1
|
Kret ZS, Sweder RJ, Pollock R, Tinoco G. Potential Mechanisms for Immunotherapy Resistance in Adult Soft-Tissue Sarcoma. Target Oncol 2025:10.1007/s11523-025-01145-5. [PMID: 40289241 DOI: 10.1007/s11523-025-01145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
Soft-tissue sarcomas represent a diverse group of rare malignancies originating from mesenchymal tissue, accounting for less than 1% of adult cancers in the USA. With over 13,000 new cases and around 5350 deaths annually, patients with metastatic soft-tissue sarcomas face limited therapeutic options and an estimated median overall survival of 18 months. While immunotherapy has demonstrated effectiveness in several cancers, its application in soft-tissue sarcomas remains challenging owing to the tumors' largely "cold" immunological environment, characterized by low levels of tumor-infiltrating lymphocytes and a lack of soft-tissue sarcoma-specific biomarkers. This review examines potential mechanisms underlying immunotherapy resistance in soft-tissue sarcomas, including the complex interplay between innate and adaptive immunity, the tumor microenvironment, and the role of immune-related genes. Despite preliminary findings suggesting correlations between immune profiles and histological subtypes, consistent biomarkers for predicting immunotherapeutic responses across soft-tissue sarcoma types are absent. Emerging strategies focus on converting "cold" tumors to "hot" tumors, enhancing their susceptibility to immunologic activation. While research is ongoing, personalized treatment approaches may offer hope for overcoming the inherent heterogeneity and resistance seen in soft-tissue sarcomas, ultimately aiming to improve outcomes for affected patients.
Collapse
Affiliation(s)
- Zaina S Kret
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ryan J Sweder
- The Ohio State University College of Arts and Sciences and College of Medicine, Columbus, OH, USA
| | - Raphael Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gabriel Tinoco
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 1800 Cannon Drive, 1240 Lincoln Tower, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Tang Y, Yi X, Ai J. mRNA vaccines for prostate cancer: A novel promising immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189333. [PMID: 40288658 DOI: 10.1016/j.bbcan.2025.189333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The treatment of advanced prostate cancer (PCa) primarily based on androgen deprivation therapy (ADT); however, patients inevitably progress to the castration-resistant prostate cancer (CRPC) stage. Despite the recent advancements in CRPC treatment with novel endocrine drugs that further inhibit androgen receptor signaling, resistance ultimately develops, underscoring the urgent need for new effective therapeutic strategies. Therapeutic cancer vaccines, a form of immunotherapy, exert anti-cancer effects by activating the host's immune system. Over the past few decades, various conventional therapeutic PCa vaccines based on cells, microbes, proteins, peptides, or DNA have been developed and tested in patients with advanced PCa. These attempts have largely failed to improve survival, with the sole exception of sipuleucel-T, which extended the median overall survival of asymptomatic or minimally symptomatic metastatic CRPC (mCRPC) patients by four months. The rapid development and high efficacy of mRNA vaccines during the COVID-19 pandemic have garnered worldwide attention. Compared to conventional vaccines, mRNA vaccines offer several unique advantages, including high production efficiency, low cost, high safety, strong immune response induction, and high adaptability and precision. These attributes make mRNA vaccines a promising frontier in the treatment of advanced PCa.
Collapse
Affiliation(s)
- Yaxiong Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China.
| |
Collapse
|
3
|
Tahghighi A, Seyedhashemi E, Mohammadi J, Moradi A, Esmaeili A, Pornour M, Jafarifar K, Ganji SM. Epigenetic marvels: exploring the landscape of colorectal cancer treatment through cutting-edge epigenetic-based drug strategies. Clin Epigenetics 2025; 17:34. [PMID: 39987205 PMCID: PMC11847397 DOI: 10.1186/s13148-025-01844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Epigenetics is currently considered the investigation of inheritable changes in gene expression that do not rely on DNA sequence alteration. Significant epigenetic procedures are involved, such as DNA methylations, histone modifications, and non-coding RNA actions. It is confirmed through several investigations that epigenetic changes are associated with the formation, development, and metastasis of various cancers, such as colorectal cancer (CRC). The difference between epigenetic changes and genetic mutations is that the former could be reversed or prevented; therefore, cancer treatment and prevention could be achieved by restoring abnormal epigenetic events within the neoplastic cells. These treatments, consequently, cause the anti-tumour effects augmentation, drug resistance reduction, and host immune response stimulation. In this article, we begin our survey by exploring basic epigenetic mechanisms to understand epigenetic tools and strategies for treating colorectal cancer in monotherapy and combination with chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Azar Tahghighi
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Effat Seyedhashemi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Javad Mohammadi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Arash Moradi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Aria Esmaeili
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA
| | - Kimia Jafarifar
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Shahla Mohammad Ganji
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran.
| |
Collapse
|
4
|
Zhou W, Lu X, Tian F, Luo Q, Zhou W, Yang S, Li W, Yang Y, Shi M, Zhou T. Vaccine Therapies for Prostate Cancer: Current Status and Future Outlook. Vaccines (Basel) 2024; 12:1384. [PMID: 39772046 PMCID: PMC11679746 DOI: 10.3390/vaccines12121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer is a prevalent cancer in elderly men, and immunotherapy has emerged as a promising treatment approach in recent years. The aim of immunotherapy is to stimulate the body's immune system to target and destroy cancer cells. Cancer vaccines that are highly specific, safe, and capable of creating long-lasting immune responses are a key focus in cancer immunotherapy research. Despite progress in clinical trials showing positive results, the practical use of cancer vaccines still encounters various obstacles. The complexity of the immune microenvironment and variations in the immune systems of individual patients have hindered the progress of research on prostate cancer vaccines. This review examines the history and mechanisms of cancer vaccines, summarizes recent clinical research findings, and explores future directions in the development of prostate cancer vaccines.
Collapse
Affiliation(s)
- Wenhao Zhou
- Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (W.Z.); (X.L.)
| | - Xiaojun Lu
- Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (W.Z.); (X.L.)
| | - Feng Tian
- Department of Urology, Shanghai Eighth People’s Hospital, Shanghai 200235, China;
| | - Qianming Luo
- School of Medicine, Tongji University, Shanghai 200092, China; (Q.L.); (W.Z.); (S.Y.)
| | - Weihang Zhou
- School of Medicine, Tongji University, Shanghai 200092, China; (Q.L.); (W.Z.); (S.Y.)
| | - Siyuan Yang
- School of Medicine, Tongji University, Shanghai 200092, China; (Q.L.); (W.Z.); (S.Y.)
| | - Wenxuan Li
- College of Clinical Medicine, Naval Medical University, Shanghai 200433, China; (W.L.); (Y.Y.)
| | - Yongjun Yang
- College of Clinical Medicine, Naval Medical University, Shanghai 200433, China; (W.L.); (Y.Y.)
| | - Minfeng Shi
- Reproduction Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tie Zhou
- Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (W.Z.); (X.L.)
| |
Collapse
|
5
|
Sridaran D, Bradshaw E, DeSelm C, Pachynski R, Mahajan K, Mahajan NP. Prostate cancer immunotherapy: Improving clinical outcomes with a multi-pronged approach. Cell Rep Med 2023; 4:101199. [PMID: 37738978 PMCID: PMC10591038 DOI: 10.1016/j.xcrm.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Cancer immunotherapy has gained traction in recent years owing to remarkable tumor clearance in some patients. Despite the notable success of immune checkpoint blockade (ICB) in multiple malignancies, engagement of the immune system for targeted prostate cancer (PCa) therapy is still in its infancy. Multiple factors contribute to limited response, including the heterogeneity of PCa, the cold tumor microenvironment, and a low number of neoantigens. Significant effort is being invested in improving immune-based PCa therapies. This review is a summary of the status of immunotherapy in treating PCa, with a discussion of multiple immune modalities, including vaccines, adoptively transferred T cells, and bispecific T cell engagers, some of which are undergoing clinical trials. In addition, this review also focuses on emerging mechanism-based small-molecule tyrosine kinase inhibitors with immune modulatory properties that, either as single agents or in combination with other immunotherapies, have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Elliot Bradshaw
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Carl DeSelm
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Department of Radiation Oncology, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Russell Pachynski
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Division of Oncology, Department of Medicine, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
6
|
Abstract
Prostate cancer is a leading cause of death in men worldwide. For over 30 years, growing interest has focused on the development of vaccines as treatments for prostate cancer, with the goal of using vaccines to activate immune cells capable of targeting prostate cancer to either eradicate recurrent disease or at least delay disease progression. This interest has been prompted by the prevalence and long natural history of the disease and by the fact that the prostate is an expendable organ. Thus, an immune response elicited by vaccination might not need to target the tumour uniquely but could theoretically target any prostate tissue. To date, different vaccine approaches and targets for prostate cancer have been evaluated in clinical trials. Overall, five approaches have been assessed in randomized phase III trials and sipuleucel-T was approved as a treatment for metastatic castration-resistant prostate cancer, being the only vaccine approved to date by the FDA as a treatment for cancer. Most vaccine approaches showed safety and some evidence of immunological activity but had poor clinical activity when used as monotherapies. However, increased activity has been observed when these vaccines were used in combination with other immune-modulating therapies. This evidence suggests that, in the future, prostate cancer vaccines might be used to activate and expand tumour-specific T cells as part of combination approaches with agents that target tumour-associated immune mechanisms of resistance.
Collapse
Affiliation(s)
- Ichwaku Rastogi
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Anusha Muralidhar
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
7
|
Oda K, Ito Y, Yamada A, Yutani S, Itoh K, Ozono S. Evaluation of the Immunological Response of Childhood Cancer Patients Treated with a Personalized Peptide Vaccine for Refractory Soft Tissue Tumor: A Four-Case Series. Kurume Med J 2023. [PMID: 37183020 DOI: 10.2739/kurumemedj.ms682012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This case series aimed to evaluate the peptide-specific immunoglobulin G (IgG) response, clinical effectiveness, and the safety of a personalized peptide vaccine (PPV) in four children with refractory solid cancer. Although the pre-vaccination IgG responses were suppressed, IgG levels against the vaccinated peptides after 12 vaccinations were increased in all three cases who received at least 12 vaccinations. Vaccination-related adverse effects were grade 1 injection-site local skin lesions. One patient, whose diagnosis was relapsed rhabdomyosarcoma, remains in sustained remission after 37 months. Although the pre-vaccination immune response in this patient was low, IgG levels against 2 of the 4 peptide vaccines were increased after the sixth vaccination, followed by a strong increase at the eighteenth vaccination against all 4 peptides, with a >100-fold increase vs. 2 peptides. The remaining three patients exhibited progressive disease and eventually died of their original cancer. The results of the current case series suggest that in cases of childhood solid tumors, when the tumor is controlled at the time of entry PPV may have some consolidation effect. Therefore, PPV could be a new immunotherapy modality for refractory childhood solid tumors.
Collapse
Affiliation(s)
- Keiko Oda
- Department of Healthcare Management, College of Healthcare Management
- Kurume University Cancer Vaccine Center
| | - Yasuhiko Ito
- Department of Pediatrics, Nagoya City University
- Department of Pediatrics, Nagoya East Medical Center
| | - Akira Yamada
- Kurume University Cancer Vaccine Center
- Research Center for Innovative Cancer Therapy, Kurume University
| | | | | | - Shuichi Ozono
- Department of Pediatrics, Kurume University School of Medicine
| |
Collapse
|
8
|
Bronte G, Conteduca V, Landriscina M, Procopio AD. Circulating myeloid-derived suppressor cells and survival in prostate cancer patients: systematic review and meta-analysis. Prostate Cancer Prostatic Dis 2023; 26:41-46. [PMID: 36411316 DOI: 10.1038/s41391-022-00615-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Immunotherapy has not achieved improvement of survival in prostate cancer patients. Myeloid-derived suppressor cells (MDSCs) in tumor microenvironment can hamper its efficacy. Some preclinical studies explored the role of MDSCs in prostate cancer development. We aimed to verify the availability of studies exploring the prognostic effect of circulating MDSCs in prostate cancer patients. METHODS We systematically selected studies for a meta-analysis, which compares survival between prostate cancer patients with high vs low circulating MDSC levels. We extracted or calculated hazard ratios (HRs) and relative 95% confidence intervals (CIs) in terms of overall survival (OS) from selected studies. We calculated the pooled HR and relative 95% CIs and estimated publication bias. RESULTS Among 133 studies retrieved from search on Pubmed, 5 eligible studies (236 prostate cancer patients) met inclusion criteria. High circulating MDSC levels are associated with a worse OS (HR = 2.19; 95%CI = 1.51-3.17). Heterogeneity was not significant (I2 = 0%; p = 0.64). Publication bias was also not significant (Egger's test, p = 0.09). CONCLUSIONS High levels of circulating MDSCs induce a worse OS in prostate cancer patients than in those with low levels. This finding supports the importance of MDSC detection and targeting also in prostate cancer patients.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy.
| | - Vincenza Conteduca
- Department of Medical and Surgical Sciences, Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Matteo Landriscina
- Department of Medical and Surgical Sciences, Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| |
Collapse
|
9
|
Catalano M, Roviello G, Santi R, Villari D, Spatafora P, Galli IC, Sessa F, Conte FL, Mini E, Cai T, Nesi G. Inflammation in Urological Malignancies: The Silent Killer. Int J Mol Sci 2023; 24:866. [PMID: 36614308 PMCID: PMC9821648 DOI: 10.3390/ijms24010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Several studies have investigated the role of inflammation in promoting tumorigenesis and cancer progression. Neoplastic as well as surrounding stromal and inflammatory cells engage in well-orchestrated reciprocal interactions to establish an inflammatory tumor microenvironment. The tumor-associated inflammatory tissue is highly plastic, capable of continuously modifying its phenotypic and functional characteristics. Accumulating evidence suggests that chronic inflammation plays a critical role in the development of urological cancers. Here, we review the origins of inflammation in urothelial, prostatic, renal, testicular, and penile cancers, focusing on the mechanisms that drive tumor initiation, growth, progression, and metastasis. We also discuss how tumor-associated inflammatory tissue may be a diagnostic marker of clinically significant tumor progression risk and the target for future anti-cancer therapies.
Collapse
Affiliation(s)
- Martina Catalano
- School of Human Health Sciences, University of Florence, 50134 Florence, Italy
| | - Giandomenico Roviello
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Raffaella Santi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Donata Villari
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Pietro Spatafora
- Unit of Urological Robotic Surgery and Renal Transplantation, Careggi Teaching Hospital, 50134 Florence, Italy
| | - Ilaria Camilla Galli
- Histopathology and Molecular Diagnostics, Careggi Teaching Hospital, 50139 Florence, Italy
| | - Francesco Sessa
- Unit of Urological Robotic Surgery and Renal Transplantation, Careggi Teaching Hospital, 50134 Florence, Italy
| | | | - Enrico Mini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, 38122 Trento, Italy
| | - Gabriella Nesi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| |
Collapse
|
10
|
Backlund CM, Holden RL, Moynihan KD, Garafola D, Farquhar C, Mehta NK, Maiorino L, Pham S, Iorgulescu JB, Reardon DA, Wu CJ, Pentelute BL, Irvine DJ. Cell-penetrating peptides enhance peptide vaccine accumulation and persistence in lymph nodes to drive immunogenicity. Proc Natl Acad Sci U S A 2022; 119:e2204078119. [PMID: 35914154 PMCID: PMC9371699 DOI: 10.1073/pnas.2204078119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022] Open
Abstract
Peptide-based cancer vaccines are widely investigated in the clinic but exhibit modest immunogenicity. One approach that has been explored to enhance peptide vaccine potency is covalent conjugation of antigens with cell-penetrating peptides (CPPs), linear cationic and amphiphilic peptide sequences designed to promote intracellular delivery of associated cargos. Antigen-CPPs have been reported to exhibit enhanced immunogenicity compared to free peptides, but their mechanisms of action in vivo are poorly understood. We tested eight previously described CPPs conjugated to antigens from multiple syngeneic murine tumor models and found that linkage to CPPs enhanced peptide vaccine potency in vivo by as much as 25-fold. Linkage of antigens to CPPs did not impact dendritic cell activation but did promote uptake of linked antigens by dendritic cells both in vitro and in vivo. However, T cell priming in vivo required Batf3-dependent dendritic cells, suggesting that antigens delivered by CPP peptides were predominantly presented via the process of cross-presentation and not through CPP-mediated cytosolic delivery of peptide to the classical MHC class I antigen processing pathway. Unexpectedly, we observed that many CPPs significantly enhanced antigen accumulation in draining lymph nodes. This effect was associated with the ability of CPPs to bind to lymph-trafficking lipoproteins and protection of CPP-antigens from proteolytic degradation in serum. These two effects resulted in prolonged presentation of CPP-peptides in draining lymph nodes, leading to robust T cell priming and expansion. Thus, CPPs can act through multiple unappreciated mechanisms to enhance T cell priming that can be exploited for cancer vaccines with enhanced potency.
Collapse
Affiliation(s)
- Coralie M. Backlund
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Rebecca L. Holden
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kelly D. Moynihan
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel Garafola
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Charlotte Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Naveen K. Mehta
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Laura Maiorino
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Sydney Pham
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - J. Bryan Iorgulescu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - David A. Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard University School of Medicine, Boston, MA 02215
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Bradley L. Pentelute
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Darrell J. Irvine
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
11
|
Parshad S, Sidhu AK, Khan N, Naoum A, Emmenegger U. Metronomic Chemotherapy for Advanced Prostate Cancer: A Literature Review. J Clin Med 2022; 11:jcm11102783. [PMID: 35628909 PMCID: PMC9147851 DOI: 10.3390/jcm11102783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is the ultimately lethal form of prostate cancer. Docetaxel chemotherapy was the first life-prolonging treatment for mCRPC; however, the standard maximally tolerated dose (MTD) docetaxel regimen is often not considered for patients with mCRPC who are older and/or frail due to its toxicity. Low-dose metronomic chemotherapy (LDMC) is the frequent administration of typically oral and off-patent chemotherapeutics at low doses, which is associated with a superior safety profile and higher tolerability than MTD chemotherapy. We conducted a systematic literature review using the PUBMED, EMBASE, and MEDLINE electronic databases to identify clinical studies that examined the impact of LDMC on patients with advanced prostate cancer. The search identified 30 reports that retrospectively or prospectively investigated LDMC, 29 of which focused on mCRPC. Cyclophosphamide was the most commonly used agent integrated into 27/30 (90%) of LDMC regimens. LDMC resulted in a clinical benefit rate of 56.8 ± 24.5% across all studies. Overall, there were only a few non-hematological grade 3 or 4 adverse events reported. As such, LDMC is a well-tolerated treatment option for patients with mCRPC, including those who are older and frail. Furthermore, LDMC is considered more affordable than conventional mCRPC therapies. However, prospective phase III trials are needed to further characterize the efficacy and safety of LDMC in mCRPC before its use in practice.
Collapse
Affiliation(s)
- Shruti Parshad
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (S.P.); (A.K.S.); (N.K.); (A.N.)
- Biological Sciences Research Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Amanjot K. Sidhu
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (S.P.); (A.K.S.); (N.K.); (A.N.)
- Biological Sciences Research Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Nabeeha Khan
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (S.P.); (A.K.S.); (N.K.); (A.N.)
- Biological Sciences Research Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Andrew Naoum
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (S.P.); (A.K.S.); (N.K.); (A.N.)
- Biological Sciences Research Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Urban Emmenegger
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (S.P.); (A.K.S.); (N.K.); (A.N.)
- Biological Sciences Research Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence: ; Tel.: +1-416-480-4928; Fax: +1-416-480-6002
| |
Collapse
|
12
|
Karami Fath M, Babakhaniyan K, Zokaei M, Yaghoubian A, Akbari S, Khorsandi M, Soofi A, Nabi-Afjadi M, Zalpoor H, Jalalifar F, Azargoonjahromi A, Payandeh Z, Alagheband Bahrami A. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett 2022; 27:33. [PMID: 35397496 PMCID: PMC8994312 DOI: 10.1186/s11658-022-00332-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nowadays, conventional medical treatments such as surgery, radiotherapy, and chemotherapy cannot cure all types of cancer. A promising approach to treat solid tumors is the use of tumor-targeting peptides to deliver drugs or active agents selectively. RESULT Introducing beneficial therapeutic approaches, such as therapeutic peptides and their varied methods of action against tumor cells, can aid researchers in the discovery of novel peptides for cancer treatment. The biomedical applications of therapeutic peptides are highly interesting. These peptides, owing to their high selectivity, specificity, small dimensions, high biocompatibility, and easy modification, provide good opportunities for targeted drug delivery. In recent years, peptides have shown considerable promise as therapeutics or targeting ligands in cancer research and nanotechnology. CONCLUSION This study reviews a variety of therapeutic peptides and targeting ligands in cancer therapy. Initially, three types of tumor-homing and cell-penetrating peptides (CPPs) are described, and then their applications in breast, glioma, colorectal, and melanoma cancer research are discussed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Veterinary Medicine, Beyza Branch, Islamic Azad University, Beyza, Iran
| | - Azadeh Yaghoubian
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sadaf Akbari
- Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Khorsandi
- Department of Biotechnology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of biological science, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Zalpoor
- American Association of Kidney Patients, Tampa, FL USA
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Fateme Jalalifar
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Sha H, Liu Q, Xie L, Shao J, Yu L, Cen L, Li L, Liu F, Qian H, Wei J, Liu B. Case Report: Pathological Complete Response in a Lung Metastasis of Phyllodes Tumor Patient Following Treatment Containing Peptide Neoantigen Nano-Vaccine. Front Oncol 2022; 12:800484. [PMID: 35211402 PMCID: PMC8861377 DOI: 10.3389/fonc.2022.800484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Some of the mutant peptides produced by gene mutation transcription and translation have the ability to induce specific T cells, which are called new antigens. Neoantigen-based peptide, DNA, RNA, and dendritic cell vaccines have been used in the clinic. In this paper, we describe a lung metastasis of a phyllodes tumor patient demonstrating pathological complete response following treatment containing personalized multi-epitope peptide neoantigen nano-vaccine. Based on whole-exome sequencing (WES), RNA sequencing, and new antigen prediction, several mutated peptide fragments were predicted to bind to the patient’s human leukocyte antigen (HLA) allotypes, including ten peptides with high predicted binding affinity for six genes. The pulmonary metastases remained stable after the four cycles of anti-PD1 and anlotinib. After the addition of the multi-epitope peptide neoantigen nano-vaccine, the tumor began to collapse and contracture developed, accompanied by a decrease of tumor markers to normal, and complete pathological remission was achieved. With the use of the vaccination, recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) was used every time, and low-dose cyclophosphamide was injected every 3 weeks to improve efficacy. Peripheral blood immune monitoring demonstrated immune reactivity against a series of peptides, with the most robust post-vaccine T-cell response detected against the HLA-DRB1*0901-restricted SLC44A5 V54F peptide.
Collapse
Affiliation(s)
- Huizi Sha
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Li Xie
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Shao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lanqi Cen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lin Li
- Department of Pathology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fangcen Liu
- Department of Pathology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
14
|
Hu Y, Burkard ME. Classes of therapeutics to amplify the immune response. Breast Cancer Res Treat 2022; 191:277-289. [PMID: 34787761 PMCID: PMC11646685 DOI: 10.1007/s10549-021-06369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/18/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Conventional chemotherapies are a mainstay for metastatic breast cancers, though durable response is rare. Immunotherapies promise long-term responses thorough immune activation but have been underwhelming in breast cancer relative to other cancer types. Here, we review the mechanisms of existing strategies including chemotherapies and how they may cause breast cancers to become immunogenic to identify potential biomarkers for combinations of conventional and immunotherapies. CONCLUSION Mechanistic considerations should inform biomarker development and patient selection for therapeutic combinations of drugs to combine with immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- Yang Hu
- Department of Medicine, Hematology/Oncology and Palliative Care, University of Wisconsin-Madison, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark E Burkard
- Department of Medicine, Hematology/Oncology and Palliative Care, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Wisconsin Institutes for Medical Research, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
15
|
Koinis F, Xagara A, Chantzara E, Leontopoulou V, Aidarinis C, Kotsakis A. Myeloid-Derived Suppressor Cells in Prostate Cancer: Present Knowledge and Future Perspectives. Cells 2021; 11:20. [PMID: 35011582 PMCID: PMC8750906 DOI: 10.3390/cells11010020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023] Open
Abstract
Several lines of research are being investigated to better understand mechanisms implicated in response or resistance to immune checkpoint blockade in prostate cancer (PCa). Myeloid-derived suppressor cells (MDSCs) have emerged as a major mediator of immunosuppression in the tumor microenvironment that promotes progression of various tumor types. The main mechanisms underlying MDSC-induced immunosuppression are currently being explored and strategies to enhance anti-tumor immune response via MDSC targeting are being tested. However, the role of MDSCs in PCa remains elusive. In this review, we aim to summarize and present the state-of-the-art knowledge on current methodologies to phenotypically and metabolically characterize MDSCs in PCa. We describe how these characteristics may be linked with MDSC function and may influence the clinical outcomes of patients with PCa. Finally, we briefly discuss emerging strategies being employed to therapeutically target MDSCs and potentiate the long-overdue improvement in the efficacy of immunotherapy in patients with PCa.
Collapse
Affiliation(s)
- Filippos Koinis
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Thessaly, Greece; (F.K.); (E.C.); (V.L.); (C.A.)
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Thessaly, Greece;
| | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Thessaly, Greece;
| | - Evangelia Chantzara
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Thessaly, Greece; (F.K.); (E.C.); (V.L.); (C.A.)
| | - Vassiliki Leontopoulou
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Thessaly, Greece; (F.K.); (E.C.); (V.L.); (C.A.)
| | - Chrissovalantis Aidarinis
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Thessaly, Greece; (F.K.); (E.C.); (V.L.); (C.A.)
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Thessaly, Greece; (F.K.); (E.C.); (V.L.); (C.A.)
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Thessaly, Greece;
| |
Collapse
|
16
|
Maiorano BA, Schinzari G, Ciardiello D, Rodriquenz MG, Cisternino A, Tortora G, Maiello E. Cancer Vaccines for Genitourinary Tumors: Recent Progresses and Future Possibilities. Vaccines (Basel) 2021; 9:623. [PMID: 34207536 PMCID: PMC8228524 DOI: 10.3390/vaccines9060623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In the last years, many new treatment options have widened the therapeutic scenario of genitourinary malignancies. Immunotherapy has shown efficacy, especially in the urothelial and renal cell carcinomas, with no particular relevance in prostate cancer. However, despite the use of immune checkpoint inhibitors, there is still high morbidity and mortality among these neoplasms. Cancer vaccines represent another way to activate the immune system. We sought to summarize the most recent advances in vaccine therapy for genitourinary malignancies with this review. METHODS We searched PubMed, Embase and Cochrane Database for clinical trials conducted in the last ten years, focusing on cancer vaccines in the prostate, urothelial and renal cancer. RESULTS Various therapeutic vaccines, including DNA-based, RNA-based, peptide-based, dendritic cells, viral vectors and modified tumor cells, have been demonstrated to induce specific immune responses in a variable percentage of patients. However, these responses rarely corresponded to significant survival improvements. CONCLUSIONS Further preclinical and clinical studies will improve the knowledge about cancer vaccines in genitourinary malignancies to optimize dosage, select targets with a driver role for tumor development and growth, and finally overcome resistance mechanisms. Combination strategies represent possibly more effective and long-lasting treatments.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
| | - Giovanni Schinzari
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
- Medical Oncology Unit, Comprehensive Cancer Center, Foundation A. Gemelli Policlinic IRCCS, 00168 Rome, Italy
| | - Davide Ciardiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
- Medical Oncology, Department of Precision Medicine, Luigi Vanvitelli University of Campania, 80131 Naples, Italy
| | - Maria Grazia Rodriquenz
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
| | - Antonio Cisternino
- Urology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy;
| | - Giampaolo Tortora
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
- Medical Oncology Unit, Comprehensive Cancer Center, Foundation A. Gemelli Policlinic IRCCS, 00168 Rome, Italy
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
| |
Collapse
|
17
|
Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci 2021; 277:119627. [PMID: 34004256 DOI: 10.1016/j.lfs.2021.119627] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous and poorly mature cells of innate immunity that their population is increased substantially in cancer patients. MDSCs represent three subsets including CD14+ monocytic (M), CD15+ granulocytic (G) and Lin- early precursor (e) cells. MDSCs release a number of factors that direct several tumorigenic-related events including immune evasion, angiogenesis and metastasis. Assessment of MDSCs can provide valuable information from cancer immunity state, and it can be an indicator of tumor prognosis. The cells can be targeted in combination with current immunotherapeutic schedules, and the outcomes were promising. The focus of this review is to provide an overview of MDSCs, their involvement in tumor-related immunosuppression, and their impact on cancer immunotherapy. Then, strategies are proposed to boost the power of immune system against MDSCs.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
18
|
Geng R, Wang G, Qiu L, Liu B, Yang F, Zhang J, Miao Y. Metronomic capecitabine as maintenance treatment after first line induction with XELOX for metastatic colorectal cancer patients. Medicine (Baltimore) 2020; 99:e23719. [PMID: 33371122 PMCID: PMC7748176 DOI: 10.1097/md.0000000000023719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/16/2020] [Indexed: 01/05/2023] Open
Abstract
Maintenance treatment after first-line chemotherapy for patients with metastatic colorectal cancer (mCRC) is a priority strategy. However, which medicine is chosen is controversial. This study aimed to determine the efficacy and safety of maintenance treatment with metronomic capecitabine vs observation.In this randomized controlled trial, patients who completed 18 weeks of induction chemotherapy with XELOX and achieved disease control were randomly assigned centrally (1:1) to receive maintenance therapy with metronomic chemotherapy or observation until disease progression. The primary endpoint was progression-free survival from randomization; secondary endpoints included overall survival and safety. Analyses were performed by intention to treat.Between January 1st, 2017 and December 31th 2018, 48 patients were enrolled and randomly assigned to receive maintenance treatment with metronomic capecitabine (n = 25) or only observation (n = 23). The median progression-free survival in the metronomic capecitabine group was 5.66 (95% confidence interval [CI] 5.25-6.07) months vs 3.98 (95%CI 3.71-4.24) months in the observation group (hazard ratio 0.11, 95% [CI] 0.04-0.26, P = .000). There was no statistically significant difference in median overall survival: 23.82 (95% CI 22.38-25.25) months in the metronomic capecitabine group vs 21.81 (95% CI 20.23-23.38) months in the observation group (hazard ratio 0.49, 95% CI 0.21-1.11, P = .087). Subgroup analyses were generally consistent with the primary finding. Similar safety profiles were observed in both arms. The most frequent adverse events in metronomic capecitabine group included neutropenia, diarrhea, hand-foot skin reaction, and mucositis.Maintenance therapy with metronomic capecitabine can be considered an alternative option following first-line chemotherapy of XELOX in patients with metastatic colorectal cancer with controlled toxicities.
Collapse
Affiliation(s)
- Rui Geng
- School of Public Health, Nanjing Medical University, Nanjing
| | - Gang Wang
- Department of gastrointestinal surgery, the Second People's Hospital of Lianyungang, Lianyungang
| | - Lei Qiu
- Department of gastrointestinal surgery, the Second People's Hospital of Lianyungang, Lianyungang
| | - Bing Liu
- Department of gastrointestinal oncology, the Second People's Hospital of Lianyungang, Lianyungang, China
| | - Fan Yang
- Department of gastrointestinal oncology, the Second People's Hospital of Lianyungang, Lianyungang, China
| | - Jingyu Zhang
- Department of gastrointestinal oncology, the Second People's Hospital of Lianyungang, Lianyungang, China
| | - Yongchang Miao
- Department of gastrointestinal surgery, the Second People's Hospital of Lianyungang, Lianyungang
| |
Collapse
|
19
|
Wichmann V, Eigeliene N, Saarenheimo J, Jekunen A. Recent clinical evidence on metronomic dosing in controlled clinical trials: a systematic literature review. Acta Oncol 2020; 59:775-785. [PMID: 32275176 DOI: 10.1080/0284186x.2020.1744719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Metronomic dosing is used to give continuous chemotherapy at low doses. The low doses have minimal side effects and may enable cancer treatment to be remodeled toward the management of chronic disease.Methods: We searched PubMed database to obtain relevant clinical trials studying metronomic chemotherapy (MCT). Our main focus was to find controlled phase II and phase III trials.Results: This systematic review summarizes the results of 91 clinical reports focusing on randomized phase II and phase III clinical studies between 2012 and 2018. During that time, nine randomized phase II and 10 randomized phase III studies were published. In the majority of the studies, MCT was well tolerated, and major side effects were rarely seen. Altogether, 4 phase III studies and 4 randomized phase II studies presented positive results and some clinical benefit.Discussion: Most of the studies did not show significantly improved overall survival or progression-free survival. Typically, the metronomic dosing was explored in a maintenance setup and was added to other agents given within normal high doses, whereas no trial was performed challenging metronomic dosing and best supportive care in later treatment lines. Therefore, there is no definite evidence on the efficacy of single metronomic dosing and firm evidence of metronomic dosing is still missing. There is a need for further confirmation of the usefulness of this approach in clinical practice.
Collapse
Affiliation(s)
- Viktor Wichmann
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland
| | | | - Jatta Saarenheimo
- Department of Pathology, Vasa Central Hospital, Vaasa, Finland
- Department of Biological and Environmental Science, Nano Science Center, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Jekunen
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland
- Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Suekane S, Yutani S, Yamada A, Sasada T, Matsueda S, Takamori S, Toh U, Kawano K, Yoshiyama K, Sakamoto S, Sugawara S, Komatsu N, Yamada T, Naito M, Terasaki M, Mine T, Itoh K, Shichijo S, Noguchi M. Identification of biomarkers for personalized peptide vaccination in 2,588 cancer patients. Int J Oncol 2020; 56:1479-1489. [PMID: 32236612 PMCID: PMC7170040 DOI: 10.3892/ijo.2020.5019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Peptide-based cancer vaccines have failed to provide sufficient clinical benefits in order to be approved in clinical trials since the 1990s. To understand the mechanisms underlying this failure, the present study investigated biomarkers associated with the lower overall survival (OS) among 2,588 patients receiving personalized peptide vaccination (PPV). Survival data were obtained from a database of 2,588 cancer patients including 399 patients with lung, 354 with prostate and 344 with colon cancer. They entered into phase II clinical trials of PPV in which 2 to 4 of 31 warehouse peptides were selected for vaccination on an individual patient basis based on human leukocyte antigen (HLA) class IA-types and pre-existing peptide-specific IgG levels. Higher pre-vaccination neutrophil, monocyte and platelet counts, and lower pre-vaccination lymphocyte and red blood cell counts were inversely associated with OS, with higher sensitivities in the proportions of neutrophils and lymphocytes, respectively. The most potent unfavorable and favorable factors for OS were the median percentage of neutrophils (>64.8%) or percentage of lymphocytes (>25.1%) with correlation coefficients (R2) of 0.98 and 0.92, respectively. Higher pre-vaccination levels of c-reactive protein and other inflammatory soluble factors were inversely associated with OS. Pre-vaccination peptide-specific immunity levels had no effect on OS, although lower immune boosting levels were inversely associated with OS. None of the 31 peptides was inversely associated with OS, although a few peptides were positively associated with it. On the whole, the findings of the present study suggested that pre-vaccination inflammatory signatures, but not those of post-vaccination immune induction, were associated with lower clinical benefits of PPV.
Collapse
Affiliation(s)
- Shigetaka Suekane
- Department of Urology, Kurume University School of Medicine, Kurume, Fukuoka 830‑0011, Japan
| | - Shigeru Yutani
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839‑0863, Japan
| | - Akira Yamada
- Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Tetsuro Sasada
- Cancer Vaccine Center, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Satoko Matsueda
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Shinzo Takamori
- Department of Surgery, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Uhi Toh
- Department of Surgery, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Kouichiro Kawano
- Department of Obstetrics and Gynecology, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Koichi Yoshiyama
- Department of Surgery, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine School of Medicine, Hiroshima University, Hiroshima, Hiroshima 734‑8551, Japan
| | - Shunichi Sugawara
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Miyagi 980‑0873, Japan
| | - Nobukazu Komatsu
- Department of Immunology, Kurume University School of Medicine, Kurume, Fukuoka 830‑0011, Japan
| | - Teppei Yamada
- Department of Gastroenterological Surgery, Fukuoka University School of Medicine, Fukuoka, Fukuoka 814‑0180, Japan
| | - Masayasu Naito
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839‑0863, Japan
| | | | - Takashi Mine
- Department of Clinical Oncology, Nagasaki Harbor Medical Center, Nagasaki, Nagasaki 850‑8555, Japan
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839‑0863, Japan
| | - Shigeki Shichijo
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839‑0863, Japan
| | - Masanori Noguchi
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839‑0863, Japan
| |
Collapse
|
21
|
Ma M, Liu J, Jin S, Wang L. Development of tumour peptide vaccines: From universalization to personalization. Scand J Immunol 2020; 91:e12875. [PMID: 32090366 DOI: 10.1111/sji.12875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
In recent years, relying on the human immune system to kill tumour cells has become an effective means of cancer treatment. The development of peptide vaccines, which not only break the immune tolerance of a tumour but also attack malignant cells via specific antitumour immunity, has received increased attention in tumour immunization therapy due to their safety and easy preparation. The use of large-scale sequencing technology enables the continuous discovery of new tumour antigens. With improved accuracy of epitope prediction by computer simulation and the usage of a tetramer assay, cytotoxic lymphocyte epitopes can be screened and identified more easily. Transmembrane peptide and nanoparticle technologies promote more effective intake and delivery of antigens. Consequently, considerable evolution from universal to personalized peptide vaccines has taken place, and such vaccines induce an efficient and specific immune response targeting tumour neoantigens. Recently, genomic analysis and bioinformatics approaches have greatly facilitated the breakthrough of personalized peptide vaccines targeting neoantigens, resulting in a renewed interest in this field. Further, the combination of tumour peptide vaccines with checkpoint blockades may improve patient outcomes. In this review, we discuss the development of tumour peptide vaccines and the new technological progress, from universalization to personalization, to highlight the substantial promise of tumour peptide vaccines in clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Minjun Ma
- Department of Gastrology, The First People's Hospital of Fuyang of Hangzhou, Hangzhou, China
| | - Jingwen Liu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenghang Jin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lan Wang
- Linhai Center for Disease Control and Prevention, Linhai, China
| |
Collapse
|
22
|
Laheurte C, Thiery‐Vuillemin A, Calcagno F, Legros A, Simonin H, Boullerot L, Jacquin M, Nguyen T, Mouillet G, Borg C, Adotévi O. Metronomic cyclophosphamide induces regulatory T cells depletion and PSA‐specific T cells reactivation in patients with biochemical recurrent prostate cancer. Int J Cancer 2019; 147:1199-1205. [DOI: 10.1002/ijc.32803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/12/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Caroline Laheurte
- Université de Bourgogne Franche‐Comté, INSERMEFS BFC, UMR1098, Interactions Hôte‐Greffon‐Tumeur/Ingénierie Cellulaire et Génique Besançon France
- Plateforme de BioMonitoringEtablissement Français du sang Bourgogne Franche‐Comté Besançon France
| | | | - Fabien Calcagno
- Department of Medical OncologyUniversity Hospital of Besançon Besançon France
| | - Anna Legros
- Université de Bourgogne Franche‐Comté, INSERMEFS BFC, UMR1098, Interactions Hôte‐Greffon‐Tumeur/Ingénierie Cellulaire et Génique Besançon France
- Plateforme de BioMonitoringEtablissement Français du sang Bourgogne Franche‐Comté Besançon France
| | - Harmonie Simonin
- Université de Bourgogne Franche‐Comté, INSERMEFS BFC, UMR1098, Interactions Hôte‐Greffon‐Tumeur/Ingénierie Cellulaire et Génique Besançon France
- Plateforme de BioMonitoringEtablissement Français du sang Bourgogne Franche‐Comté Besançon France
| | - Laura Boullerot
- Université de Bourgogne Franche‐Comté, INSERMEFS BFC, UMR1098, Interactions Hôte‐Greffon‐Tumeur/Ingénierie Cellulaire et Génique Besançon France
- Plateforme de BioMonitoringEtablissement Français du sang Bourgogne Franche‐Comté Besançon France
| | - Marion Jacquin
- Department of Medical OncologyUniversity Hospital of Besançon Besançon France
| | - Thierry Nguyen
- Department of Medical OncologyUniversity Hospital of Besançon Besançon France
| | - Guillaume Mouillet
- Department of Medical OncologyUniversity Hospital of Besançon Besançon France
| | - Christophe Borg
- Université de Bourgogne Franche‐Comté, INSERMEFS BFC, UMR1098, Interactions Hôte‐Greffon‐Tumeur/Ingénierie Cellulaire et Génique Besançon France
- Department of Medical OncologyUniversity Hospital of Besançon Besançon France
| | - Olivier Adotévi
- Université de Bourgogne Franche‐Comté, INSERMEFS BFC, UMR1098, Interactions Hôte‐Greffon‐Tumeur/Ingénierie Cellulaire et Génique Besançon France
- Plateforme de BioMonitoringEtablissement Français du sang Bourgogne Franche‐Comté Besançon France
- Department of Medical OncologyUniversity Hospital of Besançon Besançon France
| |
Collapse
|
23
|
Zarrabi K, Paroya A, Wu S. Emerging therapeutic agents for genitourinary cancers. J Hematol Oncol 2019; 12:89. [PMID: 31484560 PMCID: PMC6727406 DOI: 10.1186/s13045-019-0780-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
The treatment of genitourinary malignancies has dramatically evolved over recent years. Renal cell carcinoma, urothelial carcinoma of the bladder, and prostate adenocarcinoma are the most commonly encountered genitourinary malignancies and represent a heterogeneous population of cancers, in both histology and approach to treatment. However, all three cancers have undergone paradigm shifts in their respective therapeutic landscapes due to a greater understanding of their underlying molecular mechanisms and oncogenic drivers. The advance that has gained the most recent traction has been the advent of immunotherapies, particularly immune checkpoint inhibitors. Immunotherapy has increased overall survival and even provided durable responses in the metastatic setting in some patients. The early success of immune checkpoint inhibitors has led to further drug development with the emergence of novel agents which modulate the immune system within the tumor microenvironment. Notwithstanding immunotherapy, investigators are also developing novel agents tailored to a variety of targets including small-molecule tyrosine kinase inhibitors, mTOR inhibitors, and novel fusion proteins to name a few. Erdafitinib has become the first targeted therapy approved for metastatic bladder cancer. Moreover, the combination therapy of immune checkpoint inhibitors with targeted agents such as pembrolizumab or avelumab with axitinib has demonstrated both safety and efficacy and just received FDA approval for their use. We are in an era of rapid progression in drug development with multiple exciting trials and ongoing pre-clinical studies. We highlight many of the promising new emerging therapies that will likely continue to improve outcomes in patients with genitourinary malignancies.
Collapse
Affiliation(s)
- Kevin Zarrabi
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
| | - Azzam Paroya
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
| | - Shenhong Wu
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
- Division of Hematology/Oncology, Department of Medicine, Northport VA Medical Center, Northport, NY USA
| |
Collapse
|
24
|
Nakahara Y, Kouro T, Igarashi Y, Kawahara M, Sasada T. Prospects for a personalized peptide vaccine against lung cancer. Expert Rev Vaccines 2019; 18:703-709. [DOI: 10.1080/14760584.2019.1635461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yoshiro Nakahara
- Department of Respiratory Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Taku Kouro
- Department of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yuka Igarashi
- Department of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Mamoru Kawahara
- Department of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tetsuro Sasada
- Department of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine Center, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
25
|
Rossi JF, Céballos P, Lu ZY. Immune precision medicine for cancer: a novel insight based on the efficiency of immune effector cells. Cancer Commun (Lond) 2019; 39:34. [PMID: 31200766 PMCID: PMC6567551 DOI: 10.1186/s40880-019-0379-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer cell growth is associated with immune surveillance failure. Nowadays, restoring the desired immune response against cancer cells remains a major therapeutic strategy. Due to the recent advances in biological knowledge, efficient therapeutic tools have been developed to support the best bio-clinical approaches for immune precision therapy. One of the most important successes in immune therapy is represented by the applicational use of monoclonal antibodies, particularly the use of rituximab for B-cell lymphoproliferative disorders. More recently, other monoclonal antibodies have been developed, to inhibit immune checkpoints within the tumor microenvironment that limit immune suppression, or to enhance some immune functions with immune adjuvants through different targets such as Toll-receptor agonists. The aim is to inhibit cancer proliferation by the diminishing/elimination of cancer residual cells and clinically improving the response duration with no or few adverse effects. This effect is supported by enhancing the number, functions, and activity of the immune effector cells, including the natural killer (NK) lymphocytes, NKT-lymphocytes, γδ T-lymphocytes, cytotoxic T-lymphocytes, directly or indirectly through vaccines particularly with neoantigens, and by lowering the functions of the immune suppressive cells. Beyond these new therapeutics and their personalized usage, new considerations have to be taken into account, such as epigenetic regulation particularly from microbiota, evaluation of transversal functions, particularly cellular metabolism, and consideration to the clinical consequences at the body level. The aim of this review is to discuss some practical aspects of immune therapy, giving to clinicians the concept of immune effector cells balancing between control and tolerance. Immunological precision medicine is a combination of modern biological knowledge and clinical therapeutic decisions in a global vision of the patient.
Collapse
Affiliation(s)
- Jean-François Rossi
- Institut Sainte Catherine, 84918, Avignon, France. .,Université Montpellier 1, UFR Médecine, 34396, Montpellier, France. .,Département d'Hématologie, CHU de Montpellier, 34295, Montpellier, France.
| | - Patrice Céballos
- Département d'Hématologie, CHU de Montpellier, 34295, Montpellier, France
| | - Zhao-Yang Lu
- Unité de Thérapie Cellulaire, CHU Saint-Eloi, 34295, Montpellier, France
| |
Collapse
|
26
|
Hossain MK, Nahar K, Donkor O, Apostolopoulos V. Immune-based therapies for metastatic prostate cancer: an update. Immunotherapy 2019; 10:283-298. [PMID: 29421982 DOI: 10.2217/imt-2017-0123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer (PC) is a common malignancy among elderly males and is noncurable once it becomes metastatic. In recent years, a number of antigen-delivery systems have emerged as viable and promising immunotherapeutic agents against PC. The approval of sipuleucel-T by the US FDA for the treatment of males with asymptomatic or minimally symptomatic castrate resistant PC was a landmark in cancer immunotherapy, making this the first approved immunotherapeutic. A number of vaccines are under clinical investigation, each having its own set of advantages and disadvantages. Here, we discuss the basic technologies underlying these different delivery modes, we discuss the completed and current human clinical trials, as well as the use of vaccines in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Kamrun Nahar
- Vetafarm Pty Ltd, Wagga Wagga, NSW, 2650, Australia
| | - Osaana Donkor
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Australia
| |
Collapse
|
27
|
Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol 2019; 9:3176. [PMID: 30719026 PMCID: PMC6348254 DOI: 10.3389/fimmu.2018.03176] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells, uniquely able to induce naïve T cell activation and effector differentiation. They are, likewise, involved in the induction and maintenance of immune tolerance in homeostatic conditions. Their phenotypic and functional heterogeneity points to their great plasticity and ability to modulate, according to their microenvironment, the acquired immune response and, at the same time, makes their precise classification complex and frequently subject to reviews and improvement. This review will present general aspects of the DC physiology and classification and will address their potential and actual uses in the management of human disease, more specifically cancer, as therapeutic and monitoring tools. New combination treatments with the participation of DC will be also discussed.
Collapse
Affiliation(s)
- Thiago A Patente
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana P Pinho
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline A Oliveira
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela C M Evangelista
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patrícia C Bergami-Santos
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José A M Barbuto
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Discipline of Molecular Medicine, Department of Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Abstract
There have been a number of recent developments in the treatment of castration-resistant prostate cancer which seek to exploit the hormonal axis. Still, the castration-resistant prostate cancer remains a major challenge since this is the lethal and incurable phenotype which results in tens of thousands of deaths every year. There has been emerging interest in utilizing anticancer immunotherapy in prostate cancer, especially since the development of sipuleucel-T. Several other prostate cancer therapeutic vaccines including autologous and allogeneic vaccines, as well as viral vector-based vaccines, have demonstrated promising results in early trials. The checkpoint inhibitors which have shown some dramatic results in other cancers are now being studied in advanced prostate cancer setting. Studies are examining the therapeutic effects for both CTLA-4 inhibitors and PD-1/PD-L1 inhibitors. It appears that definitions and measurements of response used in cytotoxic therapies may not be valid in determining response to immunotherapy. Early reports suggest that combination therapies, either concurrent or sequential, may be needed to achieve the desired response against advanced prostate cancer.
Collapse
Affiliation(s)
- Adam Schatz
- Division of Urology, Albany Medical College, Albany, NY 12054, USA
| | - Badar M Mian
- Division of Urology, Albany Medical College, Albany, NY 12054, USA
| |
Collapse
|
29
|
Laber DA, Chen MB, Jaglal M, Patel A, Visweshwar N. Phase 2 Study of Cyclophosphamide, Etoposide, and Estramustine in Patients With Castration-Resistant Prostate Cancer. Clin Genitourin Cancer 2018; 16:473-481. [DOI: 10.1016/j.clgc.2018.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/15/2022]
|
30
|
Noguchi M, Koga N, Moriya F, Suekane S, Yutani S, Yamada A, Shichijo S, Kakuma T, Itoh K. Survival analysis of multiple peptide vaccination for the selection of correlated peptides in urological cancers. Cancer Sci 2018; 109:2660-2669. [PMID: 29938870 PMCID: PMC6277968 DOI: 10.1111/cas.13709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/16/2018] [Indexed: 12/24/2022] Open
Abstract
Peptide‐based cancer vaccines are able to induce strong immune responses, but their clinical results are unsatisfactory. To determine clinically correlated peptides, we analyzed survival data from urological cancer patients treated by personalized peptide vaccination (PPV), in which different multiple peptides were used for individual patients based on human leukocyte antigen (HLA) type and pre‐existing immunity. Survival data were obtained from a database of 265 urological cancer patients treated in 5 clinical PPV trials comprising 154 patients with castration‐resistant prostate cancer (CRPC) and 111 patients with advanced urothelial cancer (UC). Expression of tumor‐associated antigens (TAA) was evaluated in 10 prostate cancer tissues, 4 metastatic lymph nodes from prostate cancer, and 10 UC tissues using immunohistochemical staining. Clinical efficacy of individual peptides for overall survival was evaluated by the Cox proportional hazards regression model. All TAA coding candidate peptides used in PPV treatment were expressed in tumor cells from prostate cancer and UC samples except for p56Lck in both, and prostate‐specific antigen (PSA), prostatic acid phosphatase (PAP) and prostate‐specific membrane antigen (PSMA) in the UC samples. Patients with the following peptides had a significantly longer survival than patients without the peptides (hazard ratio <1.0, 95% confidence intervals <1.0 and P < .05): SART3‐109, PTHrP‐102, HNPRL‐140, SART3‐302 and Lck‐90 in CRPC patients, and EGF‐R‐800, Lck‐486, PSMA‐624, CypB‐129 and SART3‐734 in advanced UC patients, respectively. Correlated peptides selected using both survival data and pre‐existing immunity for PPV treatment may enhance the clinical benefits for urological cancer patients.
Collapse
Affiliation(s)
- Masanori Noguchi
- Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan
| | - Noriko Koga
- Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan
| | - Fukuko Moriya
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Shigetaka Suekane
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Shigeru Yutani
- Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan
| | - Akira Yamada
- Division of Cancer Vaccines in Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume, Japan
| | - Shigeki Shichijo
- Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan
| | - Tatuyuki Kakuma
- Bio-statistics Center, Kurume University School of Medicine, Kurume, Japan
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Metastatic castration-resistant prostate cancer is in critical need of new and innovative treatment strategies. Since the approval of sipuleucel-T, the investigatory climate of prostate cancer immunotherapy has been rapidly evolving with promising developments in vaccine and immune checkpoint therapies. RECENT FINDINGS Sipuleucel-T remains the first and only therapeutic cancer vaccine approved for its survival benefit in metastatic castration-resistant prostate cancer. Additional cancer vaccines are currently being evaluated, with the most promising being a peptide vaccine encoding prostate-specific antigen, known as prostate-specific antigen-TRICOM. Emerging data supports combinatorial strategies for vaccine therapy and a potential role for implementation in earlier stages of advanced disease. Immune checkpoint therapies have demonstrated limited success in prostate cancer with negative late phase trials for ipilimumab monotherapy and discouraging early phase results for programmed cell death protein 1 blockade. Novel immune-modulatory targets and rational combination strategies aim to produce more favorable results. Recent progress has been made to determine biologic predictors for response and toxicity in prostate cancer immunotherapy aiming to improve patient selection and safety. SUMMARY Steady progress is anticipated in the field of prostate cancer immunotherapy including ongoing development of novel cancer vaccines, immune checkpoint therapies, and combinatorial strategies.
Collapse
|
32
|
Correlates of immune and clinical activity of novel cancer vaccines. Semin Immunol 2018; 39:119-136. [PMID: 29709421 DOI: 10.1016/j.smim.2018.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Cancer vaccines are solely meant to amplify the pool of type 1 cytokine oriented CD4+ and CD8+ T cells that recognize tumor antigen and ultimately foster control and destruction of a growing tumor. They are not designed to deal with all aspects of immune ignorance, exclusion, suppression and escape that are generally in place in patients with cancer and may prevent the T cells to enter the tumor or to exert their effector function. This simple fact prompted for a reappraisal of the many recent trials in which therapeutic cancer vaccines have been examined as monotherapy. In this review, I focus on trials examining therapeutic cancer vaccines at different stages of existing disease. The analysis of vaccine-induced immune responses and clinical activity of therapeutic cancer vaccines revealed four levels of evidence for vaccine efficacy. The lowest levels, reflect the many trials in which the strength of the tumor-reactive T cell response of vaccinated patients is associated with better clinical outcome or change in tumor marker. The highest levels indicate occasional regressions of tumors and metastases after vaccination or reflect a stronger clinical impact of vaccine in a randomized trial. A whole series of trials in which vaccine-induced tumor immunity correlates with the clinical impact of cancer vaccines in premalignant diseases, settings of low tumor burden or tumor regressions in patients with cancer, form an attest to the fact that cancer vaccines work. While the current number of true clinical responders in each cancer trial is too low for firm conclusions on immune correlates of clinical reactivity in cancer, extrapolation of the results from vaccinated patients with pre-cancers suggest a requirement of broad type 1 T cell reactivity.
Collapse
|
33
|
Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, Baumgartner P, Stevenson BJ, Iseli C, Dangaj D, Czerniecki B, Semilietof A, Racle J, Michel A, Xenarios I, Chiang C, Monos DS, Torigian DA, Nisenbaum HL, Michielin O, June CH, Levine BL, Powell DJ, Gfeller D, Mick R, Dafni U, Zoete V, Harari A, Coukos G, Kandalaft LE. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med 2018; 10:10/436/eaao5931. [DOI: 10.1126/scitranslmed.aao5931] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
We conducted a pilot clinical trial testing a personalized vaccine generated by autologous dendritic cells (DCs) pulsed with oxidized autologous whole-tumor cell lysate (OCDC), which was injected intranodally in platinum-treated, immunotherapy-naïve, recurrent ovarian cancer patients. OCDC was administered alone (cohort 1, n = 5), in combination with bevacizumab (cohort 2, n = 10), or bevacizumab plus low-dose intravenous cyclophosphamide (cohort 3, n = 10) until disease progression or vaccine exhaustion. A total of 392 vaccine doses were administered without serious adverse events. Vaccination induced T cell responses to autologous tumor antigen, which were associated with significantly prolonged survival. Vaccination also amplified T cell responses against mutated neoepitopes derived from nonsynonymous somatic tumor mutations, and this included priming of T cells against previously unrecognized neoepitopes, as well as novel T cell clones of markedly higher avidity against previously recognized neoepitopes. We conclude that the use of oxidized whole-tumor lysate DC vaccine is safe and effective in eliciting a broad antitumor immunity, including private neoantigens, and warrants further clinical testing.
Collapse
|
34
|
Grenier JM, Yeung ST, Khanna KM. Combination Immunotherapy: Taking Cancer Vaccines to the Next Level. Front Immunol 2018; 9:610. [PMID: 29623082 PMCID: PMC5874308 DOI: 10.3389/fimmu.2018.00610] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
With the advent of checkpoint blockade therapies, immunotherapy is now a critical modality for the treatment of some cancers. While some patients respond well to checkpoint blockade, many do not, necessitating the need for other forms of therapy. Vaccination against malignancy has been a long sought goal of science. For cancers holding a microbial etiology, vaccination has been highly effective in reducing the incidence of disease. However, vaccination against established malignancy has been largely disappointing. In this review, we discuss efforts to develop diverse vaccine modalities in the treatment of cancer with a particular focus on melanoma. Recent work has suggested that vaccines targeting patient-specific tumor mutations may be more relevant than those targeting unmutated proteins. Nonetheless, tumor cells utilize many strategies to evade host immunity. It is likely that the full potential of cancer vaccination will only be realized when vaccines are combined with other therapies targeting tumor immunoevasive mechanisms. By modulating inhibitory molecules, regulatory immune cells, and the metabolic resources and demands of T cells, scientists and clinicians can ensure vaccine-stimulated T cells are fully functional within the immunosuppressive tumor microevironment.
Collapse
Affiliation(s)
- Jeremy M Grenier
- Department of Immunology, University of Connecticut Health, Farmington, CT, United States
| | - Stephen T Yeung
- Department of Microbiology, New York University Langone School of Medicine, New York, NY, United States
| | - Kamal M Khanna
- Department of Immunology, University of Connecticut Health, Farmington, CT, United States.,Department of Microbiology, New York University Langone School of Medicine, New York, NY, United States.,Perlmutter Cancer Center, New York University Langone Health, New York, NY, United States
| |
Collapse
|
35
|
Phase I/II Trial of Combined Pegylated Liposomal Doxorubicin and Cyclophosphamide in Metastatic Breast Cancer. Clin Breast Cancer 2018; 18:e143-e149. [DOI: 10.1016/j.clbc.2017.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/08/2017] [Accepted: 10/01/2017] [Indexed: 12/29/2022]
|
36
|
Affiliation(s)
- John C. Henegan
- Division of Hematology and Oncology, Department of Medicine, University of Mississippi Cancer Center, Jackson, MS, USA
| | - Guru Sonpavde
- Department of Medical Oncology, GU section, Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
37
|
Neek M, Tucker JA, Kim TI, Molino NM, Nelson EL, Wang SW. Co-delivery of human cancer-testis antigens with adjuvant in protein nanoparticles induces higher cell-mediated immune responses. Biomaterials 2017; 156:194-203. [PMID: 29202325 DOI: 10.1016/j.biomaterials.2017.11.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/07/2017] [Accepted: 11/19/2017] [Indexed: 12/19/2022]
Abstract
Nanoparticles have attracted considerable interest as cancer vaccine delivery vehicles for inducing sufficient CD8+ T cell-mediated immune responses to overcome the low immunogenicity of the tumor microenvironment. Our studies described here are the first to examine the effects of clinically-tested human cancer-testis (CT) peptide epitopes within a synthetic nanoparticle. Specifically, we focused on two significant clinical CT targets, the HLA-A2 restricted epitopes of NY-ESO-1 and MAGE-A3, using a viral-mimetic packaging strategy. Our data shows that simultaneous delivery of a NY-ESO-1 epitope (SLLMWITQV) and CpG using the E2 subunit assembly of pyruvate dehydrogenase (E2 nanoparticle), resulted in a 25-fold increase in specific IFN-γ secretion in HLA-A2 transgenic mice. This translated to a 15-fold increase in lytic activity toward target cancer cells expressing the antigen. Immunization with a MAGE-A3 epitope (FLWGPRALV) delivered with CpG in E2 nanoparticles yielded an increase in specific IFN-γ secretion and cell lysis by 6-fold and 9-fold, respectively. Furthermore, combined delivery of NY-ESO-1 and MAGE-A3 antigens in E2 nanoparticles yielded an additive effect that increased lytic activity towards cells bearing NY-ESO-1+ and MAGE-A3+. Our investigations demonstrate that formulation of CT antigens within a nanoparticle can significantly enhance antigen-specific cell-mediated responses, and the combination of the two antigens in a vaccine can preserve the increased individual responses that are observed for each antigen alone.
Collapse
Affiliation(s)
- Medea Neek
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| | - Jo Anne Tucker
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Tae Il Kim
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Nicholas M Molino
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| | - Edward L Nelson
- Department of Medicine, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, CA 92697, USA
| | - Szu-Wen Wang
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
38
|
Wada S, Yada E, Ohtake J, Sasada T. Personalized peptide vaccines for cancer therapy: current progress and state of the art. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1403286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Satoshi Wada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Erica Yada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Junya Ohtake
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Tetsuro Sasada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| |
Collapse
|
39
|
Koga N, Moriya F, Waki K, Yamada A, Itoh K, Noguchi M. Immunological efficacy of herbal medicines in prostate cancer patients treated by personalized peptide vaccine. Cancer Sci 2017; 108:2326-2332. [PMID: 28898532 PMCID: PMC5715291 DOI: 10.1111/cas.13397] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022] Open
Abstract
This randomized phase II study investigated the immunological efficacy of herbal medicines (HM) using Hochu‐ekki‐to and Keishi‐bukuryo‐gan in combination with personalized peptide vaccination (PPV) for castration‐resistant prostate cancer (CRPC). Seventy patients with CRPC were assigned to two arms; PPV plus HM or PPV alone. Two to four peptides were chosen from 31 peptides derived from cancer antigens for a s.c. injection of PPV given eight times according to the patient's human leukocyte antigen type and levels of antigen‐specific IgG titer before PPV treatment. Peptide‐specific CTL, IgG, regulatory T cells (Treg), monocytic myeloid‐derived suppressor cells (Mo‐MDSC), and interleukin‐6 (IL‐6) responses were measured before and at the eighth vaccination. Clinical outcomes were also analyzed. Combination therapy of PPV with HM was well tolerated without severe adverse events. There was no significant change in antigen‐specific IgG, CTL, Treg or clinical outcomes. Combination therapy of PPV with HM stabilized the frequency of Mo‐MDSC (1.91%–1.92%, P = 0.96) and serum levels of IL‐6 (19.2 pg/mL to 16.1 pg/mL, P = 0.63) during the treatment. In contrast, the frequency of Mo‐MDSC and levels of IL‐6 in the PPV‐alone group were significantly increased (0.91%–1.49% for Mo‐MDSC and 9.2 pg/mL to 19.4 pg/mL for IL‐6, respectively). These results suggest that the combined use of HM has the potential to prevent the immunosuppression induced by Mo‐MDSC or IL‐6 during immunotherapy. More research is needed to validate the findings of the present study.
Collapse
Affiliation(s)
- Noriko Koga
- Division of Clinical Research, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume, Japan
| | - Fukuko Moriya
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kayoko Waki
- Division of Cancer Vaccines, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume, Japan
| | - Akira Yamada
- Division of Cancer Vaccines, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume, Japan
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Noguchi
- Division of Clinical Research, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume, Japan.,Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan.,Department of Urology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
40
|
Fecek RJ, Storkus WJ. Combination strategies to enhance the potency of monocyte-derived dendritic cell-based cancer vaccines. Immunotherapy 2017; 8:1205-18. [PMID: 27605069 DOI: 10.2217/imt-2016-0071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are potent inducers of adaptive immunity and their clinical use in cancer vaccine formulations remains an area of active translational and clinical investigation. Although cancer vaccines applied as monotherapies have had a modest history of clinical success, there is great enthusiasm for novel therapeutic strategies combining DC-based cancer vaccines with agents that 'normalize' immune function in the tumor microenvironment (TME). Broadly, these combination vaccines are designed to antagonize/remove immunosuppressive networks within the TME that serve to limit the antitumor action of vaccine-induced T cells and/or to condition the TME to facilitate the recruitment and optimal function and durability of vaccine-induced T cells. Such combination regimens are expected to dramatically enhance the clinical potency of DC-based cancer vaccine platforms.
Collapse
Affiliation(s)
- Ronald J Fecek
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Walter J Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Immunology, University of Pittsburgh School of Medicine, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, PA, USA.,Department of Bioengineering, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| |
Collapse
|
41
|
Takahashi Y, Matsutani N, Nakayama T, Dejima H, Uehara H, Kawamura M. Immunological effect of local ablation combined with immunotherapy on solid malignancies. CHINESE JOURNAL OF CANCER 2017; 36:49. [PMID: 28592286 PMCID: PMC5463413 DOI: 10.1186/s40880-017-0216-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Recent comprehensive investigations clarified that immune microenvironment surrounding tumor cells are deeply involved in tumor progression, metastasis, and response to treatment. Furthermore, several immunotherapeutic trials have achieved successful results, and the immunotherapeutic agents are available in clinical practice. To enhance their demonstrated efficacy, combination of immunotherapy and ablation has begun to emerge. Local ablations have considerable advantages as an alternative therapeutic option, especially its minimal invasiveness. In addition, local ablations have shown immune-regulatory effect in preclinical and clinical studies. Although the corresponding mechanisms are still unclear, the local ablations combined with immunotherapy have been suggested in the treatment of several solid malignancies. This article aims to review the published data on the immune-regulatory effects of local ablations including stereotactic body radiotherapy, cryoablation, radiofrequency ablation, and high-intensity-focused ultrasound. We also discuss the value of local ablations combined with immunotherapy. Local ablations have the potential to improve future patient outcomes; however, the effectiveness and safety of local ablations combined with immunotherapy should be further investigated.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan.
| | - Noriyuki Matsutani
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Takashi Nakayama
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hitoshi Dejima
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hirofumi Uehara
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Masafumi Kawamura
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| |
Collapse
|
42
|
Personalized peptide vaccines and their relation to other therapies in urological cancer. Nat Rev Urol 2017; 14:501-510. [DOI: 10.1038/nrurol.2017.77] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Shirahama T, Muroya D, Matsueda S, Yamada A, Shichijo S, Naito M, Yamashita T, Sakamoto S, Okuda K, Itoh K, Sasada T, Yutani S. A randomized phase II trial of personalized peptide vaccine with low dose cyclophosphamide in biliary tract cancer. Cancer Sci 2017; 108:838-845. [PMID: 28188670 PMCID: PMC5448649 DOI: 10.1111/cas.13193] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/01/2023] Open
Abstract
Since the prognosis of advanced biliary tract cancer (aBTC) still remains very poor, new therapeutic approaches, including immunotherapies, need to be developed. In the current study, we conducted an open‐label randomized phase II study to test whether low dose cyclophosphamide (CPA) could improve antigen‐specific immune responses and clinical efficacy of personalized peptide vaccination (PPV) in 49 previously treated aBTC patients. Patients with aBTC refractory to at least one regimen of chemotherapies were randomly assigned to receive PPV with low dose CPA (100 mg/day for 7 days before vaccination) (PPV/CPA, n = 24) or PPV alone (n = 25). A maximum of four HLA‐matched peptides were selected based on the pre‐existing peptide‐specific IgG responses, followed by subcutaneous administration. T cell responses to the vaccinated peptides in the PPV/CPA arm tended to be greater than those in the PPV alone arm. The PPV/CPA arm showed significantly better progression‐free survival (median time: 6.1 vs 2.9 months; hazard ratio (HR): 0.427; P = 0.008) and overall survival (median time: 12.1 vs 5.9 months; HR: 0.376; P = 0.004), compared to the PPV alone arm. The PPV alone arm, but not the PPV/CPA arm, showed significant increase in plasma IL‐6 after vaccinations, which might be associated with inhibition of antigen‐specific T cell responses. These results suggested that combined treatment with low dose CPA could provide clinical benefits in aBTC patients under PPV, possibly through prevention of IL‐6‐mediated immune suppression. Further clinical studies would be recommended to clarify the clinical efficacy of PPV/CPA in aBTC patients.
Collapse
Affiliation(s)
- Takahisa Shirahama
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Daisuke Muroya
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | | | - Akira Yamada
- Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | | | | | - Takuto Yamashita
- Department of Biostatistics Center, Kurume University School of Medicine, Kurume, Japan
| | - Shinjiro Sakamoto
- Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan.,Department of Molecular and Internal Medicine School of Medicine, Hiroshima University, Hiroshima, Japan
| | - Koji Okuda
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University, Kurume, Japan
| | - Tetsuro Sasada
- Cancer Vaccine Center, Kurume University, Kurume, Japan.,Cancer Vaccine Center, Kanagawa Cancer Center, Yokohama, Japan
| | | |
Collapse
|
44
|
Maia MC, Hansen AR. A comprehensive review of immunotherapies in prostate cancer. Crit Rev Oncol Hematol 2017; 113:292-303. [PMID: 28427519 DOI: 10.1016/j.critrevonc.2017.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/21/2023] Open
Abstract
Prostate cancer is the second most common malignant neoplasm in men worldwide and the fifth cause of cancer-related death. Although multiple new agents have been approved for metastatic castration resistant prostate cancer over the last decade, it is still an incurable disease. New strategies to improve cancer control are needed and agents targeting the immune system have shown encouraging results in many tumor types. Despite being attractive for immunotherapies due to the expression of various tumor associated antigens, the microenvironment in prostate cancer is relatively immunosuppressive and may be responsible for the failures of various agents targeting the immune system in this disease. To date, sipuleucel-T is the only immunotherapy that has shown significant clinical efficacy in this setting, although the high cost and potential trial flaws have precluded its widespread incorporation into clinical practice. Issues with patient selection and trial design may have contributed to the multiple failures of immunotherapy in prostate cancer and provides an opportunity to tailor future studies to evaluate these agents more accurately. We have reviewed all the completed immune therapy trials in prostate cancer and highlight important considerations for the next generation of clinical trials.
Collapse
Affiliation(s)
- Manuel Caitano Maia
- Department of Medical Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), Av. Dr Arnaldo, 251, Cerqueira César, CEP 01246-000, São Paulo, Brazil.
| | - Aaron R Hansen
- Department of Medical Oncology and Hematology, Princess Margaret Hospital, 610 University Ave, Toronto, ON, Canada; Department of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Cir#3172, Toronto, ON, Canada
| |
Collapse
|
45
|
Kerbel RS, Shaked Y. The potential clinical promise of 'multimodality' metronomic chemotherapy revealed by preclinical studies of metastatic disease. Cancer Lett 2017; 400:293-304. [PMID: 28202353 DOI: 10.1016/j.canlet.2017.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/04/2017] [Indexed: 12/24/2022]
Abstract
We present a rationale for further clinical development and assessment of metronomic chemotherapy on the basis of unexpected results obtained in translational mouse models of cancer involving treatment of advanced metastatic disease. Historically, mouse cancer therapy models have been dominated by treating established primary tumors or early stage low volume microscopic disease. Treatment of primary tumors is also almost always the case when using genetically engineered mouse models (GEMMs) of cancer or patient-derived xenografts (PDXs). Studies using such models, and others including transplanted cell lines, often yield highly encouraging results which are seldom recapitulated in the clinic, especially when assessed in randomized phase III clinical trials. While there are likely many different reasons for this discrepancy, one is likely the failure to recapitulate treatment of advanced visceral metastatic disease in mice. With this gap in mind, we have developed a number of models of metastatic human tumor xenografts (and more recently, of mouse tumors in syngeneic immunocompetent mice). A pattern of response we have observed with various targeted agents, e.g. VEGF pathway targeting antiangiogenic drugs or trastuzumab, is effective when treating primary tumors in contrast to a complete or severely reduced lack of such efficacy when treating advanced metastatic disease. Interestingly, an exception to this pattern has been observed using various continuous low-dose metronomic chemotherapy regimens, where counterintuitively, superior responses are observed in the metastatic setting, as well as superiority or equivalence of metronomic chemotherapy over standard maximum tolerated dose (MTD) chemotherapy, with lesser toxicity. The basis for these encouraging results may be related to the multiple mechanisms responsible for the anti-tumor effects and longer duration of metronomic chemotherapy regimens made possible by lesser toxicity. These include antiangiogenesis, stimulation of the immune system, stromal cell targeting in tumors, and possibly direct tumor cell targeting, including targeting cancer stem cells (CSCs). In addition, metronomic chemotherapy regimens minimize or even eliminate the problem of chemotherapy-induced host responses that may actually secondarily promote tumor growth and malignancy after causing an initial and beneficial anti-tumor response. We suggest that future preclinical studies of metronomic chemotherapy should be concentrated in the following areas: i) further comparative assessment of anti-tumor efficacy in primary vs metastatic treatment settings; ii) rigorous comparative assessment of conventional MTD chemotherapy vs metronomic chemotherapy using the same agent; iii) assessment of potential predictive biomarkers for metronomic chemotherapy, and methods to determine optimal biologic dose and schedule; and iv) a further detailed assessment of the potential of different chemotherapy drugs administered using MTD or metronomic regimens on stimulating or suppressing components of the innate or adaptive immune systems.
Collapse
Affiliation(s)
- Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Canada.
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Israel
| |
Collapse
|
46
|
Eckert F, Gaipl U, Niedermann G, Hettich M, Schilbach K, Huber S, Zips D. Beyond checkpoint inhibition - Immunotherapeutical strategies in combination with radiation. Clin Transl Radiat Oncol 2017; 2:29-35. [PMID: 29657997 PMCID: PMC5893529 DOI: 10.1016/j.ctro.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
The revival of cancer immunotherapy has taken place with the clinical success of immune checkpoint inhibition. However, the spectrum of immunotherapeutic approaches is much broader encompassing T cell engaging strategies, tumour-specific vaccination, antibodies or immunocytokines. This review focuses on the immunological effects of irradiation and the evidence available on combination strategies with immunotherapy. The available data suggest great potential of combined treatments, yet also poses questions about dose, fractionation, timing and most promising multimodal strategies.
Collapse
Key Words
- Bispecific antibodies
- CAR, chimeric antigen receptor
- CAR-T-cells
- CDN, cyclic dinucleotides
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- GM-CSF, granulocyte-monocyte colony stimulating factor
- IR, irradiation
- Immunocytokines
- Immunotherapy
- PD-1, Programmed cell death protein 1 receptor
- PD-L1, PD-1 ligand
- Radiotherapy
- TCR, T cell receptor
- Treg, regulatory T cells
- Vaccination
- bsAb, bispecific antibody
- scFv, single chain variable fragment
Collapse
Affiliation(s)
- F. Eckert
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - U.S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - G. Niedermann
- Department of Radiation Oncology, Medical Center – University of Freiburg, Freiburg, Germany
| | - M. Hettich
- Department of Radiation Oncology, Medical Center – University of Freiburg, Freiburg, Germany
| | - K. Schilbach
- Department of General Pediatrics/Pediatric Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - S.M. Huber
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - D. Zips
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| |
Collapse
|
47
|
Suzuki N, Hazama S, Iguchi H, Uesugi K, Tanaka H, Hirakawa K, Aruga A, Hatori T, Ishizaki H, Umeda Y, Fujiwara T, Ikemoto T, Shimada M, Yoshimatsu K, Shimizu R, Hayashi H, Sakata K, Takenouchi H, Matsui H, Shindo Y, Iida M, Koki Y, Arima H, Furukawa H, Ueno T, Yoshino S, Nakamura Y, Oka M, Nagano H. Phase II clinical trial of peptide cocktail therapy for patients with advanced pancreatic cancer: VENUS-PC study. Cancer Sci 2017; 108:73-80. [PMID: 27783849 PMCID: PMC5276830 DOI: 10.1111/cas.13113] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022] Open
Abstract
We previously conducted a phase I clinical trial combining the HLA-A*2402-restricted KIF20A-derived peptide vaccine with gemcitabine for advanced pancreatic cancer (PC) and confirmed its safety and immunogenicity in cancer patients. In this study, we conducted a multicenter, single-armed, phase II trial using two antiangiogenic cancer vaccines targeting VEGFR1 and VEGFR2 in addition to the KIF20A peptide. We attempted to evaluate the clinical benefit of the cancer vaccination in combination with gemcitabine. Chemotherapy naïve PC patients were enrolled to evaluate primarily the 1-year survival rate, and secondarily overall survival (OS), progression free survival (PFS), response rate (RR), disease control rate (DCR) and the peptide-specific immune responses. All enrolled patients received therapy without the HLA-A information, and the HLA genotypes were used for classification of the patients. Between June 2012 and May 2013, a total of 68 patients were enrolled. No severe systemic adverse effects of Grade 3 or higher related to these three peptides were observed. The 1-year survival rates between the HLA-A*2402-matched and -unmatched groups were not significantly different. In the HLA-A*2402 matched group, patients showing peptide-specific CTL induction for KIF20A or VEGFR1 showed a better prognosis compared to those without such induction (P = 0.023, P = 0.009, respectively). In the HLA-A*2402-matched group, the patients who showed a strong injection site reaction had a better survival rate (P = 0.017) compared to those with a weak or no injection site reaction. This phase II study demonstrated that this therapeutic peptide cocktail might be effective in patients who demonstrate peptide-specific immune reactions although predictive biomarkers are needed for patient selection in its further clinical application.
Collapse
Affiliation(s)
- Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Haruo Iguchi
- Clinical Research CenterShikoku Cancer Center, NHOMatsuyamaJapan
| | - Kazuhiro Uesugi
- Clinical Research CenterShikoku Cancer Center, NHOMatsuyamaJapan
| | - Hiroaki Tanaka
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Kosei Hirakawa
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Atsushi Aruga
- Institute of GastroenterologyTokyo Women's Medical UniversityTokyoJapan
| | - Takashi Hatori
- Institute of GastroenterologyTokyo Women's Medical UniversityTokyoJapan
| | - Hidenobu Ishizaki
- Department of Surgical Oncology and Regulation of Organ FunctionMiyazaki University School of MedicineMiyazakiJapan
| | - Yuzo Umeda
- Department of Gastroenterological SurgeryOkayama University Graduate School of MedicineOkayamaJapan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological SurgeryOkayama University Graduate School of MedicineOkayamaJapan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant SurgeryTokushima University Graduate School of MedicineTokushimaJapan
| | - Mitsuo Shimada
- Department of Digestive and Transplant SurgeryTokushima University Graduate School of MedicineTokushimaJapan
| | - Kazuhiko Yoshimatsu
- Department of SurgeryTokyo Women's Medical University Medical Center EastTokyoJapan
| | - Ryoichi Shimizu
- Department of SurgeryOgori Dai‐ichi General HospitalYamaguchiJapan
| | - Hiroto Hayashi
- Department of SurgeryKanmon Medical Center, NHOShimonosekiJapan
| | - Koichiro Sakata
- Department of SurgeryShimonoseki Medical Center, JCHOShimonosekiJapan
| | - Hiroko Takenouchi
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Yasunobu Koki
- Department of PharmacyYamaguchi University HospitalUbeJapan
| | - Hideki Arima
- Department of PharmacyYamaguchi University HospitalUbeJapan
| | | | - Tomio Ueno
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Shigefumi Yoshino
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Yusuke Nakamura
- Section of Hematology/OncologyDepartment of MedicineThe University of ChicagoChicagoIllinoisUSA
| | | | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
48
|
Biziota E, Mavroeidis L, Hatzimichael E, Pappas P. Metronomic chemotherapy: A potent macerator of cancer by inducing angiogenesis suppression and antitumor immune activation. Cancer Lett 2016; 400:243-251. [PMID: 28017892 DOI: 10.1016/j.canlet.2016.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Metronomic chemotherapy is a low dosing treatment strategy that attracts growing scientific and clinical interest. It refers to dense and uninterrupted administration of low doses of chemotherapeutic agents (without prolonged drug free intervals) over extended periods of time. Cancer chemotherapy is conventionally given in cycles of maximum tolerated doses (MTD) with the aim of inducing maximum cancer cell apoptosis. In contrast, the primary target of metronomic chemotherapy is the tumor's neovasculature. This is relevant to the emerging concept that tumors exist in a complex microenvironment of cancer cells, stromal cells and supporting vessels. In addition to its anti-angiogenetic properties, metronomic chemotherapy halts tumor growth by activating anti-tumor immunity, thus decreasing the acquired resistance to conventional chemotherapy. Herein, we present a review of the literature that provides a scientific basis for the merits of chemotherapy when administered on a metronomic schedule.
Collapse
Affiliation(s)
- Eirini Biziota
- Department of Medical Oncology, University Hospital of Evros, Alexandroupolis, 68 100, Greece.
| | - Leonidas Mavroeidis
- Department of Pharmacology, Faculty of Medicine, School of Life Sciences, University of Ioannina, Ioannina, 451 10, Greece.
| | | | - Periklis Pappas
- Department of Pharmacology, Faculty of Medicine, School of Life Sciences, University of Ioannina, Ioannina, 451 10, Greece.
| |
Collapse
|
49
|
Wada S, Yada E, Ohtake J, Fujimoto Y, Uchiyama H, Yoshida S, Sasada T. Current status and future prospects of peptide-based cancer vaccines. Immunotherapy 2016; 8:1321-1333. [PMID: 27993087 DOI: 10.2217/imt-2016-0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy has attracted attention worldwide owing to the recent development of immune checkpoint inhibitors. However, these therapies have shown limited efficacy, and further advancements are needed before these modalities can progress to widespread use. Immune checkpoint inhibitors are a type of nonspecific cancer immunotherapy, and antitumor effects are only observed when cancer-specific T cells are found within the nonspecifically activated T-cell group. In order to facilitate the development of potent immunotherapies, selective enhancement of cancer-specific T cells is essential. In this report, we discuss current and future perspectives, including the latest clinical trials of cancer-specific immunotherapies, particularly cancer peptide vaccines.
Collapse
Affiliation(s)
- Satoshi Wada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Erika Yada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Junya Ohtake
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Yuki Fujimoto
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Hidemi Uchiyama
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Shintaro Yoshida
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| |
Collapse
|
50
|
Kitahara M, Hazama S, Tsunedomi R, Takenouchi H, Kanekiyo S, Inoue Y, Nakajima M, Tomochika S, Tokuhisa Y, Iida M, Sakamoto K, Suzuki N, Takeda S, Ueno T, Yamamoto S, Yoshino S, Nagano H. Prediction of the efficacy of immunotherapy by measuring the integrity of cell-free DNA in plasma in colorectal cancer. Cancer Sci 2016; 107:1825-1829. [PMID: 27663862 PMCID: PMC5199104 DOI: 10.1111/cas.13085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022] Open
Abstract
We previously reported a phase II study of a cancer vaccine using five novel peptides recognized by HLA‐A*2402‐restricted CTL in combination with oxaliplatin‐containing chemotherapy (FXV study) as first‐line therapy for patients with metastatic colorectal cancer and demonstrated the safety and promising potential of our five‐peptide cocktail. The objective of this analysis was to identify predictive biomarkers for identifying patients who are likely to receive a clinical benefit from immunochemotherapy. Circulating cell‐free DNA (cfDNA) in plasma has been reported to be a candidate molecular biomarker for the efficacy of anticancer therapy. Unlike uniformly truncated small‐sized DNA released from apoptotic normal cells, DNA released from necrotic cancer cells varies in size. The integrity of plasma cfDNA (i.e. the ratio of longer fragments [400 bp] to shorter fragments [100 bp] of cfDNA), may be clinically useful for detecting colorectal cancer progression. We assessed plasma samples collected from 93 patients prior to receiving immunochemotherapy. The cfDNA levels and integrity were analyzed by semi‐quantitative real‐time PCR. Progression‐free survival was significantly better in patients with a low plasma cfDNA integrity value than in those with a high value (P = 0.0027). Surprisingly, in the HLA‐A*2402‐matched group, patients with a low plasma cfDNA integrity value had significantly better progression‐free survival than those with a high value (P = 0.0015). This difference was not observed in the HLA‐A*2402‐unmatched group. In conclusion, the integrity of plasma cfDNA may provide important clinical information and may be a useful predictive biomarker of the outcome of immunotherapy in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Masahiro Kitahara
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University School of Medicine, Ube, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroko Takenouchi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shinsuke Kanekiyo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuka Inoue
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yoshihiro Tokuhisa
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kazuhiko Sakamoto
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Tomio Ueno
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shigeru Yamamoto
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shigefumi Yoshino
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Oncology Center, Yamaguchi University Hospital, Ube, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|