019-00650-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Y Louise Wan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Puja Sapra
- Oncology Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, NY, 10954, USA
| | - James Bolton
- Department of Histopathology, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK
| | - Jia Xin Chua
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Lindy G Durrant
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Peter L Stern
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
10
|
Hossain MK, Nahar K, Donkor O, Apostolopoulos V. Immune-based therapies for metastatic prostate cancer: an update. Immunotherapy 2019; 10:283-298. [PMID: 29421982 DOI: 10.2217/imt-2017-0123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer (PC) is a common malignancy among elderly males and is noncurable once it becomes metastatic. In recent years, a number of antigen-delivery systems have emerged as viable and promising immunotherapeutic agents against PC. The approval of sipuleucel-T by the US FDA for the treatment of males with asymptomatic or minimally symptomatic castrate resistant PC was a landmark in cancer immunotherapy, making this the first approved immunotherapeutic. A number of vaccines are under clinical investigation, each having its own set of advantages and disadvantages. Here, we discuss the basic technologies underlying these different delivery modes, we discuss the completed and current human clinical trials, as well as the use of vaccines in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Kamrun Nahar
- Vetafarm Pty Ltd, Wagga Wagga, NSW, 2650, Australia
| | - Osaana Donkor
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Australia
| |
Collapse
|
11
|
Shi B, Wu M, Li Z, Xie Z, Wei X, Fan J, Xu Y, Ding D, Akash SH, Chen S, Cao S. Antitumor activity of a 5T4 targeting antibody drug conjugate with a novel payload derived from MMAF via C-Lock linker. Cancer Med 2019; 8:1793-1805. [PMID: 30843650 PMCID: PMC6488119 DOI: 10.1002/cam4.2066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/15/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
Antibody-drug conjugates (ADCs) belong to a promising class of biopharmaceuticals in which target-killing of tumor cells was achieved by marrying the potency of the cytotoxic payload with the tumor specificity of the antibody. Here we developed a novel ADC (ZV0508) that targets 5T4 oncofetal antigen, which is overexpressed in many carcinomas on both bulk tumor cells and cancer stem cells. A novel cytotoxic payload called Duostatin-5 (Duo-5) which was derived from monomethyl auristatin F (MMAF) was attached to a 5T4 targeting antibody (ZV05) by interchain cysteine cross-linking conjugation via a disubstituted C-Lock linker. We have investigated the antitumor efficacy of ZV0508 by in vitro and in vivo studies, and compared its antitumor activity with ZV05-mcMMAF (ZV0501), in which MMAF was linked via a conventional noncleavable maleimidocaproyl linker. As results, ZV0508 exhibited ideal antiproliferative effects through blocking cell cycle and inducing cell apoptosis. The in vivo studies revealed that both ZV0501 and ZV0508 exhibited excellent antitumor activities even at a single dose. Although ZV0508 was inferior to ZV0501 in vitro, it elicited more durable antitumor responses than ZV0501 in vivo. The superior in vivo activity of ZV0508 may be due to the combined use of the disubstituted C-Lock linker and the novel payload Duo-5, resulting in a more stable and potent ADC. Taken together, these data suggest ZV0508 is a worthy candidate for the treatment of 5T4 positive cancers.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cross-Linking Reagents
- Female
- Humans
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Male
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Targeted Therapy/methods
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Oligopeptides/pharmacology
- Tumor Cells, Cultured/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Baoying Shi
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Min Wu
- Zova Biotherapeutics IncFuyang, HangzhouChina
| | - Zhaohui Li
- Zova Biotherapeutics IncFuyang, HangzhouChina
| | | | - Xiaoyue Wei
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Jiansheng Fan
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Yingchun Xu
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Ding Ding
- Noeantigen Therapeutics (HangZhou) Co., LtdHangzhouChina
| | - Sajid Hamid Akash
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Shuqing Chen
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Sheldon Cao
- Zova Biotherapeutics IncFuyang, HangzhouChina
| |
Collapse
|
12
|
Addressing cancer immunotherapy research in Iran: adoptive cell therapy on the horizon. Cytotherapy 2018; 20:1227-1237. [DOI: 10.1016/j.jcyt.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/04/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
|
13
|
Therapeutic cancer vaccines: From initial findings to prospects. Immunol Lett 2018; 196:11-21. [DOI: 10.1016/j.imlet.2018.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/30/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
14
|
Scurr M, Pembroke T, Bloom A, Roberts D, Thomson A, Smart K, Bridgeman H, Adams R, Brewster A, Jones R, Gwynne S, Blount D, Harrop R, Wright M, Hills R, Gallimore A, Godkin A. Effect of Modified Vaccinia Ankara-5T4 and Low-Dose Cyclophosphamide on Antitumor Immunity in Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA Oncol 2017; 3:e172579. [PMID: 28880972 PMCID: PMC5824319 DOI: 10.1001/jamaoncol.2017.2579] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/14/2017] [Indexed: 01/04/2023]
Abstract
IMPORTANCE The success of immunotherapy with checkpoint inhibitors is not replicated in most cases of colorectal cancer; therefore, different strategies are urgently required. The oncofetal antigen 5T4 is expressed in more than 90% of cases of metastatic colorectal cancer (mCRC). Preliminary data using modified vaccinia Ankara-5T4 (MVA-5T4) in mCRC demonstrated that it safely induced serologic and T-cell responses. OBJECTIVE To determine whether antitumor immunity in mCRC could be increased using MVA-5T4, metronomic low-dose cyclophosphamide, or a combination of both treatments. DESIGN, SETTING, AND PARTICIPANTS In this randomized clinical trial, 55 patients with inoperable mCRC and prior stable disease after standard chemotherapy were enrolled at a single center and randomized to watch and wait (n = 9), cyclophosphamide treatment only (n = 9), MVA-5T4 only (n = 19), and a combination of MVA-5T4 and cyclophosphamide (n = 18). Patients were enrolled and treated from July 9, 2012, through February 8, 2016, and follow-up was completed on December 13, 2016. Data were analyzed based on intention to treat. INTERVENTIONS Patients randomized to a cyclophosphamide group received 50 mg twice daily on treatment days 1 to 7 and 15 to 21. Patients randomized to a MVA-5T4 group received an intramuscular injection at a dose of 1 × 109 50% tissue culture infectious dose on treatment days 22, 36, 50, 64, 78, and 106. MAIN OUTCOMES AND MEASURES The predefined primary end point was the magnitude of anti-5T4 immune responses (5T4-specific T-cell and antibody levels) generated at treatment week 7. Secondary end points included analysis of the kinetics of anti-5T4 responses, progression-free survival (PFS), and overall survival (OS). RESULTS Fifty-two patients (38 men and 14 women; mean [SD] age, 64.2 [10.1] years) were included in the study analysis. The 5T4-specific antibody immune responses were significantly increased in the MVA-5T4 (83.41 [36.09] relative units [RU]; P = .02) and combination treatment (65.81 [16.68] RU; P = .002) groups compared with no treatment (20.09 [7.20] RU). Cyclophosphamide depleted regulatory T cells in 24 of 27 patients receiving MVA-5T4, independently prolonging PFS (5.0 vs 2.5 months; hazard ratio [HR], 0.48; 95% CI, 0.21-1.11; P = .09). MVA-5T4 doubled baseline anti-5T4 responses in 16 of 35 patients, resulting in significantly prolonged PFS (5.6 vs 2.4 months; HR, 0.21; 95% CI, 0.09-0.47; P < .001) and OS (20.0 vs 10.3 months; HR, 0.32; 95% CI, 0.14-0.74; P = .008). No grade 3 or 4 adverse events were observed. CONCLUSIONS AND RELEVANCE This initial randomized clinical immunotherapy study demonstrates a significant survival benefit in mCRC. Prior depletion of regulatory T cells by cyclophosphamide did not increase immune responses generated by MVA-5T4 vaccination; however, cyclophosphamide and MVA-5T4 each independently induced beneficial antitumor immune responses, resulting in prolonged survival without toxic effects. Larger clinical trials are planned to further validate these data. TRIAL REGISTRATION isrctn.org Identifier: ISRCTN54669986.
Collapse
Affiliation(s)
- Martin Scurr
- Division of Infection and Immunity, Cardiff University, Cardiff, Wales
| | - Tom Pembroke
- Division of Infection and Immunity, Cardiff University, Cardiff, Wales
| | - Anja Bloom
- Division of Infection and Immunity, Cardiff University, Cardiff, Wales
| | - David Roberts
- Division of Infection and Immunity, Cardiff University, Cardiff, Wales
| | - Amanda Thomson
- Division of Infection and Immunity, Cardiff University, Cardiff, Wales
| | - Kathryn Smart
- Division of Infection and Immunity, Cardiff University, Cardiff, Wales
| | - Hayley Bridgeman
- Division of Infection and Immunity, Cardiff University, Cardiff, Wales
| | - Richard Adams
- Velindre Cancer Centre, National Health Service (NHS) Trust, Cardiff, Wales
| | - Alison Brewster
- Velindre Cancer Centre, National Health Service (NHS) Trust, Cardiff, Wales
| | - Robert Jones
- Velindre Cancer Centre, National Health Service (NHS) Trust, Cardiff, Wales
| | - Sarah Gwynne
- South West Wales Cancer Centre, Singleton Hospital, NHS Trust, Swansea
| | | | | | - Melissa Wright
- Centre for Trials Research, Cardiff University, Cardiff, Wales
| | - Robert Hills
- Centre for Trials Research, Cardiff University, Cardiff, Wales
| | - Awen Gallimore
- Division of Infection and Immunity, Cardiff University, Cardiff, Wales
| | - Andrew Godkin
- Division of Infection and Immunity, Cardiff University, Cardiff, Wales
- Department of Gastroenterology and Hepatology, University Hospital of Wales, Cardiff
| |
Collapse
|
15
|
Gatti-Mays ME, Redman JM, Collins JM, Bilusic M. Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Hum Vaccin Immunother 2017; 13:2561-2574. [PMID: 28857666 DOI: 10.1080/21645515.2017.1364322] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Therapeutic cancer vaccines have gained significant popularity in recent years as new approaches for specific oncologic indications emerge. Three therapeutic cancer vaccines are FDA approved and one is currently approved by the EMA as monotherapy with modest treatment effects. Combining therapeutic cancer vaccines with other treatment modalities like radiotherapy (RT), hormone therapy, immunotherapy, and/or chemotherapy have been investigated as a means to enhance immune response and treatment efficacy. There is growing preclinical and clinical data that combination of checkpoint inhibitors and vaccines can induce immunogenic intensification with favorable outcomes. Additionally, novel methods for identifying targetable neoantigens hold promise for personalized vaccine development. In this article, we review the rationale for various therapeutic combinations, clinical trial experiences, and future directions. We also highlight the most promising developments that could lead to approval of novel therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Margaret E Gatti-Mays
- a Medical Oncology Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Jason M Redman
- a Medical Oncology Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Julie M Collins
- a Medical Oncology Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Marijo Bilusic
- b Genitourinary Malignancy Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
16
|
Early use of chemotherapy in metastatic prostate cancer. Cancer Treat Rev 2017; 55:218-224. [PMID: 27720577 PMCID: PMC9774055 DOI: 10.1016/j.ctrv.2016.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 12/24/2022]
Abstract
Since 2010, five new antineoplastic therapies have been FDA approved for the treatment of metastatic prostate cancer. With additional treatment options, questions arose about the optimal sequence of these agents. Until recently, chemotherapy has been deferred until later in the disease course in favor of next-generation androgen deprivation therapy. Prior to the development of abiraterone acetate and enzalutamide, clinical trials were opened investigating the combination of chemotherapy with androgen deprivation therapy in patients with metastatic hormone-sensitive disease. With the development of new oral therapies used to treat castration-resistant disease, these trials were largely forgotten or felt to be obsolete. Recently, two trials have been reported showing an overall survival benefit of the early use of chemotherapy in patients with hormone-naive prostate cancer, changing the treatment paradigm for metastatic disease. Here we review the history of chemotherapy in treating prostate cancer and the emerging evidence favoring its use as first-line therapy against metastatic hormone-sensitive disease.
Collapse
|
17
|
Stern PL, Harrop R. 5T4 oncofoetal antigen: an attractive target for immune intervention in cancer. Cancer Immunol Immunother 2017; 66:415-426. [PMID: 27757559 PMCID: PMC11029567 DOI: 10.1007/s00262-016-1917-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/12/2016] [Indexed: 01/18/2023]
Abstract
The natural history of a patient's cancer is often characterised by genetic diversity and sequential sweeps of clonal dominance. It is therefore not surprising that identifying the most appropriate tumour-associated antigen for targeted intervention is challenging. The 5T4 oncofoetal antigen was identified by searching for surface molecules shared between human trophoblast and cancer cells with the rationale that they may function to allow survival of the foetus as a semi-allograft in the mother or a tumour in its host. The 5T4 protein is expressed by many different cancers but rarely in normal adult tissues. 5T4 molecules are 72 kD, heavily N-glycosylated proteins with several leucine-rich repeats which are often associated with protein-protein interactions. 5T4 expression is associated with the directional movement of cells through epithelial mesenchymal transition, potentiation of CXCL12/CXCR4 chemotaxis and inhibition of canonical Wnt/beta-catenin while favouring non-canonical pathway signalling; all processes which help drive the spread of cancer cells. The selective pattern of 5T4 tumour expression, association with a tumour-initiating phenotype plus a mechanistic involvement with cancer spread have underwritten the clinical development of different immunotherapeutic strategies including a vaccine, a tumour-targeted superantigen and an antibody drug conjugate. In addition, a chimeric antigen receptor T cell approach targeting 5T4 expressing tumour cells is in pre-clinical development. A key challenge will include how best to combine each 5T4 targeted immunotherapy with the most appropriate standard of care treatment (or adjunct therapy) to maximise the recovery of immune control and ultimately eliminate the tumour.
Collapse
Affiliation(s)
- Peter L Stern
- Institute of Cancer Studies, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Richard Harrop
- Oxford BioMedica Plc, Windrush Court, Transport Way, Oxford, OX4 6LT, UK.
| |
Collapse
|
18
|
Kongsted P, Borch TH, Ellebaek E, Iversen TZ, Andersen R, Met Ö, Hansen M, Lindberg H, Sengeløv L, Svane IM. Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: A randomized phase II study. Cytotherapy 2017; 19:500-513. [PMID: 28215654 DOI: 10.1016/j.jcyt.2017.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND AIMS We investigated whether the addition of an autologous dendritic cell-based cancer vaccine (DCvac) induces an immune response in patients with metastatic castration-resistant prostate cancer treated with docetaxel. METHODS Forty-three patients were randomized 1:1 to receive up to 10 cycles of docetaxel alone, 75 mg/m2 every 3 weeks or in combination with DCvac. Monocytes were harvested following a leukapheresis procedure, matured ex vivo and subsequently transfected with messenger RNA encoding multiple tumor-associated antigens (TAAs). DCvac was administered intradermally twice through treatment cycles 1-4 and once through treatment cycles 5-10. Immune cell composition and antigen-specific responses were analyzed using flow cytometry, ELISpot and delayed type hypersensitivity (DTH) tests. Toxicity was graded according to Common Terminology Criteria for Adverse Events version 3.0. Progression-free survival (PFS) and disease-specific survival (DSS) was calculated using the Kaplan-Meier method. RESULTS Prostate-specific antigen responses were similar in patients treated with docetaxel alone and combination therapy (58% versus 38%; P = 0.21). PFS and DSS were comparable: 5.5 versus 5.7 months (P = 0.62, log rank) and 21.9 versus 25.1 months (P = 0.60, log rank). Nine (50%) and 14 (78%) patients treated with docetaxel and DCvac had a TAA-specific or vaccine-specific immune response in the ELISpot and DTH analysis, respectively. Vaccine induced toxicity was limited to local reactions. Decline in myeloid-derived suppressor cells at the third treatment cycle was found to be an independent predictor of DSS. CONCLUSIONS The addition of DCvac was safe. Immune responses were detected in approximately half of the patients investigated.
Collapse
Affiliation(s)
- Per Kongsted
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark; Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Troels Holz Borch
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark; Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Eva Ellebaek
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark; Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Trine Zeeberg Iversen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark; Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Rikke Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark; Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark; Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Morten Hansen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Henriette Lindberg
- Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Lisa Sengeløv
- Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark; Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
| |
Collapse
|
19
|
A poxviral-based cancer vaccine the transcription factor twist inhibits primary tumor growth and metastases in a model of metastatic breast cancer and improves survival in a spontaneous prostate cancer model. Oncotarget 2016; 6:28194-210. [PMID: 26317648 PMCID: PMC4695054 DOI: 10.18632/oncotarget.4442] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/23/2015] [Indexed: 01/11/2023] Open
Abstract
Several transcription factors play a role in the alteration of gene expression that occurs during cancer metastasis. Twist expression has been shown to be associated with the hallmarks of the metastatic process, as well as poor prognosis and drug resistance in many tumor types. However, primarily due to their location within the cell and the lack of a hydrophobic groove required for drug attachment, transcription factors such as Twist are difficult to target with conventional therapies. An alternative therapeutic strategy is a vaccine comprised of a Modified vaccinia Ankara (MVA), incorporating the Twist transgene and a TRIad of COstimulatory Molecules (B7-1, ICAM-1, LFA-3; TRICOM). Here we characterize an MVA-TWIST/TRICOM vaccine that induced both CD4+ and CD8+ Twist-specific T-cell responses in vivo. In addition, administration of this vaccine reduced both the primary tumor growth and metastasis in the 4T1 model of metastatic breast cancer. In the TRAMP transgenic model of spontaneous prostate cancer, MVA-TWIST/TRICOM alone significantly improved survival, and when combined with the androgen receptor antagonist enzalutamide, the vaccine further improved survival. These studies thus provide a rationale for the use of active immunotherapy targeting transcription factors involved in the metastatic process and for the combination of cancer vaccines with androgen deprivation.
Collapse
|
20
|
Wurz GT, Kao CJ, DeGregorio MW. Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. Ther Adv Med Oncol 2016; 8:4-31. [PMID: 26753003 DOI: 10.1177/1758834015615514] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The clinical success of monoclonal antibody immune checkpoint modulators such as ipilimumab, which targets cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and the recently approved agents nivolumab and pembrolizumab, which target programmed cell death receptor 1 (PD-1), has stimulated renewed enthusiasm for anticancer immunotherapy, which was heralded by Science as 'Breakthrough of the Year' in 2013. As the potential of cancer immunotherapy has been recognized since the 1890s when William Coley showed that bacterial products could be beneficial in cancer patients, leveraging the immune system in the treatment of cancer is certainly not a new concept; however, earlier attempts to develop effective therapeutic vaccines and antibodies against solid tumors, for example, melanoma, frequently met with failure due in part to self-tolerance and the development of an immunosuppressive tumor microenvironment. Increased knowledge of the mechanisms through which cancer evades the immune system and the identification of tumor-associated antigens (TAAs) and negative immune checkpoint regulators have led to the development of vaccines and monoclonal antibodies targeting specific tumor antigens and immune checkpoints such as CTLA-4 and PD-1. This review first discusses the established targets of currently approved cancer immunotherapies and then focuses on investigational cancer antigens and their clinical potential. Because of the highly heterogeneous nature of tumors, effective anticancer immunotherapy-based treatment regimens will likely require a personalized combination of therapeutic vaccines, antibodies and chemotherapy that fit the specific biology of a patient's disease.
Collapse
Affiliation(s)
- Gregory T Wurz
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, Sacramento, CA, USA
| | - Chiao-Jung Kao
- Department of Obstetrics and Gynecology, University of California, Davis Sacramento, CA, USA
| | - Michael W DeGregorio
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, 4501 X Street Suite 3016, Sacramento, CA 95817, USA
| |
Collapse
|
21
|
Abstract
Introduction: The treatment landscape for patients with metastatic castration-resistant prostate cancer (CRPC) is evolving, with recent approvals of immune therapy, novel hormonal therapy, and bone-targeted therapy. Chemotherapy remains an essential component of the armamentarium. Herein, we review current chemotherapy options for patients with CRPC and discuss future challenges. Methods: We reviewed literature for chemotherapy agents in prostate cancer, with special attention to the evidence for efficacy of the currently approved agents. We also reviewed emerging data on biomarkers of response to chemotherapy for CRPC. Results: Taxanes, especially docetaxel and cabazitaxel, have first- and second-line indications for CRPC, respectively, with both providing a survival benefit. Multiple attempts to improve on the single agent efficacy of docetaxel with combination therapy have not generally been successful although platinum combinations are used for resistant phenotypes. Reductions in prostate-specific antigen by ≥30% and reductions in circulating tumor cells (CTCs) to ≤ 5 are associated with improved survival on chemotherapy. Chemotherapy may continue to be effective therapy for patients with biomarkers that are associated with resistance to androgen-directed therapies (androgen receptor splice variant 7 positivity in CTCs or high CTC heterogeneity). Conclusions: Chemotherapy remains an essential component of CRPC therapy, and biomarkers are being identified to define clinical scenarios where chemotherapy may be the optimal therapy choice.
Collapse
Affiliation(s)
- Benjamin A Teply
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
22
|
McNeel DG, Gardner TA, Higano CS, Kantoff PW, Small EJ, Wener MH, Sims RB, DeVries T, Sheikh NA, Dreicer R. A transient increase in eosinophils is associated with prolonged survival in men with metastatic castration-resistant prostate cancer who receive sipuleucel-T. Cancer Immunol Res 2014; 2:988-99. [PMID: 25189164 DOI: 10.1158/2326-6066.cir-14-0073] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sipuleucel-T is an autologous cellular immunotherapy used to treat asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). Traditional short-term indicators of clinical response commonly used with chemotherapy have not correlated with survival in patients treated with sipuleucel-T. This retrospective study aimed to evaluate laboratory parameters as possible early biomarkers associated with clinical benefit following sipuleucel-T treatment. Patients treated with sipuleucel-T from three randomized, controlled, phase III clinical trials in mCRPC were considered: IMPACT (NCT00065442; n = 512), D9901 (NCT00005947; n = 127), and D9902A (NCT01133704; n = 98). Patients from these trials were included in this study if their samples were analyzed by the central laboratory and if data were available from baseline and ≥ 1 posttreatment time point (n = 377). We found that sipuleucel-T treatment was associated with a transient increase in serum eosinophil count at week 6 that resolved by week 14 in 28% of patients (105 of 377). This eosinophil increase correlated with induced immune response, longer prostate cancer-specific survival [HR, 0.713; 95% confidence interval (CI), 0.525-0.970; P = 0.031], and a trend in overall survival (HR, 0.753; 95% CI, 0.563-1.008; P = 0.057). Median serum globulin protein levels also increased transiently, which was associated with antigen-specific antibody responses; however, this finding did not correlate with longer survival. We conclude that transient increases in eosinophils at week 6 may be a useful, objective, short-term indicator of global immune activation and survival benefit with sipuleucel-T in patients with mCRPC. This observation warrants prospective evaluation in future clinical trials.
Collapse
Affiliation(s)
- Douglas G McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.
| | - Thomas A Gardner
- Department of Urology, Indiana University Simon Cancer Center, Indianapolis, Indiana
| | - Celestia S Higano
- Department of Medicine, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Philip W Kantoff
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco Comprehensive Cancer Center, San Francisco, California
| | - Mark H Wener
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | | | | | | | - Robert Dreicer
- Department of Solid Tumor Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
23
|
Hardwick NR, Carroll M, Kaltcheva T, Qian D, Lim D, Leong L, Chu P, Kim J, Chao J, Fakih M, Yen Y, Espenschied J, Ellenhorn JDI, Diamond DJ, Chung V. p53MVA therapy in patients with refractory gastrointestinal malignancies elevates p53-specific CD8+ T-cell responses. Clin Cancer Res 2014; 20:4459-70. [PMID: 24987057 DOI: 10.1158/1078-0432.ccr-13-3361] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To conduct a phase I trial of a modified vaccinia Ankara (MVA) vaccine delivering wild-type human p53 (p53MVA) in patients with refractory gastrointestinal cancers. EXPERIMENTAL DESIGN Three patients were vaccinated with 1.0×10(8) plaque-forming unit (pfu) p53MVA followed by nine patients at 5.6×10(8) pfu. Toxicity was classified using the NCI Common Toxicity Criteria and clinical responses were assessed by CT scan. Peripheral blood samples were collected pre- and post-immunization for immunophenotyping, monitoring of p53MVA-induced immune response, and examination of PD1 checkpoint inhibition in vitro. RESULTS p53MVA immunization was well tolerated at both doses, with no adverse events above grade 2. CD4+ and CD8+ T cells showing enhanced recognition of a p53 overlapping peptide library were detectable after the first immunization, particularly in the CD8+ T-cell compartment (P=0.03). However, in most patients, this did not expand further with the second and third immunization. The frequency of PD1+ T cells detectable in patients' peripheral blood mononuclear cells (PBMC) was significantly higher than in healthy controls. Furthermore, the frequency of PD1+ CD8+ T cells showed an inverse correlation with the peak CD8+ p53 response (P=0.02) and antibody blockade of PD1 in vitro increased the p53 immune responses detected after the second or third immunizations. Induction of strong T-cell and antibody responses to the MVA backbone were also apparent. CONCLUSION p53MVA was well tolerated and induced robust CD8+ T-cell responses. Combination of p53MVA with immune checkpoint inhibition could help sustain immune responses and lead to enhanced clinical benefit.
Collapse
Affiliation(s)
- Nicola R Hardwick
- Division of Translational Vaccine Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Mary Carroll
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Teodora Kaltcheva
- Division of Translational Vaccine Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Dajun Qian
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, California
| | - Dean Lim
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Lucille Leong
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Peiguo Chu
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Joseph Kim
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, California
| | - Joseph Chao
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Marwan Fakih
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Yun Yen
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Jonathan Espenschied
- Division of Cancer Etiology and Outcomes Research, City of Hope National Medical Center, Duarte, California
| | | | - Don J Diamond
- Division of Translational Vaccine Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, California.
| | - Vincent Chung
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| |
Collapse
|