1
|
Khaleel S, Perera M, Papa N, Kuo F, Golkaram M, Rappold P, Kotecha RR, Coleman J, Russo P, Motzer R, Reznik E, Hakimi AA. Gene expression of prostate-specific membrane antigen (FOLH1) in clear cell renal cell carcinoma predicts angiogenesis and response to tyrosine kinase inhibitors. Urol Oncol 2025; 43:192.e21-192.e28. [PMID: 39537440 PMCID: PMC11875958 DOI: 10.1016/j.urolonc.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Combination systemic therapies (CSTs) of immuno-oncologic (IO) and VEGF-inhibiting agents (VEGFi) have become the standard of care for management of metastatic clear cell renal cell carcinoma (m-ccRCC). However, treatment outcomes vary between patients, with no established biomarkers to determine optimal CST regimens (IO/IO or IO/VEGFi). Prostate Specific Membrane Antigen (PSMA), encoded by the FOLH1 gene, is a marker of tumor neovasculature in ccRCC, the downstream target of VEGFi. We evaluated the relation between FOLH1 expression and angiogenesis, as well as clinical outcomes, in 5 m-ccRCC ST trials. MATERIALS AND METHODS using Spearman's rank correlation (SPRC) test, we assessed the correlation between FOLH1 expression and gene expression signature (GES) scores corresponding to angiogenic and immunologic features of the tumor microenvironment (TME) of m-ccRCC in our trial cohorts. Using Cox proportional hazard regression (Cox-PHR), we assessed the association between FOLH1 expression level, summarized by within-study quantiles (qFOLH1), and progression-free and overall survival (PFS, OS). RESULTS Increased FOLH1 expression was significantly associated with higher TME angiogenesis GES scores (SPRC +0.5, P < 0.001), but did not consistently correlate with immune feature GES scores. Meta-analysis of PFS in the sunitinib TKI arm of trial cohorts showed an overall positive association with qFOLH1 (HR = 0.89; 95% CI = 0.85-0.94, P < 0.0001). qFOLH1 was not significantly associated with OS in the sunitinib arms of the two trials with OS data (COMPARZ, HR 0.87, 95% CI 0.71-1.07, P = 0.17; and Checkmate-214, HR 0.89, 95% CI 0.67-1.17, P = 0.70). CONCLUSIONS PSMA-encoding FOLH1 gene expression correlates with neoangiogenesis and predicts PFS in m-ccRCC patients treated with sunitinib TKI, suggesting that PSMA PET could be explored as a noninvasive biomarker for guiding CST choice (IO/IO or IO/VEGFi) as well as prediction of treatment response to VEGFi in m-ccRCC patients.
Collapse
Affiliation(s)
- Sari Khaleel
- Minimally Invasive Urology Institute, The Miriam Hospital, Providence, RI; Warren Alpert Medical School of Brown University, Providence, RI
| | - Marlon Perera
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Department of Surgery, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Nathan Papa
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Fengshen Kuo
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Phillip Rappold
- Department of Urology, University of Rochester Medical Center (URMC), Rochester, NY
| | - Ritesh R Kotecha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonathan Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - A Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
2
|
Choe M, Campbell M, Albert CM. Advances in cellular therapies for children and young adults with solid tumors. Curr Opin Pediatr 2025; 37:67-74. [PMID: 39699103 DOI: 10.1097/mop.0000000000001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
PURPOSE OF REVIEW Adoptive immunotherapy brings hope to children and young adults diagnosed with high-risk solid tumors. Cellular (cell) therapies such as chimeric antigen receptor (CAR) T cell, CAR natural killer (NK) cell, and T cell receptor (TCR) T cell therapy are potential avenues of targeted therapy with limited long-term toxicities. However, development of cell therapies for solid tumors is in its nascent stages. Here, we will review the current clinical experience, barriers to efficacy, and strategies to improve clinical response and patient access. RECENT FINDINGS Cell therapies are shown to be generally safe and well tolerated. Strategies to optimize antitumor activity have now moved into early-phase trials. The immunosuppressive tumor microenvironment remains a major barrier to efficacy, and efforts are underway to gain better understanding. This will inform future treatment strategies to enhance the antitumor activity of cell therapies. SUMMARY Clinical experiences to date provide important insights on how to leverage cell therapies against solid tumors. Key factors in advancing the field include a better understanding of immune cell biology, tumor cell behavior, and the tumor microenvironment. Lastly, improving access to novel cell therapies remains an important consideration in the conduct of clinical trials and for future implementation into standard practice.
Collapse
Affiliation(s)
- Michelle Choe
- Clinical Research Division, Fred Hutchinson Cancer Center
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington
| | - Matthew Campbell
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas, Southwestern, Dallas, Texas
| | - Catherine M Albert
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
3
|
Fumarola C, La Monica S, Bonelli M, Zoppi S, Alfieri R, Galetti M, Gnetti L, Campanini N, Pozzi G, Cavazzoni A, Mazzaschi G, Silini EM, Buti S, Petronini PG. Immunomodulatory effects of antiangiogenic tyrosine kinase inhibitors in renal cell carcinoma models: Impact on following anti-PD-1 treatments. Biochem Pharmacol 2024; 226:116397. [PMID: 38944394 DOI: 10.1016/j.bcp.2024.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
The approval of immune checkpoint inhibitors (ICIs) has revolutionized the management of metastatic renal cell carcinoma (RCC), introducing several ICI-based combinations as the new standard of care for affected patients. Nonetheless, monotherapy with antiangiogenic tyrosine kinase inhibitors (TKIs), such as pazopanib or sunitinib, still represents a first-line treatment option for selected patients belonging to the favorable risk group according to the International mRCC Database Consortium (IMDC) model. After TKI monotherapy, the main second-line option is represented by ICI monotherapy with the anti-Programmed Death Receptor 1(PD-1) nivolumab. To date, the expected clinical outcomes are similar with pazopanib or sunitinib and there is no clear indication for selecting one TKI over the other. Moreover, their impact on subsequent ICI treatment outcomes is not well defined, yet. Based on these premises, we investigated the immunomodulatory activity of these drugs in vitro and in vivo.Both TKIs induced Programmed Cell Death Ligand-1 (PD-L1) expression and soluble PD-L1 release in RCC cells, and hampered T cell activation, reducing cytokine production and the proportion of activated T cells. Nevertheless, in a syngeneic co-culture system with peripheral blood mononuclear cells (PBMCs) and tumor cells, incubation with anti-PD-1 antibody following TKIs treatment significantly restored T cell function, potentiating the cytotoxic effects against tumor cells. Pazopanib and sunitinib followed by anti-PD-1 antibody produced a comparable inhibition of tumor growth in a RCC syngeneic mouse model. Our findings suggest that pazopanib and sunitinib, showing similar immunomodulatory effects, may have a comparable impact on the subsequent effectiveness of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Silvia Zoppi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers' Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
| | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, 43126 Parma, Italy
| | | | - Giulia Pozzi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giulia Mazzaschi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | |
Collapse
|
4
|
Guilhem-Ducléon G, Dalban C, Negrier S, Gravis G, Laguerre B, Chevreau C, Oudard S, Barthelemy P, Ladoire S, Boughalem E, Borchiellini D, Linassier C, Nenan S, Flippot R, Albiges L, Goupil MG. Impact of First Line Antiangiogenic Therapy Duration on Nivolumab Outcome in Metastatic Renal Cell Carcinoma Patients Treated in the GETUG-AFU 26 NIVOREN. Clin Genitourin Cancer 2023; 21:643-652. [PMID: 37635052 DOI: 10.1016/j.clgc.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND In metastatic renal clear cell carcinoma (ccRCC), vascular endothelial growth factor receptor (VEGFR) and immune checkpoint are 2 main therapeutic targets. We investigated the impact of duration exposure to antiangiogenic on immunotherapy clinical outcomes in metastatic ccRCC. METHODS Patients from NIVOREN trial who received nivolumab after only 1 prior antiangiogenic therapy were included. Response rate, clinical benefit, progression free survival (PFS) and overall survival (OS) were prospectively analyzed depending on the duration of the first line (< 6 months, ≥6 months) and exploratory in patients with long first line exposure (≥18 months). The circulating levels of 8 plasma proteins and cytokines at baseline were collected and compared according to first line antiangiogenic duration. RESULTS Among 354 patients, 127 (36%) and 227 (64%) patients had received first line antiangiogenic for < 6months and ≥ 6months respectively. Respective duration of first line therapy was not associated with objective response to nivolumab (20.5% vs. 23.9%, P = .50), or PFS (HR 0.92; P = .421). Median OS was respectively 16.6 and 31.3 months in the <6 and ≥6 months subgroups respectively. Adjusted on international metastatic renal cell carcinoma database consortium risk, age and metastatic site, OS was longer in patients with longer treatment duration in the first line setting (HR 0.73; P = .017). Duration of first line VEGFR TKI was independent from circulating levels of 8 proteins and cytokines at nivolumab baseline. CONCLUSION Nivolumab activity in second line is independent from first-line duration of VEGFR TKI. However, first line VEGFR TKI duration ≥ 6 months is associated with longer OS.
Collapse
Affiliation(s)
| | - Cécile Dalban
- Department of Clinical Research and Innovation, Centre de Lutte Contre Le Cancer, Centre Léon Bérard, Lyon, France
| | | | - Gwenaelle Gravis
- Department of Medical Oncology, Institut Paoli Calmettes, Marseille, France
| | - Brigitte Laguerre
- Department of Medical Oncology, Centre Eugene Marquis, Rennes, France
| | - Christine Chevreau
- Department of Medical Oncology, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Stéphane Oudard
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, APHP-Centre, Université Paris Cité, Paris, France
| | - Philippe Barthelemy
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Centre Georges François Leclerc, Dijon, France
| | - Elouen Boughalem
- Department of Medical Oncology, Institut de Cancérologie de l'Ouest, 49055 Angers, France
| | - Delphine Borchiellini
- Department of Medical Oncology, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France
| | - Claude Linassier
- Department of Medical Oncology, CHU Bretonneau et Université de Tours, Tours, France
| | | | - Ronan Flippot
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Marine Gross Goupil
- Department of Medical Oncology, University Hospital of Bordeaux, Bordeaux, France.
| |
Collapse
|
5
|
Goubet AG, Rouanne M, Derosa L, Kroemer G, Zitvogel L. From mucosal infection to successful cancer immunotherapy. Nat Rev Urol 2023; 20:682-700. [PMID: 37433926 DOI: 10.1038/s41585-023-00784-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 07/13/2023]
Abstract
The clinical management of advanced malignancies of the upper and lower urinary tract has been revolutionized with the advent of immune checkpoint blockers (ICBs). ICBs reinstate or bolster pre-existing immune responses while creating new T cell specificities. Immunogenic cancers, which tend to benefit more from immunotherapy than cold tumours, harbour tumour-specific neoantigens, often associated with a high tumour mutational burden, as well as CD8+ T cell infiltrates and ectopic lymphoid structures. The identification of beneficial non-self tumour antigens and natural adjuvants is the focus of current investigation. Moreover, growing evidence suggests that urinary or intestinal commensals, BCG and uropathogenic Escherichia coli influence long-term responses in patients with kidney or bladder cancer treated with ICBs. Bacteria infecting urothelium could be a prominent target for T follicular helper cells and B cells, linking innate and cognate CD8+ memory responses. In the urinary tract, commensal flora differ between healthy and tumoural mucosae. Although antibiotics can affect the prognosis of urinary tract malignancies, bacteria can have a major influence on cancer immunosurveillance. Beyond their role as biomarkers, immune responses against uropathogenic commensals could be harnessed for the design of future immunoadjuvants that can be advantageously combined with ICBs.
Collapse
Affiliation(s)
- Anne-Gaëlle Goubet
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- AGORA Cancer Center, Lausanne, Switzerland
| | - Mathieu Rouanne
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lisa Derosa
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France
| | - Guido Kroemer
- Gustave Roussy, Villejuif, France
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Centre de Recherche des Cordeliers, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France.
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France.
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France.
- Center of Clinical Investigations for In Situ Biotherapies of Cancer (BIOTHERIS) INSERM, CIC1428, Villejuif, France.
| |
Collapse
|
6
|
Kuusk T, Bex A. Adjuvant and Neoadjuvant Therapy in Renal Cell Carcinoma. Hematol Oncol Clin North Am 2023; 37:907-920. [PMID: 37369611 DOI: 10.1016/j.hoc.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In locally advanced RCC, 6 phase 3 randomized controlled trials (RCTs) were designed in the perioperative setting with immune checkpoint inhibitor (ICI) monotherapy or combinations. Adjuvant trials with atezolizumab, pembrolizumab, and nivolumab with ipilimumab reported results, as did the only perioperative trial with nivolumab. Of these, only 1 year of adjuvant pembrolizumab improved disease-free survival (DFS) versus placebo, with the other trials showing no improvement in DFS. In the purely neoadjuvant setting, phase 1 b/2 ICI trials have demonstrated safety, efficacy, and dynamic changes of immune infiltrates, and provide a rationale for randomized trial concepts.
Collapse
Affiliation(s)
- Teele Kuusk
- Homerton University Hospital, London, UK; Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, Pond Street, London NW3 2QG, UK; Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Axel Bex
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, Pond Street, London NW3 2QG, UK; Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands; Division of Surgery and Interventional Science, University College London, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
7
|
Zhao X, Zhao R, Wen J, Zhang X, Wu S, Fang J, Ma J, Zheng W, Zhang X, Lu Z, Gao L, Hu Y. Anlotinib reduces the suppressive capacity of monocytic myeloid-derived suppressor cells and potentiates the immune microenvironment normalization window in a mouse lung cancer model. Anticancer Drugs 2023; 34:1018-1024. [PMID: 36473020 DOI: 10.1097/cad.0000000000001481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By exploring the effects of an antiangiogenic small molecule drug named anlotinib on the levels of myeloid-derived suppressor cells (MDSCs) in a mouse xenograft model of lung cancer, the role of anti-angiogenesis in remodeling the immune microenvironment was discussed. In addition, the impact of anlotinib on the normalization of the immune microenvironment and time window was examined, providing a theoretical basis for the optimization of clinical strategies applying anlotinib combined with PD-1 inhibitors. On the basis of the LLC mouse xenograft model, MDSCs and MDSCs + immune microenvironment were examined in tissues, respectively, according to different samples. The former observation included the control (group A) and anlotinib monotherapy (group B) groups; the latter also included the control (group C) and anlotinib monotherapy (group D) groups. The levels of MDSCs in peripheral blood at different time points were analyzed by flow cytometry, and the levels of MDSCs in tissue samples at different time points were evaluated by immunofluorescence and immunohistochemistry. The volumes of subcutaneous xenografts were significantly smaller in the anlotinib treatment group compared with the control group ( P < 0.005). Flow cytometry showed that compared with the control group, the intratumoral percentages of total MDSCs ( P < 0.01) and mononuclear-MDSCs ( P < 0.05) were significantly decreased on days 3 and 17 after anlotinib treatment in peripheral blood samples; however, there was no significant difference in granulocytic-MDSCs changes between the experimental and control groups. Immunofluorescence showed that the levels of MDSCs in both the experimental and control groups reached the lowest points 10 days after drug administration, and were significantly lower in the experimental group than in the control group ( P < 0.05). Anlotinib reduces the levels of MDSCs in the mouse xenograft model of lung cancer, with the characteristics of time window. This study provides a basis for further exploring strategies for anti-angiogenic treatment combined with immunotherapy in lung cancer based on time-window dosing.
Collapse
Affiliation(s)
- XiangFei Zhao
- Department of Oncology, 5th medical center of Chinese PLA General Hospital
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Singh S, Barik D, Arukha AP, Prasad S, Mohapatra I, Singh A, Singh G. Small Molecule Targeting Immune Cells: A Novel Approach for Cancer Treatment. Biomedicines 2023; 11:2621. [PMID: 37892995 PMCID: PMC10604364 DOI: 10.3390/biomedicines11102621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Conventional and cancer immunotherapies encompass diverse strategies to address various cancer types and stages. However, combining these approaches often encounters limitations such as non-specific targeting, resistance development, and high toxicity, leading to suboptimal outcomes in many cancers. The tumor microenvironment (TME) is orchestrated by intricate interactions between immune and non-immune cells dictating tumor progression. An innovative avenue in cancer therapy involves leveraging small molecules to influence a spectrum of resistant cell populations within the TME. Recent discoveries have unveiled a phenotypically diverse cohort of innate-like T (ILT) cells and tumor hybrid cells (HCs) exhibiting novel characteristics, including augmented proliferation, migration, resistance to exhaustion, evasion of immunosurveillance, reduced apoptosis, drug resistance, and heightened metastasis frequency. Leveraging small-molecule immunomodulators to target these immune players presents an exciting frontier in developing novel tumor immunotherapies. Moreover, combining small molecule modulators with immunotherapy can synergistically enhance the inhibitory impact on tumor progression by empowering the immune system to meticulously fine-tune responses within the TME, bolstering its capacity to recognize and eliminate cancer cells. This review outlines strategies involving small molecules that modify immune cells within the TME, potentially revolutionizing therapeutic interventions and enhancing the anti-tumor response.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, Telangana, India
| | | | | | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota—Twin Cities, Saint Paul, MN 55108, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Ren R, Xiong C, Ma R, Wang Y, Yue T, Yu J, Shao B. The recent progress of myeloid-derived suppressor cell and its targeted therapies in cancers. MedComm (Beijing) 2023; 4:e323. [PMID: 37547175 PMCID: PMC10397484 DOI: 10.1002/mco2.323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are an immature group of myeloid-derived cells generated from myeloid cell precursors in the bone marrow. MDSCs appear almost exclusively in pathological conditions, such as tumor progression and various inflammatory diseases. The leading function of MDSCs is their immunosuppressive ability, which plays a crucial role in tumor progression and metastasis through their immunosuppressive effects. Since MDSCs have specific molecular features, and only a tiny amount exists in physiological conditions, MDSC-targeted therapy has become a promising research direction for tumor treatment with minimal side effects. In this review, we briefly introduce the classification, generation and maturation process, and features of MDSCs, and detail their functions under various circumstances. The present review specifically demonstrates the environmental specificity of MDSCs, highlighting the differences between MDSCs from cancer and healthy individuals, as well as tumor-infiltrating MDSCs and circulating MDSCs. Then, we further describe recent advances in MDSC-targeted therapies. The existing and potential targeted drugs are divided into three categories, monoclonal antibodies, small-molecular inhibitors, and peptides. Their targeting mechanisms and characteristics have been summarized respectively. We believe that a comprehensive in-depth understanding of MDSC-targeted therapy could provide more possibilities for the treatment of cancer.
Collapse
Affiliation(s)
- Ruiyang Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Chenyi Xiong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Runyu Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yixuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Tianyang Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jiayun Yu
- Department of RadiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
10
|
Liu H, Luo Y, Zhao S, Tan J, Chen M, Liu X, Ye J, Cai S, Deng Y, Li J, He H, Zhang X, Zhong W. A reactive oxygen species-related signature to predict prognosis and aid immunotherapy in clear cell renal cell carcinoma. Front Oncol 2023; 13:1202151. [PMID: 37496661 PMCID: PMC10367095 DOI: 10.3389/fonc.2023.1202151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a malignant disease containing tumor-infiltrating lymphocytes. Reactive oxygen species (ROS) are present in the tumor microenvironment and are strongly associated with cancer development. Nevertheless, the role of ROS-related genes in ccRCC remains unclear. Methods We describe the expression patterns of ROS-related genes in ccRCC from The Cancer Genome Atlas and their alterations in genetics and transcription. An ROS-related gene signature was constructed and verified in three datasets and immunohistochemical staining (IHC) analysis. The immune characteristics of the two risk groups divided by the signature were clarified. The sensitivity to immunotherapy and targeted therapy was investigated. Results Our signature was constructed on the basis of glutamate-cysteine ligase modifier subunit (GCLM), interaction protein for cytohesin exchange factors 1 (ICEF1), methionine sulfoxide reductase A (MsrA), and strawberry notch homolog 2 (SBNO2) genes. More importantly, protein expression levels of GCLM, MsrA, and SBNO2 were detected by IHC in our own ccRCC samples. The high-risk group of patients with ccRCC suffered lower overall survival rates. As an independent predictor of prognosis, our signature exhibited a strong association with clinicopathological features. An accurate nomogram for improving the clinical applicability of our signature was constructed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that the signature was closely related to immune response, immune activation, and immune pathways. The comprehensive results revealed that the high-risk group was associated with high infiltration of regulatory T cells and CD8+ T cells and more benefited from targeted therapy. In addition, immunotherapy had better therapeutic effects in the high-risk group. Conclusion Our signature paved the way for assessing prognosis and developing more effective strategies of immunotherapy and targeted therapy in ccRCC.
Collapse
Affiliation(s)
- Hongxiang Liu
- School of Medicine, Jinan University, Guangzhou, China
- Department of Urology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Yong Luo
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jing Tan
- Department of Pediatrics, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Minjian Chen
- Department of Urology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Xihai Liu
- Department of Urology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shanghua Cai
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical University, Guangzhou Laboratory, Guangzhou, China
| | - Yulin Deng
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jinchuang Li
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huichan He
- Guangzhou Medical University, Guangzhou Laboratory, Guangzhou, China
| | - Xin Zhang
- Department of Pathology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Weide Zhong
- School of Medicine, Jinan University, Guangzhou, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical University, Guangzhou Laboratory, Guangzhou, China
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, Macao SAR, China
| |
Collapse
|
11
|
Lee MH, Theodoropoulos J, Huuhtanen J, Bhattacharya D, Järvinen P, Tornberg S, Nísen H, Mirtti T, Uski I, Kumari A, Peltonen K, Draghi A, Donia M, Kreutzman A, Mustjoki S. Immunologic Characterization and T cell Receptor Repertoires of Expanded Tumor-infiltrating Lymphocytes in Patients with Renal Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1260-1276. [PMID: 37484198 PMCID: PMC10361538 DOI: 10.1158/2767-9764.crc-22-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
The successful use of expanded tumor-infiltrating lymphocytes (TIL) in adoptive TIL therapies has been reported, but the effects of the TIL expansion, immunophenotype, function, and T cell receptor (TCR) repertoire of the infused products relative to the tumor microenvironment (TME) are not well understood. In this study, we analyzed the tumor samples (n = 58) from treatment-naïve patients with renal cell carcinoma (RCC), "pre-rapidly expanded" TILs (pre-REP TIL, n = 15) and "rapidly expanded" TILs (REP TIL, n = 25) according to a clinical-grade TIL production protocol, with single-cell RNA (scRNA)+TCRαβ-seq (TCRαβ sequencing), TCRβ-sequencing (TCRβ-seq), and flow cytometry. REP TILs encompassed a greater abundance of CD4+ than CD8+ T cells, with increased LAG-3 and low PD-1 expressions in both CD4+ and CD8+ T cell compartments compared with the pre-REP TIL and tumor T cells. The REP protocol preferentially expanded small clones of the CD4+ phenotype (CD4, IL7R, KLRB1) in the TME, indicating that the largest exhausted T cell clones in the tumor do not expand during the expansion protocol. In addition, by generating a catalog of RCC-associated TCR motifs from >1,000 scRNA+TCRαβ-seq and TCRβ-seq RCC, healthy and other cancer sample cohorts, we quantified the RCC-associated TCRs from the expansion protocol. Unlike the low-remaining amount of anti-viral TCRs throughout the expansion, the quantity of the RCC-associated TCRs was high in the tumors and pre-REP TILs but decreased in the REP TILs. Our results provide an in-depth understanding of the origin, phenotype, and TCR specificity of RCC TIL products, paving the way for a more rationalized production of TILs. Significance TILs are a heterogenous group of immune cells that recognize and attack the tumor, thus are utilized in various clinical trials. In our study, we explored the TILs in patients with kidney cancer by expanding the TILs using a clinical-grade protocol, as well as observed their characteristics and ability to recognize the tumor using in-depth experimental and computational tools.
Collapse
Affiliation(s)
- Moon Hee Lee
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Jason Theodoropoulos
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Dipabarna Bhattacharya
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Petrus Järvinen
- Abdominal Center, Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Sara Tornberg
- Abdominal Center, Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Harry Nísen
- Abdominal Center, Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biomedical Engineering, School of Medicine, Emory University, Atlanta, Georgia
| | - Ilona Uski
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Anita Kumari
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Karita Peltonen
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Arianna Draghi
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anna Kreutzman
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Ren X, Jiang M, Ding P, Zhang X, Zhou X, Shen J, Liu D, Yan X, Ma Z. Ubiquitin-specific protease 28: the decipherment of its dual roles in cancer development. Exp Hematol Oncol 2023; 12:27. [PMID: 36879346 PMCID: PMC9990303 DOI: 10.1186/s40164-023-00389-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
As significant posttranslational modifications, ubiquitination and deubiquitination, whose balance is modulated by ubiquitin-conjugating enzymes and deubiquitinating enzymes (DUBs), can regulate many biological processes, such as controlling cell cycle progression, signal transduction and transcriptional regulation. Belonging to DUBs, ubiquitin-specific protease 28 (USP28) plays an essential role in turning over ubiquitination and then contributing to the stabilization of quantities of substrates, including several cancer-related proteins. In previous studies, USP28 has been demonstrated to participate in the progression of various cancers. Nevertheless, several reports have recently shown that in addition to promoting cancers, USP28 can also play an oncostatic role in some cancers. In this review, we summarize the correlation between USP28 and tumor behaviors. We initially give a brief introduction of the structure and related biological functions of USP28, and we then introduce some concrete substrates of USP28 and the underlying molecular mechanisms. In addition, the regulation of the actions and expression of USP28 is also discussed. Moreover, we concentrate on the impacts of USP28 on diverse hallmarks of cancer and discuss whether USP28 can accelerate or inhibit tumor progression. Furthermore, clinical relevance, including impacting clinical prognosis, influencing therapy resistance and being the therapy target in some cancers, is depicted systematically. Thus, assistance may be given to future experimental designs by the information provided here, and the potential of targeting USP28 for cancer therapy is emphasized.
Collapse
Affiliation(s)
- Xiaoya Ren
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.,Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei City, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaoyan Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xin Zhou
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Jian Shen
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China.
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
13
|
High-Dose Intermittent Treatment with the Multikinase Inhibitor Sunitinib Leads to High Intra-Tumor Drug Exposure in Patients with Advanced Solid Tumors. Cancers (Basel) 2022; 14:cancers14246061. [PMID: 36551546 PMCID: PMC9775433 DOI: 10.3390/cancers14246061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Patients with advanced cancer refractory to standard treatment were treated with sunitinib at a dose of 300 mg once every week (Q1W) or 700 mg once every two weeks (Q2W). Tumor, skin and plasma concentrations were measured and immunohistochemical staining for tumor cell proliferation (TCP), microvessel density (MVD) and T-cell infiltration was performed on tumor biopsies before and after 17 days of treatment. Oral administration of 300 mg sunitinib Q1W or 700 mg Q2W resulted in 19-fold (range 5-35×) and 37-fold higher (range 10-88×) tumor drug concentrations compared to parallel maximum plasma drug concentrations, respectively. Patients with higher tumor sunitinib concentrations had favorable progression-free and overall survival than those with lower concentrations (p = 0.046 and 0.024, respectively). In addition, immunohistochemistry of tumor biopsies revealed an induction of T-cell infiltration upon treatment. These findings provide pharmacological and biological insights in the clinical benefit from high-dose intermittent sunitinib treatment. It emphasizes the potential benefit from reaching higher tumor drug concentrations and the value of measuring TKI tumor- over plasma-concentrations. The finding that reaching higher tumor drug concentrations provides most clinical benefit in patients with treatment refractory malignancies indicates that the inhibitory potency of sunitinib may be enforced by a high-dose intermittent treatment schedule. These results provide proof of concept for testing other clinically available multitargeted tyrosine kinase inhibitors in a high-dose intermittent treatment schedule.
Collapse
|
14
|
Nowak-Sliwinska P, van Beijnum JR, Griffioen CJ, Huinen ZR, Sopesens NG, Schulz R, Jenkins SV, Dings RPM, Groenendijk FH, Huijbers EJM, Thijssen VLJL, Jonasch E, Vyth-Dreese FA, Jordanova ES, Bex A, Bernards R, de Gruijl TD, Griffioen AW. Proinflammatory activity of VEGF-targeted treatment through reversal of tumor endothelial cell anergy. Angiogenesis 2022; 26:279-293. [PMID: 36459240 PMCID: PMC10119234 DOI: 10.1007/s10456-022-09863-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Abstract
Purpose
Ongoing angiogenesis renders the tumor endothelium unresponsive to inflammatory cytokines and interferes with adhesion of leukocytes, resulting in escape from immunity. This process is referred to as tumor endothelial cell anergy. We aimed to investigate whether anti-angiogenic agents can overcome endothelial cell anergy and provide pro-inflammatory conditions.
Experimental design
Tissues of renal cell carcinoma (RCC) patients treated with VEGF pathway-targeted drugs and control tissues were subject to RNAseq and immunohistochemical profiling of the leukocyte infiltrate. Analysis of adhesion molecule regulation in cultured endothelial cells, in a preclinical model and in human tissues was performed and correlated to leukocyte infiltration.
Results
It is shown that treatment of RCC patients with the drugs sunitinib or bevacizumab overcomes tumor endothelial cell anergy. This treatment resulted in an augmented inflammatory state of the tumor, characterized by enhanced infiltration of all major leukocyte subsets, including T cells, regulatory T cells, macrophages of both M1- and M2-like phenotypes and activated dendritic cells. In vitro, exposure of angiogenic endothelial cells to anti-angiogenic drugs normalized ICAM-1 expression. In addition, a panel of tyrosine kinase inhibitors was shown to increase transendothelial migration of both non-adherent and monocytic leukocytes. In primary tumors of RCC patients, ICAM-1 expression was found to be significantly increased in both the sunitinib and bevacizumab-treated groups. Genomic analysis confirmed the correlation between increased immune cell infiltration and ICAM-1 expression upon VEGF-targeted treatment.
Conclusion
The results support the emerging concept that anti-angiogenic therapy can boost immunity and show how immunotherapy approaches can benefit from combination with anti-angiogenic compounds.
Collapse
|
15
|
Ribatti D. Immunosuppressive effects of vascular endothelial growth factor (Review). Oncol Lett 2022; 24:369. [PMID: 36238855 PMCID: PMC9494354 DOI: 10.3892/ol.2022.13489] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) serves a critical role in vasculogenesis, angiogenesis, tumor, inflammatory angiogenesis and lymphangiogenesis. Since 2004, bevacizumab (Avastin), a humanized anti-VEGFA monoclonal antibody, has been approved for the treatment of non-small cell lung, breast, kidney and ovarian cancer in combination with standard chemotherapy. VEGF has been demonstrated to be important in the clinic as a therapeutic target in the anti-angiogenic approach to cancer therapy. The targeting of VEGF, together with immunotherapy, has been reported to be able to reverse the immunosuppressive effects of VEGF. A positive correlation between VEGF expression and the reduced survival rates of patients with cancer has also been demonstrated. Furthermore, increased VEGF expression can lead to immune suppression via the inhibition of dendritic cell maturation, the reduction of T-cell tumor infiltration and the promotion of inhibitory cell types in the tumor microenvironment.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari Medical School, I-70124 Bari, Italy
| |
Collapse
|
16
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
17
|
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235:108114. [DOI: 10.1016/j.pharmthera.2022.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
|
18
|
REchallenge of NIVOlumab (RENIVO) or Nivolumab-Ipilimumab in Metastatic Renal Cell Carcinoma: An Ambispective Multicenter Study. JOURNAL OF ONCOLOGY 2022; 2022:3449660. [PMID: 35222642 PMCID: PMC8881133 DOI: 10.1155/2022/3449660] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Introduction. Immune checkpoint inhibitors (ICI) have been approved for front-line therapy in metastatic renal cell carcinoma (mRCC). However, progressive disease often occurs and subsequent therapies are needed. ICI rechallenge may be an option, but there is a lack of data regarding efficacy and prognostic factors. We assessed efficacy of ICI rechallenge and factors associated with better outcomes. Patients and Methods. This ambispective multicenter study included 45 mRCC patients rechallenged with nivolumab ± ipilimumab between 2014 and 2020. Primary endpoint was investigator-assessed best objective response rate (ORR) for ICI rechallenge (ICI-2). Factors associated with ICI-2 progression-free survival (PFS) were evaluated with multivariate Cox models. Results. ORR was 51% (n = 23) at first ICI therapy (ICI-1) and 16% (n = 7) for ICI-2. Median PFS was 11.4 months (95% CI, 9.8–23.5) and 3.5 months (95% CI, 2.8–9.7), and median overall survival was not reached (NR) (95% CI, 37.8–NR) and 24 months (95% CI, 9.9–NR) for ICI-1 and ICI-2, respectively. Factors associated with poorer ICI-2 PFS were a high number of metastatic sites, presence of liver metastases, use of an intervening treatment between ICI regimens, Eastern Cooperative Oncology Group performance status ≥2, and poor International Metastatic RCC Database Consortium score at ICI-2 start. Conversely, ICI-1 PFS >6 months was associated with better ICI-2 PFS. In multivariate analysis, there were only statistical trends toward better ICI-2 PFS in patients with ICI-1 PFS >6 months (
) and toward poorer ICI-2 PFS in patients who received a treatment between ICI regimens (
). Conclusion. Rechallenge with nivolumab-based ICI has some efficacy in mRCC. We identified various prognostic factors in univariate analysis but only statistical trends in multivariate analysis. Our findings bring new evidence on ICI rechallenge and preliminary but unique data that may help clinicians to select patients who will benefit from this strategy.
Collapse
|
19
|
Murad LD, Silva TDQ, Schilithz AOC, Fernandes PV, Monteiro M, Murad LB, Fialho E. Low body mass index is associated with reduced intratumoral CD4+ T-lymphocyte infiltration in laryngeal squamous cell carcinoma patients. Nutr Res 2022; 102:1-12. [DOI: 10.1016/j.nutres.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
|
20
|
Jonasch E, Atkins MB, Chowdhury S, Mainwaring P. Combination of Anti-Angiogenics and Checkpoint Inhibitors for Renal Cell Carcinoma: Is the Whole Greater Than the Sum of Its Parts? Cancers (Basel) 2022; 14:cancers14030644. [PMID: 35158916 PMCID: PMC8833428 DOI: 10.3390/cancers14030644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Checkpoint inhibitors and anti-angiogenic therapies are treatments that slow the progression of renal cell carcinoma, the most common type of kidney cancer. Checkpoint inhibitors and anti-angiogenic therapies work in different ways. Checkpoint inhibitors help to prevent tumors from hiding from the body’s immune system, while anti-angiogenic therapies slow the development of blood vessels that tumours need to help them to grow. Studies have shown that treatment with combination checkpoint inhibitor plus anti-angiogenic therapy can achieve better outcomes for patients with renal cell carcinoma than treatment with anti-angiogenic therapy alone. In this review, we consider how combination checkpoint inhibitor plus anti-angiogenic therapy works, and we review the current literature to identify evidence to inform clinicians as to the most effective way to use these different types of drugs, either one after the other, or together, for maximum patient benefit. Abstract Anti-angiogenic agents, such as vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitors and anti-VEGF antibodies, and immune checkpoint inhibitors (CPIs) are standard treatments for advanced renal cell carcinoma (aRCC). In the past, these agents were administered as sequential monotherapies. Recently, combinations of anti-angiogenic agents and CPIs have been approved for the treatment of aRCC, based on evidence that they provide superior efficacy when compared with sunitinib monotherapy. Here we explore the possible mechanisms of action of these combinations, including a review of relevant preclinical data and clinical evidence in patients with aRCC. We also ask whether the benefit is additive or synergistic, and, thus, whether concomitant administration is preferred over sequential monotherapy. Further research is needed to understand how combinations of anti-angiogenic agents with CPIs compare with CPI monotherapy or combination therapy (e.g., nivolumab and ipilimumab), and whether the long-term benefit observed in a subset of patients treated with CPI combinations will also be realised in patients treated with an anti-angiogenic therapy and a CPI. Additional research is also needed to establish whether other elements of the tumour microenvironment also need to be targeted to optimise treatment efficacy, and to identify biomarkers of response to inform personalised treatment using combination therapies.
Collapse
Affiliation(s)
- Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1374, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-792-2830
| | - Michael B. Atkins
- Department of Oncology, School of Medicine, Georgetown University, Washington, DC 20007, USA;
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Simon Chowdhury
- Department of Medical Oncology, Guy’s and St Thomas’ Hospitals, London SE1 9RT, UK;
- Sarah Cannon Research Institute, London W1G 6AD, UK
| | - Paul Mainwaring
- Centre for Personalised Nanomedicine, The University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
21
|
Cheng JN, Yuan YX, Zhu B, Jia Q. Myeloid-Derived Suppressor Cells: A Multifaceted Accomplice in Tumor Progression. Front Cell Dev Biol 2022; 9:740827. [PMID: 35004667 PMCID: PMC8733653 DOI: 10.3389/fcell.2021.740827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature myeloid cells, has a pivotal role in negatively regulating immune response, promoting tumor progression, creating pre-metastases niche, and weakening immunotherapy efficacy. The underlying mechanisms are complex and diverse, including immunosuppressive functions (such as inhibition of cytotoxic T cells and recruitment of regulatory T cells) and non-immunological functions (mediating stemness and promoting angiogenesis). Moreover, MDSC may predict therapeutic response as a poor prognosis biomarker among multiple tumors. Accumulating evidence indicates targeting MDSC can reverse immunosuppressive tumor microenvironment, and improve therapeutic response either single or combination with immunotherapy. This review summarizes the phenotype and definite mechanisms of MDSCs in tumor progression, and provide new insights of targeting strategies regarding to their clinical applications.
Collapse
Affiliation(s)
- Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Yi-Xiao Yuan
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China.,Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| |
Collapse
|
22
|
Kinase Inhibitors' Effects on Innate Immunity in Solid Cancers. Cancers (Basel) 2021; 13:cancers13225695. [PMID: 34830850 PMCID: PMC8616517 DOI: 10.3390/cancers13225695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In this review, we evaluate the updated data of the immunological effects of kinase inhibitors on the innate immune system and provide an in-depth analysis of the underlying mechanisms. We also discuss how this immunological effect can be harnessed to improve cancer treatment and highlight recent successes, such as the combination with anti-tumor immunotherapy. Last, we explore novel kinase targets and the incorporation of them with targeted drug delivery techniques as promising research areas. Abstract Innate immune cells constitute a plastic and heterogeneous cell population of the tumor microenvironment. Because of their high tumor infiltration and close interaction with resident tumor cells, they are compelling targets for anti-cancer therapy through either ablation or functionally reprogramming. Kinase inhibitors (KIs) that target aberrant signaling pathways in tumor proliferation and angiogenesis have been shown to have additional immunological effects on myeloid cells that may contribute to a protective antitumor immune response. However, in patients with malignancies, these effects are poorly described, warranting meticulous research to identify KIs’ optimal immunomodulatory effect to support developing targeted and more effective immunotherapy. As many of these KIs are currently in clinical trials awaiting approval for the treatment of several types of solid cancer, we evaluate here the information on this drug class’s immunological effects and how such mechanisms can be harnessed to improve combined treatment regimens in cancer.
Collapse
|
23
|
Regan DP, Chow L, Das S, Haines L, Palmer E, Kurihara JN, Coy JW, Mathias A, Thamm DH, Gustafson DL, Dow SW. Losartan Blocks Osteosarcoma-Elicited Monocyte Recruitment, and Combined With the Kinase Inhibitor Toceranib, Exerts Significant Clinical Benefit in Canine Metastatic Osteosarcoma. Clin Cancer Res 2021; 28:662-676. [PMID: 34580111 DOI: 10.1158/1078-0432.ccr-21-2105] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE There is increasing recognition that progress in immuno-oncology could be accelerated by evaluating immune-based therapies in dogs with spontaneous cancers. Osteosarcoma (OS) is one tumor for which limited clinical benefit has been observed with the use of immune checkpoint inhibitors. We previously reported the angiotensin receptor blocker losartan suppressed metastasis in preclinical mouse models through blockade of CCL2-CCR2 monocyte recruitment. Here we leverage dogs with spontaneous OS to determine losartan's safety and pharmacokinetics associated with monocyte pharmacodynamic endpoints, and assess its antitumor activity, in combination with the kinase inhibitor toceranib. PATIENTS AND METHODS CCL2 expression, monocyte infiltration, and monocyte recruitment by human and canine OS tumors and cell lines were assessed by gene expression, ELISA, and transwell migration assays. Safety and efficacy of losartan-toceranib therapy were evaluated in 28 dogs with lung metastatic OS. Losartan PK and monocyte PD responses were assessed in three dose cohorts of dogs by chemotaxis, plasma CCL2, and multiplex cytokine assays, and RNA-seq of losartan-treated human peripheral blood mononuclear cells. RESULTS Human and canine OS cells secrete CCL2 and elicit monocyte migration, which is inhibited by losartan. Losartan PK/PD studies in dogs revealed that a 10-fold-higher dose than typical antihypertensive dosing was required for blockade of monocyte migration. Treatment with high-dose losartan and toceranib was well-tolerated and induced a clinical benefit rate of 50% in dogs with lung metastases. CONCLUSIONS Losartan inhibits the CCL2-CCR2 axis, and in combination with toceranib, exerts significant biological activity in dogs with metastatic osteosarcoma, supporting evaluation of this drug combination in patients with pediatric osteosarcoma.
Collapse
Affiliation(s)
- Daniel P Regan
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado. .,Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Lyndah Chow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Sunetra Das
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Laurel Haines
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Eric Palmer
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jade N Kurihara
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jonathan W Coy
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Alissa Mathias
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Douglas H Thamm
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Daniel L Gustafson
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Steven W Dow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado. .,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
24
|
Terry RL, Meyran D, Fleuren EDG, Mayoh C, Zhu J, Omer N, Ziegler DS, Haber M, Darcy PK, Trapani JA, Neeson PJ, Ekert PG. Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma. Cancers (Basel) 2021; 13:cancers13184704. [PMID: 34572932 PMCID: PMC8465026 DOI: 10.3390/cancers13184704] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This review explores the current trials using cellular immunotherapies in pediatric sarcoma and describes examples of promising new CAR T targets in sarcoma that are in preclinical development. We provide insights into the ways in which the immunosuppressive tumor immune microenvironment can impact on CAR T cell therapy, highlighting specific mechanisms by which the tumor microenvironment may limit CAR T efficacy. Appreciation of these mechanisms may lead to rational combinations of immunotherapies, for example, the combination of CAR T cells with checkpoint inhibitor drugs. We also describe innovations in CAR T cell generation and combination therapies that may pave the way to better clinical outcomes for these patients. Abstract Sarcomas are a diverse group of bone and soft tissue tumors that account for over 10% of childhood cancers. Outcomes are particularly poor for children with refractory, relapsed, or metastatic disease. Chimeric antigen receptor T (CAR T) cells are an exciting form of adoptive cell therapy that potentially offers new hope for these children. In early trials, promising outcomes have been achieved in some pediatric patients with sarcoma. However, many children do not derive benefit despite significant expression of the targeted tumor antigen. The success of CAR T cell therapy in sarcomas and other solid tumors is limited by the immunosuppressive tumor microenvironment (TME). In this review, we provide an update of the CAR T cell therapies that are currently being tested in pediatric sarcoma clinical trials, including those targeting tumors that express HER2, NY-ESO, GD2, EGFR, GPC3, B7-H3, and MAGE-A4. We also outline promising new CAR T cells that are in pre-clinical development. Finally, we discuss strategies that are being used to overcome tumor-mediated immunosuppression in solid tumors; these strategies have the potential to improve clinical outcomes of CAR T cell therapy for children with sarcoma.
Collapse
Affiliation(s)
- Rachael L. Terry
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Inserm, Université de Paris, U976 HIPI Unit, Institut de Recherche Saint-Louis, 75475 Paris, France
| | - Emmy D. G. Fleuren
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Chelsea Mayoh
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Joe Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Natacha Omer
- Translational Innate Immunotherapy, University of Queensland Diamantina Institute (UQDI), Brisbane 4102, Australia;
- Oncology Services Group, Queensland Children Hospital, Brisbane 4101, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2145, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Phillip K. Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Joseph A. Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Paul G. Ekert
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia
- Correspondence:
| |
Collapse
|
25
|
Huinen ZR, Huijbers EJM, van Beijnum JR, Nowak-Sliwinska P, Griffioen AW. Anti-angiogenic agents - overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat Rev Clin Oncol 2021; 18:527-540. [PMID: 33833434 DOI: 10.1038/s41571-021-00496-y] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitors have revolutionized medical oncology, although currently only a subset of patients has a response to such treatment. A compelling body of evidence indicates that anti-angiogenic therapy has the capacity to ameliorate antitumour immunity owing to the inhibition of various immunosuppressive features of angiogenesis. Hence, combinations of anti-angiogenic agents and immunotherapy are currently being tested in >90 clinical trials and 5 such combinations have been approved by the FDA in the past few years. In this Perspective, we describe how the angiogenesis-induced endothelial immune cell barrier hampers antitumour immunity and the role of endothelial cell anergy as the vascular counterpart of immune checkpoints. We review the antitumour immunity-promoting effects of anti-angiogenic agents and provide an update on the current clinical successes achieved when these agents are combined with immune checkpoint inhibitors. Finally, we propose that anti-angiogenic agents are immunotherapies - and vice versa - and discuss future research priorities.
Collapse
Affiliation(s)
- Zowi R Huinen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland. .,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
26
|
Li SJ, Chen JX, Sun ZJ. Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges. Cancer Commun (Lond) 2021; 41:830-850. [PMID: 34137513 PMCID: PMC8441058 DOI: 10.1002/cac2.12183] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/07/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy, especially immune checkpoint blockade (ICB), has revolutionized oncology. However, only a limited number of patients benefit from immunotherapy, and some cancers that initially respond to immunotherapy can ultimately relapse and progress. Thus, some studies have investigated combining immunotherapy with other therapies to overcome resistance to monotherapy. Recently, multiple preclinical and clinical studies have shown that tumor vasculature is a determinant of whether immunotherapy will elicit an antitumor response; thus, vascular targeting may be a promising strategy to improve cancer immunotherapy outcomes. A successful antitumor immune response requires an intact "Cancer-Immunity Cycle," including T cell priming and activation, immune cell recruitment, and recognition and killing of cancer cells. Angiogenic inducers, especially vascular endothelial growth factor (VEGF), can interfere with activation, infiltration, and function of T cells, thus breaking the "Cancer-Immunity Cycle." Together with immunostimulation-regulated tumor vessel remodeling, VEGF-mediated immunosuppression provides a solid therapeutic rationale for combining immunotherapy with antiangiogenic agents to treat solid tumors. Following the successes of recent landmark phase III clinical trials, therapies combining immune checkpoint inhibitors (ICIs) with antiangiogenic agents have become first-line treatments for multiple solid tumors, whereas the efficacy of such combinations in other solid tumors remains to be validated in ongoing studies. In this review, we discussed synergies between antiangiogenic agents and cancer immunotherapy based on results from preclinical and translational studies. Then, we discussed recent progress in randomized clinical trials. ICI-containing combinations were the focus of this review because of their recent successes, but combinations containing other immunotherapies were also discussed. Finally, we attempted to define critical challenges in combining ICIs with antiangiogenic agents to promote coordination and stimulate collaboration within the research community.
Collapse
Affiliation(s)
- Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, P. R. China
| | - Jia-Xian Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, P. R. China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, P. R. China
| |
Collapse
|
27
|
CAIX-specific CAR-T Cells and Sunitinib Show Synergistic Effects Against Metastatic Renal Cancer Models. J Immunother 2021; 43:16-28. [PMID: 31574023 DOI: 10.1097/cji.0000000000000301] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Treatment with chimeric antigen receptor-modified T cell (CAR-T) has demonstrated promising therapeutic efficacy in hematologic malignancies. However, the therapeutic efficacy is still very limited for solid tumors. An immunosuppressive microenvironment is one of the main reasons for the limited efficacy. Some chemotherapeutic agents exhibit immune microenvironment modulation. Therefore, combination with chemotherapeutic agents may be one of the promising strategies to enhance the therapeutic efficacy of CAR-T against solid tumors. Sunitinib modulates the antitumor immune response by improving T-cell infiltration and function while reducing immunosuppressive factors. The authors constructed a second-generation CAR targeting human renal cell carcinoma (RCC)-specific antigen carbonic anhydrase IX (CAIX) with the costimulatory domain of 4-1BB. The results of cytokine releasing and cell killing assays showed that the CAIX-CAR-T cells have specific effector functions against CAIX renal cancer cells in vitro. Combination therapy with CAIX-CAR-T and sunitinib showed synergistic efficacy against a mouse lung metastasis model of human RCC. CAIX-CAR-T cells in the mice of the combination therapy group showed stronger proliferation and tumor infiltration than that in the mice of the CAIX-CAR-T monotherapy group. The possible mechanisms of the synergistic efficacy are: (1) sunitinib caused upregulation of CAIX in tumor cells; (2) sunitinib decreased frequency of myeloid-derived suppressor cells in the tumor microenvironment. Our study supplied an innovative immunotherapeutic approach whereby combining CAIX-CAR-T with sunitinib induces a potent antitumor response in an experimental model of metastatic RCC. The combination strategy should be considered as a potential approach to augment adoptive CAR-T cell immunotherapy.
Collapse
|
28
|
Perioperative therapy in renal cancer in the era of immune checkpoint inhibitor therapy. Curr Opin Urol 2021; 31:262-269. [PMID: 33742979 DOI: 10.1097/mou.0000000000000868] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitor (ICI) combination therapy has revolutionized therapy of metastatic renal cancer. The success of immunotherapy has renewed an interest to study these agents in adjuvant and neoadjuvant settings and prior to cytoreductive nephrectomy. This narrative review will give an overview of ongoing trials and early translational research outcomes. RECENT FINDINGS In nonmetastatic renal cell carcinoma (RCC), five phase 3 adjuvant and neoadjuvant trials with ICI monotherapy or combinations are ongoing with atezolizumab (IMmotion 010; NCT03024996), pembrolizumab (KEYNOTE-564; NCT03142334), nivolumab (PROSPER; NCT03055013), nivolumab with or without ipilimumab (CheckMate 914; NCT03138512) and durvalumab with or without tremelimumab (RAMPART; NCT03288532). Phase 1b/2 neoadjuvant trials demonstrate safety, efficacy and dynamic changes of immune infiltrates and provide rationales for neoadjuvant trial concepts as well as prediction of response to therapy. In primary metastatic RCC, two phase 3 trials investigate the role of deferred cytoreductive nephrectomy following pretreatment with ICI combination (NORDICSUN; NCT03977571 and PROBE; NCT04510597). SUMMARY The outcomes of the major phase 3 trials are awaited as early as 2023. Meanwhile, translational data from phase 1b/2 studies enhance our understanding of the tumour immune microenvironment and its dynamic changes.
Collapse
|
29
|
Zalfa C, Paust S. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:633205. [PMID: 34025641 PMCID: PMC8133367 DOI: 10.3389/fimmu.2021.633205] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous environment composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells play a vital role in fighting tumors, but chronic stimulation and immunosuppression in the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact with innate and adaptive immune cells and play a crucial role in negatively regulating the immune response to tumors. This review discusses MDSC-mediated NK cell regulation within the TME, focusing on critical cellular and molecular interactions. We review current strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy could be improved.
Collapse
Affiliation(s)
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
30
|
Frosch J, Leontari I, Anderson J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers (Basel) 2021; 13:1743. [PMID: 33917501 PMCID: PMC8038814 DOI: 10.3390/cancers13071743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Despite multimodal treatment, survival chances for high-risk neuroblastoma patients remain poor. Immunotherapeutic approaches focusing on the activation and/or modification of host immunity for eliminating tumor cells, such as chimeric antigen receptor (CAR) T cells, are currently in development, however clinical trials have failed to reproduce the preclinical results. The tumor microenvironment is emerging as a major contributor to immune suppression and tumor evasion in solid cancers and thus has to be overcome for therapies relying on a functional immune response. Among the cellular components of the neuroblastoma tumor microenvironment, suppressive myeloid cells have been described as key players in inhibition of antitumor immune responses and have been shown to positively correlate with more aggressive disease, resistance to treatments, and overall poor prognosis. This review article summarizes how neuroblastoma-driven inflammation induces suppressive myeloid cells in the tumor microenvironment and how they in turn sustain the tumor niche through suppressor functions, such as nutrient depletion and generation of oxidative stress. Numerous preclinical studies have suggested a range of drug and cellular therapy approaches to overcome myeloid-derived suppression in neuroblastoma that warrant evaluation in future clinical studies.
Collapse
Affiliation(s)
| | | | - John Anderson
- UCL Institute of Child Health, Developmental Biology and Cancer Section, University College London, London WC1N 1EH, UK; (J.F.); (I.L.)
| |
Collapse
|
31
|
Laccetti AL, Garmezy B, Xiao L, Economides M, Venkatesan A, Gao J, Jonasch E, Corn P, Zurita‐Saavedra A, Brown LC, Kao C, Kinsey EN, Gupta RT, Harrison MR, Armstrong AJ, George DJ, Tannir N, Msaouel P, Shah A, Zhang T, Campbell MT. Combination antiangiogenic tyrosine kinase inhibition and anti-PD1 immunotherapy in metastatic renal cell carcinoma: A retrospective analysis of safety, tolerance, and clinical outcomes. Cancer Med 2021; 10:2341-2349. [PMID: 33650321 PMCID: PMC7982609 DOI: 10.1002/cam4.3812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Two separate antiangiogenic tyrosine kinase inhibitors (TKIs) and immunotherapy (IO) combinations are FDA-approved as front-line treatment for metastatic renal cell carcinoma (mRCC). Little is known about off-protocol and post-front-line experience with combination TKI-IO approaches. METHODS We conducted a retrospective analysis of mRCC patients who received combination TKI-IO post-first-line therapy between November 2015 and January 2019 at MD Anderson Cancer Center and Duke Cancer Institute. Chart review detailed patient characteristics, treatments, toxicity, and survival. Independent radiologists, blinded to clinical data, assessed best radiographic response using RECIST v1.1. RESULTS We identified 48 mRCC patients for inclusion: median age 65 years, 75.0% clear cell histology, 68.8% IMDC intermediate risk, and median two prior systemic therapies. TKI-IO combinations included nivolumab-cabozantinib (N +C; 24 patients), nivolumab-pazopanib (N+P; 13), nivolumab-axitinib (6), nivolumab-lenvatinib (2), and nivolumab-ipilimumab-cabozantinib (3). The median progression-free survival was 11.6 months and the median overall survival was not reached. Response data were available in 45 patients: complete response (CR; n = 3, 6.7%), partial response (PR; 20, 44.4%), stable disease (SD; 19, 42.2%), and progressive disease (3, 6.7%). Overall response rate was 51% and disease control rate (CR+PR+SD) was 93%. Only one patient had a grade ≥3 adverse event. CONCLUSION To our knowledge, this is the first case series reporting off-label use of combination TKI-IO for mRCC. TKI-IO combinations, particularly N+P and N+C, are well tolerated and efficacious. Although further prospective research is essential, slow disease progression on IO or TKI monotherapy may be safely controlled with addition of either TKI or IO.
Collapse
Affiliation(s)
- Andrew L. Laccetti
- Genitourinary Oncology ServiceDepartment of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Benjamin Garmezy
- Department of Cancer MedicineUniversity of Texas M.D. Anderson Cancer CenterHoustonTXUSA
| | - Lianchun Xiao
- Department of Genitourinary Medical OncologyUniversity of Texas M.D. Anderson Cancer CenterHoustonTXUSA
| | - Minas Economides
- Department of Internal MedicineMcGovern Medical School at UTHealthHoustonTXUSA
| | - Aradhana Venkatesan
- Department of RadiologyUniversity of Texas M.D. Anderson Cancer CenterHoustonTXUSA
| | - Jianjun Gao
- Department of Genitourinary Medical OncologyUniversity of Texas M.D. Anderson Cancer CenterHoustonTXUSA
| | - Eric Jonasch
- Department of Genitourinary Medical OncologyUniversity of Texas M.D. Anderson Cancer CenterHoustonTXUSA
| | - Paul Corn
- Department of Cancer MedicineUniversity of Texas M.D. Anderson Cancer CenterHoustonTXUSA
| | - Amado Zurita‐Saavedra
- Department of Cancer MedicineUniversity of Texas M.D. Anderson Cancer CenterHoustonTXUSA
| | - Landon C. Brown
- Division of Medical OncologyDepartment of MedicineDuke UniversityDurhamNCUSA
| | - Chester Kao
- Division of Medical OncologyDepartment of MedicineDuke UniversityDurhamNCUSA
| | - Emily N. Kinsey
- Division of Medical OncologyDepartment of MedicineDuke UniversityDurhamNCUSA
| | - Rajan T. Gupta
- Duke Cancer Institute Center for Prostate and Urologic CancersDurhamNCUSA
- Department of RadiologyDuke UniversityDurhamNCUSA
| | - Michael R. Harrison
- Division of Medical OncologyDepartment of MedicineDuke UniversityDurhamNCUSA
- Duke Cancer Institute Center for Prostate and Urologic CancersDurhamNCUSA
| | - Andrew J. Armstrong
- Division of Medical OncologyDepartment of MedicineDuke UniversityDurhamNCUSA
- Duke Cancer Institute Center for Prostate and Urologic CancersDurhamNCUSA
| | - Daniel J. George
- Division of Medical OncologyDepartment of MedicineDuke UniversityDurhamNCUSA
- Duke Cancer Institute Center for Prostate and Urologic CancersDurhamNCUSA
| | - Nizar Tannir
- Department of Genitourinary Medical OncologyUniversity of Texas M.D. Anderson Cancer CenterHoustonTXUSA
| | - Pavlos Msaouel
- Department of Genitourinary Medical OncologyUniversity of Texas M.D. Anderson Cancer CenterHoustonTXUSA
| | - Amishi Shah
- Department of Genitourinary Medical OncologyUniversity of Texas M.D. Anderson Cancer CenterHoustonTXUSA
| | - Tian Zhang
- Division of Medical OncologyDepartment of MedicineDuke UniversityDurhamNCUSA
- Duke Cancer Institute Center for Prostate and Urologic CancersDurhamNCUSA
| | - Matthew T. Campbell
- Department of Genitourinary Medical OncologyUniversity of Texas M.D. Anderson Cancer CenterHoustonTXUSA
| |
Collapse
|
32
|
van Asten SD, de Groot R, van Loenen MM, Castenmiller SM, de Jong J, Monkhorst K, Haanen JBAG, Amsen D, Bex A, Spaapen RM, Wolkers MC. T cells expanded from renal cell carcinoma display tumor-specific CD137 expression but lack significant IFN-γ, TNF-α or IL-2 production. Oncoimmunology 2021; 10:1860482. [PMID: 33537169 PMCID: PMC7833735 DOI: 10.1080/2162402x.2020.1860482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metastatic renal cell carcinoma (RCC) has a poor prognosis. Recent advances have shown beneficial responses to immune checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies. As only a subset of RCC patients respond, alternative strategies should be explored. Patients refractory to anti-PD-1 therapy may benefit from autologous tumor-infiltrating lymphocyte (TIL) therapy. Even though efficient TIL expansion was reported from RCC lesions, it is not well established how many RCC TIL products are tumor-reactive, how well they produce pro-inflammatory cytokines in response to autologous tumors, and whether their response correlates with the presence of specific immune cells in the tumor lesions. We here compared the immune infiltrate composition of RCC lesions with that of autologous kidney tissue of 18 RCC patients. Tcell infiltrates were increased in the tumor lesions, and CD8+ Tcell infiltrates were primarily of effector memory phenotype. Nine out of 16 (56%) tested TIL products we generated were tumor-reactive, as defined by CD137 upregulation after exposure to autologous tumor digest. Tumor reactivity was found in particular in TIL products originating from tumors with ahigh percentage of infiltrated Tcells compared to autologous kidney, and increased CD25 expression on CD8+ Tcells. Importantly, although TIL products had the capacity to produce the key effector cytokines IFN-γ, TNF-α or IL-2, they failed to produce significant amounts in response to autologous tumor digests. In conclusion, TIL products from RCC lesions contain tumor-reactive Tcells. Their restricted tumor-specific cytokine production requires further investigation of immunosuppressive factors in RCC and subsequent optimization of RCC-derived TIL culture conditions.
Collapse
Affiliation(s)
- Saskia D van Asten
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rosa de Groot
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Marleen M van Loenen
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Suzanne M Castenmiller
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Jeroen de Jong
- Department Of Pathology, The Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | - Kim Monkhorst
- Department Of Pathology, The Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | | | - Derk Amsen
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Axel Bex
- Department Of Urology, NKI-AvL, Amsterdam, The Netherlands.,UCL Division of Surgery and Interventional Science, Royal Free London NHS Foundation Trust, London, UK
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Monika C Wolkers
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
33
|
Serzan MT, Atkins MB. Current and emerging therapies for first line treatment of metastatic clear cell renal cell carcinoma. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7. [PMID: 35295921 PMCID: PMC8923624 DOI: 10.20517/2394-4722.2021.76] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The therapeutic landscape for advanced clear cell renal cell carcinoma (ccRCC) is rapidly evolving with improved knowledge of the biology of disease leading to the incorporation of a variety of antiangiogenic agents and immunotherapies. In this review, we discuss historical, current, and emerging first line treatment options for patients with advanced ccRCC. These include data with single agent vascular endothelial growth factor receptor tyrosine kinase inhibitors (TKIs): sunitinib, pazopanib and cabozantinib as well as the recently reported results for the combination of lenvatinib and everolimus (mTOR inhibitor). We also discuss results of the nivolumab anti-programmed cell death (PD-1)/ipilimumab (anti-cytotoxic T lymphocyte-associated antigen 4) combination as well as emerging front-line data with nivolumab and pembrolizumab (anti-PD-1) monotherapy. Finally, we review data supporting recent approvals of TKI and anti-PD-1 or anti-PD-Ligand 1 (PD-L1) combinations (e.g., axitinib/pembrolizumab, axitinib/avelumab and cabozantinib/nivolumab) and initial outcomes of lenvatinib (multi-kinase inhibitor) and pembrolizumab. With many individual and combination treatment options and the lack of head-to-head comparisons, treatment selection will depend on the goals of therapy (endpoints) and the identification and validation of clinical and tumor-based predictive biomarkers that are linked to the desired treatment endpoints.
Collapse
Affiliation(s)
- Michael T Serzan
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Michael B Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| |
Collapse
|
34
|
Hack SP, Zhu AX, Wang Y. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities. Front Immunol 2020; 11:598877. [PMID: 33250900 PMCID: PMC7674951 DOI: 10.3389/fimmu.2020.598877] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy (CIT) with antibodies targeting the programmed cell death 1 protein (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis have changed the standard of care in multiple cancers. However, durable antitumor responses have been observed in only a minority of patients, indicating the presence of other inhibitory mechanisms that act to restrain anticancer immunity. Therefore, new therapeutic strategies targeted against other immune suppressive mechanisms are needed to enhance anticancer immunity and maximize the clinical benefit of CIT in patients who are resistant to immune checkpoint inhibition. Preclinical and clinical studies have identified abnormalities in the tumor microenvironment (TME) that can negatively impact the efficacy of PD-1/PD-L1 blockade. Angiogenic factors such as vascular endothelial growth factor (VEGF) drive immunosuppression in the TME by inducing vascular abnormalities, suppressing antigen presentation and immune effector cells, or augmenting the immune suppressive activity of regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. In turn, immunosuppressive cells can drive angiogenesis, thereby creating a vicious cycle of suppressed antitumor immunity. VEGF-mediated immune suppression in the TME and its negative impact on the efficacy of CIT provide a therapeutic rationale to combine PD-1/PD-L1 antibodies with anti-VEGF drugs in order to normalize the TME. A multitude of clinical trials have been initiated to evaluate combinations of a PD-1/PD-L1 antibody with an anti-VEGF in a variety of cancers. Recently, the positive results from five Phase III studies in non-small cell lung cancer (adenocarcinoma), renal cell carcinoma, and hepatocellular carcinoma have shown that combinations of PD-1/PD-L1 antibodies and anti-VEGF agents significantly improved clinical outcomes compared with respective standards of care. Such combinations have been approved by health authorities and are now standard treatment options for renal cell carcinoma, non-small cell lung cancer, and hepatocellular carcinoma. A plethora of other randomized studies of similar combinations are currently ongoing. Here, we discuss the principle mechanisms of VEGF-mediated immunosuppression studied in preclinical models or as part of translational clinical studies. We also discuss data from recently reported randomized clinical trials. Finally, we discuss how these concepts and approaches can be further incorporated into clinical practice to improve immunotherapy outcomes for patients with cancer.
Collapse
Affiliation(s)
- Stephen P. Hack
- Product Development (Oncology), Genentech, Inc., South San Francisco, CA, United States
| | - Andrew X. Zhu
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - Yulei Wang
- Product Development (Oncology), Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
35
|
Chen W, Pan X, Cui X. RCC Immune Microenvironment Subsequent to Targeted Therapy: A Friend or a Foe? Front Oncol 2020; 10:573690. [PMID: 33117708 PMCID: PMC7561377 DOI: 10.3389/fonc.2020.573690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Renal cell carcinoma (RCC) is composed of different subtypes with distinct molecular and histological tumor heterogeneity. Although the advent of various targeted therapies has improved the survival of patients with advanced RCC over the past 15 years (since 2006), few cases experienced complete response due to drug resistance. Recent studies have demonstrated that the outcomes following targeted therapies are potentially associated with intricate cross-links between immune responses and suppressors in the tumor microenvironment (TME). In addition, progress on drug research and development enhances our awareness and understanding about immunotherapy and combined treatment. In this review article, we intend to make a comprehensive summary about TME and its alterations following targeted therapies, provide valid evidence in this aspect, and discuss optimal matches between targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Wenjin Chen
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Xingang Cui
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| |
Collapse
|
36
|
Furumaya C, Martinez-Sanz P, Bouti P, Kuijpers TW, Matlung HL. Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Front Immunol 2020; 11:2100. [PMID: 32983165 PMCID: PMC7492657 DOI: 10.3389/fimmu.2020.02100] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, cancer immunotherapies such as checkpoint blockade and adoptive T cell transfer have been a game changer in many aspects and have improved the treatment for various malignancies considerably. Despite the clinical success of harnessing the adaptive immunity to combat the tumor, the benefits of immunotherapy are still limited to a subset of patients and cancer types. In recent years, neutrophils, the most abundant circulating leukocytes, have emerged as promising targets for anti-cancer therapies. Traditionally regarded as the first line of defense against infections, neutrophils are increasingly recognized as critical players during cancer progression. Evidence shows the functional plasticity of neutrophils in the tumor microenvironment, allowing neutrophils to exert either pro-tumor or anti-tumor effects. This review describes the tumor-promoting roles of neutrophils, focusing on their myeloid-derived suppressor cell activity, as well as their role in tumor elimination, exerted mainly via antibody-dependent cellular cytotoxicity. We will discuss potential approaches to therapeutically target neutrophils in cancer. These include strategies in humans to either silence the pro-tumor activity of neutrophils, or to activate or enhance their anti-tumor functions. Redirecting neutrophils seems a promising approach to harness innate immunity to improve treatment for cancer patients.
Collapse
Affiliation(s)
- Charita Furumaya
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Paula Martinez-Sanz
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Panagiota Bouti
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Zhou X, Hou W, Gao L, Shui L, Yi C, Zhu H. Synergies of Antiangiogenic Therapy and Immune Checkpoint Blockade in Renal Cell Carcinoma: From Theoretical Background to Clinical Reality. Front Oncol 2020; 10:1321. [PMID: 32850419 PMCID: PMC7403214 DOI: 10.3389/fonc.2020.01321] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/24/2020] [Indexed: 02/05/2023] Open
Abstract
The hallmarks of renal cell carcinoma (RCC) are angiogenesis and immunogenic tumor microenvironment. Over the past decades, treatment options for metastatic RCC (mRCC) have been expanding, from the inhibition of vessel formation via antiangiogenic agents (AAs) to the stimulation of immune system by immune checkpoint inhibitors (ICIs). Since 2005, the introduction of antiangiogenic agents targeting vascular endothelial growth factor (VEGF), its receptors (VEGFRs), and mammalian target of rapamycin (mTOR) pathway have experienced moderate success in the therapeutics of mRCC, but patient outcomes remain suboptimal. Recently, the development of ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the programmed death-1/programmed death ligand 1 (PD-1/PD-L1) pathways has dramatically changed the treatment landscape of mRCC. Expressly, the combination of ipilimumab and nivolumab has been confirmed to improve clinical outcomes and approved as a standard care for intermediate- or poor-risk mRCC patients. Nevertheless, innate or adaptive drug resistance is observed within both treatment approaches, limiting overall clinical benefit. This phenomenon will underscore the urgent need for new combinational therapy strategies with different mechanisms of action, which can improve efficacy in an extended patient population without severe toxic effects. In 2019, as the results of two critical phase III trials came to light, FDA approved axitinib plus avelumab, or pembrolizumab as first-line standard management for mRCC, which cements the combination of AAs plus ICIs and advances the mRCC treatment field. This review summarizes current evidence on the interplay and synergies between AAs and immunomodulating drugs in mRCC, focusing on the theoretical background and the status of current clinical development.
Collapse
Affiliation(s)
| | | | | | | | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Cerbone L, Rebuzzi SE, Lattanzi E, Gnetti L, Iaia ML, D'Abbiero N, Buti S. Abscopal effect after hypofractionated radiotherapy in metastatic renal cell carcinoma pretreated with pazopanib. Immunotherapy 2020; 12:869-878. [PMID: 32723023 DOI: 10.2217/imt-2020-0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/06/2020] [Indexed: 11/21/2022] Open
Abstract
Background: The abscopal effect consists of distant metastases response after local treatment based on systemic immune stimulation. It is a rare event observed in many tumors, especially with radiotherapy and immunotherapy. Clinical case: We report the long-term abscopal effect in a metastatic renal cell carcinoma patient with lung metastasectomy, after hypofractionated radiotherapy on lymph node metastasis. The patient was pretreated with pazopanib, which was discontinued early owing to toxicity before radiotherapy. Methodology: Immunohistological analyses of the primary tumor and metastases were performed. Discussion: We supposed that radiotherapy, and maybe tyrosine kinase inhibitors, could act as immune-primers for abscopal effect modifying the immune tumor microenvironment. Conclusion: Future studies are needed to optimize the combination of radiotherapy with systemic therapy for better long-term tumor control in selected patients.
Collapse
Affiliation(s)
- Luigi Cerbone
- Academic Unit of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Sara Elena Rebuzzi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Maria Laura Iaia
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
39
|
|
40
|
Patel A, Ravaud A, Motzer RJ, Pantuck AJ, Staehler M, Escudier B, Martini JF, Lechuga M, Lin X, George DJ. Neutrophil-to-Lymphocyte Ratio as a Prognostic Factor of Disease-free Survival in Postnephrectomy High-risk Locoregional Renal Cell Carcinoma: Analysis of the S-TRAC Trial. Clin Cancer Res 2020; 26:4863-4868. [PMID: 32546645 DOI: 10.1158/1078-0432.ccr-20-0704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/28/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE In the S-TRAC trial, adjuvant sunitinib improved disease-free survival (DFS) compared with placebo in patients with locoregional renal cell carcinoma (RCC) at high risk of recurrence. This post hoc exploratory analysis investigated the neutrophil-to-lymphocyte ratio (NLR) for predictive and prognostic significance in the RCC adjuvant setting. EXPERIMENTAL DESIGN Kaplan-Meier estimates and Cox proportional analyses were performed on baseline NLR and change from baseline at week 4 to assess their association with DFS. Univariate P values were two-sided and based on an unstratified log-rank test. RESULTS 609 of 615 patients had baseline NLR values; 574 patients had baseline and week 4 values. Sunitinib-treated patients with baseline NLR <3 had longer DFS versus placebo (7.1 vs. 4.7; HR, 0.71; P = 0.02). For baseline NLR ≥3, DFS was similar regardless of treatment (sunitinib 6.8 vs. placebo not reached; HR, 1.03; P = 0.91). A ≥25% NLR decrease at week 4 was associated with longer DFS versus no change (6.8 vs. 5.3 years; HR, 0.71; P = 0.01). A greater proportion of sunitinib-treated patients had ≥25% NLR decrease at week 4 (71.2%) versus placebo (17.4%). Patients with ≥25% NLR decrease at week 4 received a higher median cumulative sunitinib dose (10,137.5 mg) versus no change (8,168.8 mg) or ≥25% increase (6,712.5 mg). CONCLUSIONS In the postnephrectomy high-risk RCC patient cohort, low baseline NLR may help identify those most suitable for adjuvant sunitinib. A ≥25% NLR decrease at week 4 may be an early indicator of those most likely to tolerate treatment and derive DFS benefit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xun Lin
- Pfizer Inc, La Jolla, California
| | | |
Collapse
|
41
|
Li W, Zhan M, Quan YY, Wang H, Hua SN, Li Y, Zhang J, Lu L, Cui M. Modulating the tumor immune microenvironment with sunitinib malate supports the rationale for combined treatment with immunotherapy. Int Immunopharmacol 2020; 81:106227. [DOI: 10.1016/j.intimp.2020.106227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
|
42
|
Fogli S, Porta C, Del Re M, Crucitta S, Gianfilippo G, Danesi R, Rini BI, Schmidinger M. Optimizing treatment of renal cell carcinoma with VEGFR-TKIs: a comparison of clinical pharmacology and drug-drug interactions of anti-angiogenic drugs. Cancer Treat Rev 2020; 84:101966. [PMID: 32044644 DOI: 10.1016/j.ctrv.2020.101966] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Anti-angiogenic treatment is an important option that has changed the therapeutic landscape in various tumors, particularly in patients affected by renal cell carcinoma (RCC). Agents that block signaling pathways governing tumor angiogenesis have raised high expectations among clinicians. Vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs) comprise a heterogeneous class of drugs with distinct pharmacological profiles, including potency, selectivity, pharmacokinetics and drug-drug interactions. Among them, tivozanib is one of the last TKIs introduced in the clinical practice; this drug selectively targets VEGFRs, it is characterized by a favorable pharmacokinetics and safety profile and has been approved as first-line treatment for patients with metastatic RCC (mRCC). In this article, we describe the clinical pharmacology of selected VEGFR-TKIs used for the treatment of mRCC, highlighting the relevant differences; moreover we aim to define the main pharmacologic characteristics of these drug.
Collapse
Affiliation(s)
- Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Camillo Porta
- Department of Internal Medicine, University of Pavia and Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Gianfilippo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Brian I Rini
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manuela Schmidinger
- Clinical Division of Oncology, Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Lim J, Lee A, Lee HG, Lim JS. Modulation of Immunosuppression by Oligonucleotide-Based Molecules and Small Molecules Targeting Myeloid-Derived Suppressor Cells. Biomol Ther (Seoul) 2020; 28:1-17. [PMID: 31431006 PMCID: PMC6939693 DOI: 10.4062/biomolther.2019.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exert suppressive function on the immune response. MDSCs expand in tumor-bearing hosts or in the tumor microenvironment and suppress T cell responses via various mechanisms, whereas a reduction in their activities has been observed in autoimmune diseases or infections. It has been reported that the symptoms of various diseases, including malignant tumors, can be alleviated by targeting MDSCs. Moreover, MDSCs can contribute to patient resistance to therapy using immune checkpoint inhibitors. In line with these therapeutic approaches, diverse oligonucleotide-based molecules and small molecules have been evaluated for their therapeutic efficacy in several disease models via the modulation of MDSC activity. In the current review, MDSC-targeting oligonucleotides and small molecules are briefly summarized, and we highlight the immunomodulatory effects on MDSCs in a variety of disease models and the application of MDSC-targeting molecules for immuno-oncologic therapy.
Collapse
Affiliation(s)
- Jihyun Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Aram Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hee Gu Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.,Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
44
|
|
45
|
Dysthe M, Parihar R. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:117-140. [PMID: 32036608 DOI: 10.1007/978-3-030-35723-8_8] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Reijm E, van Thienen J, Wilgenhof S, Bex A, Haanen J. Immune Checkpoint Inhibition, the Key to Success in Renal Cell Carcinoma? KIDNEY CANCER 2019. [DOI: 10.3233/kca-190065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- E.A. Reijm
- Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J.V. van Thienen
- Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - S. Wilgenhof
- Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A. Bex
- Urological Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J.B.A.G. Haanen
- Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Bersanelli M, Gnetti L, Vaglio A, Sverzellati N, Campanini N, Incerti M, Galetti M, Varotti E, Corrado M, Parziale R, Bottarelli L, Azzoni C, Silini EM, Leonardi F, Buti S. Correlations between tumor-infiltrating and circulating lymphocyte subpopulations in advanced renal cancer patients treated with nivolumab. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:468-474. [PMID: 31910171 PMCID: PMC7233785 DOI: 10.23750/abm.v90i4.7057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/07/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND In clinical trials with immunotherapy, histological features such as tumor-infiltrating lymphocytes (TILs) are investigated as potential predictive biomarkers, with the limit of an outdated parameter for a typically dynamic element. METHODS This explorative study compared, in metastatic renal cell carcinoma (mRCC) patients, basal pathological data about TILs on diagnostic histological specimens with circulating lymphocyte subpopulations measured before and during therapy with nivolumab. RESULTS Of 11 mRCC patients, 5 had low presence of TILs (L-TILs), 3 moderate amount (M-TILs) and 3 high number (H-TILs). Overall, 8 patients had low intratumoral pathological CD4+/CD8+ ratio (LIPR) ≤1 and 3 cases high intratumoral pathological ratio (HIPR) ≥2. Of 8 patients with LIPR, only 2 matched with low circulating CD4+/CD8+ ratio (LCR) ≤1; 5 had high circulating ratio (HCR) ≥2. All 3 cases with HIPR (≥2) conversely had LCR (≤1). Circulating CD4+/CD8+ ratio remained unchanged during therapy (mean -0.12 in 8 weeks). The respective percentage values of CD4+ and CD8+ circulating T cells also remained stable (variation 0%); the absolute value of CD4+ was more likely to increase (mean +46.3/mm3); the level of CD8+ tended to slightly decrease (mean -6.5/mm3). No correlation of lymphocyte subpopulations with treatment outcome was found. Of note, we did not evidence correspondence between histopathological and circulating findings in terms of T-lymphocyte subpopulations, also suggesting the inconsistency of circulating data in terms of relative variations. CONCLUSIONS Considering the likely high dynamism of TILs, rebiopsy before therapy might be proposed to assess the utility of TILs characterization for predictive purpose. (www.actabiomedica.it).
Collapse
|
48
|
Reguera-Nuñez E, Man S, Xu P, Hilberg F, Kerbel RS. Variable impact of three different antiangiogenic drugs alone or in combination with chemotherapy on multiple bone marrow-derived cell populations involved in angiogenesis and immunity. Angiogenesis 2019; 22:535-546. [DOI: 10.1007/s10456-019-09677-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
|
49
|
Puttmann K, Duggan M, Mortazavi A, Diaz DA, Carson III WE, Sundi D. The Role of Myeloid Derived Suppressor Cells in Urothelial Carcinoma Immunotherapy. Bladder Cancer 2019. [DOI: 10.3233/blc-190219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kathleen Puttmann
- Department of Urology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Megan Duggan
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amir Mortazavi
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Dayssy Alexandra Diaz
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - William E. Carson III
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Debasish Sundi
- Department of Urology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
50
|
Mollica V, Di Nunno V, Gatto L, Santoni M, Cimadamore A, Cheng L, Lopez-Beltran A, Montironi R, Pisconti S, Battelli N, Massari F. Novel Therapeutic Approaches and Targets Currently Under Evaluation for Renal Cell Carcinoma: Waiting for the Revolution. Clin Drug Investig 2019; 39:503-519. [PMID: 30937824 DOI: 10.1007/s40261-019-00773-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Management of metastatic renal cell carcinoma has drastically changed in the last few years, witnessing the advent of more and more target therapies and, recently, of immune-checkpoint inhibitors. On the other hand, the adjuvant setting still lacks a clear beneficial treatment. Medical treatment still remains a compelling challenge. A large number of clinical trials is ongoing with the aim to identify new therapeutic approaches to expand the options in our repertoire. Several strategies are under investigation in renal cell carcinoma (RCC). These include new targeted agents and combinations of target therapy and immunotherapy. Programmed death receptor-1 (PD-1), programmed death receptor ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen 4 (CTLA4) are just part of the intricate network that regulates our immune response to cancer cells. Co-stimulators, such as glucocorticoid-induced TNFR-related protein (GITR) and tumor necrosis factor receptor superfamily, member 4 (OX40), and co-repressors, example.g. T cell immunoglobulin and mucin domain 3 (TIM-3) and lymphocyte-activation gene 3 (LAG-3), also take part. As knowledge of the functioning of the immune system grows, so do these pathways to target with new drugs. This review is an overview of the current state of the clinical research, providing a report of ongoing Phase I, II and III clinical trials for localized and metastatic RCC, including novel target therapies, novel immunotherapy agents and new combinations strategies.
Collapse
Affiliation(s)
- Veronica Mollica
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Lidia Gatto
- Oncology Unit, SG Moscati Hospital of Taranto, Taranto, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, United Hospital, School of Medicine, Polytechnic University of the Marche Region, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain
| | - Rodolfo Montironi
- Section of Pathological Anatomy, United Hospital, School of Medicine, Polytechnic University of the Marche Region, Ancona, Italy
| | | | | | | |
Collapse
|