1
|
Giudice GC, Sonpavde GP. Vaccine approaches to treat urothelial cancer. Hum Vaccin Immunother 2024; 20:2379086. [PMID: 39043175 PMCID: PMC11268260 DOI: 10.1080/21645515.2024.2379086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
Bladder cancer (BC) accounts for about 4% of all malignancies. Non-muscle-invasive BC, 75% of cases, is treated with transurethral resection and adjuvant intravesical instillation, while muscle-invasive BC warrants cisplatin-based perioperative chemotherapy. Although immune-checkpoint inhibitors, antibody drug conjugates and targeted agents have provided dramatic advances, metastatic BC remains a generally incurable disease and clinical trials continue to vigorously evaluate novel molecules. Cancer vaccines aim at activating the patient's immune system against tumor cells. Several means of delivering neoantigens have been developed, including peptides, antigen-presenting cells, virus, or nucleic acids. Various improvements are constantly being explored, such as adjuvants use and combination strategies. Nucleic acids-based vaccines are increasingly gaining attention in recent years, with promising results in other malignancies. However, despite the recent advantages, numerous obstacles persist. This review is aimed at describing the different types of cancer vaccines, their evaluations in UC patients and the more recent innovations in this field.
Collapse
Affiliation(s)
- Giulia Claire Giudice
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Guru P. Sonpavde
- AdventHealth Cancer Institute, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
2
|
Liu D, Li H, Ouyang J. Roles of DEPDC1 in various types of cancer (Review). Oncol Lett 2024; 28:518. [PMID: 39296974 PMCID: PMC11409430 DOI: 10.3892/ol.2024.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/24/2024] [Indexed: 09/21/2024] Open
Abstract
Dishevelled, EGL-10 and pleckstrin domain-containing 1 (DEPDC1) has been identified as a crucial factor in the development and progression of various types of cancer. This protein, which is largely undetectable in normal tissues but is highly expressed in numerous tumor types, serves a significant role in cell mitosis, proliferation, migration, invasion, angiogenesis, autophagy and apoptosis. Furthermore, DEPDC1 is implicated in several key signaling pathways, such as NF-κB, PI3K/Akt, Wnt/β-catenin and Hippo pathways, which are essential for cell proliferation and survival. The expression of DEPDC1 has been linked to poor prognosis and survival rates in multiple types of cancer, including hepatocellular carcinoma, lung adenocarcinoma, colorectal cancer and breast cancer. Notably, DEPDC1 has been suggested to have potential as a diagnostic and prognostic marker, as well as a therapeutic target. Its involvement in critical signaling pathways suggests that targeting DEPDC1 could inhibit tumor growth and metastasis, thereby improving patient outcomes. In addition, clinical trials have shown promising results for DEPDC1-derived peptide vaccines, indicating their safety and potential efficacy in cancer treatment. To the best of our knowledge, this is the first comprehensive review addressing the role of DEPDC1 in cancer. Through a critical analysis of existing studies, the present review aimed to consolidate existing knowledge and highlight gaps in understanding, paving the way for future research to elucidate the complex interactions of DEPDC1 in the context of cancer biology.
Collapse
Affiliation(s)
- Danqi Liu
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100044, P.R. China
- Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Haima Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jia Ouyang
- Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
3
|
Shimizu N, Hussain SA, Obara W, Yamasaki T, Takashima S, Hasegawa T, Iguchi M, Igarashi K, Ogawa O, Fujioka T. A Phase 2 Study of S-588410 Maintenance Monotherapy for Platinum-Treated Advanced or Metastatic Urothelial Carcinoma. Bladder Cancer 2022; 8:179-192. [PMID: 38993370 PMCID: PMC11181746 DOI: 10.3233/blc-211592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Effective maintenance therapy for urothelial carcinoma (UC) is needed to delay progression after first-line chemotherapy. OBJECTIVE To evaluate S-588410, a cancer peptide vaccine containing five human leukocyte antigen (HLA)-A*24:02-restricted epitope peptides derived from five cancer-testis antigens (DEPDC1, MPHOSPH1, URLC10, CDCA1, and KOC1) in chemotherapy-treated, clinically stable patients with advanced or metastatic UC. MATERIALS AND METHODS This open-label, international, phase 2 trial enrolled patients with UC who had completed≥4 cycles of first-line platinum-containing chemotherapy without disease progression. Forty-five HLA-A*24:02-positive patients received subcutaneous injections of S-588410 (Montanide ISA 51 VG with 1 mg/mL of each peptide) weekly for 12 weeks then once every 2 weeks thereafter for up to 24 months. Thirty-six HLA-A*24:02-negative patients did not receive S-588410 (observation group). The primary endpoint was the rate of cytotoxic T-lymphocyte (CTL) induction against≥1 of the peptides at 12 weeks. RESULTS The CTL induction rate in the S-588410 group was 93.3% (p < 0.0001, one-sided binomial test with a rate of≤50% as the null hypothesis). The antitumor response rate was 8.9% in the S-588410 group and 0% in the observation group; median progression-free survival was 18.1 versus 12.5 weeks and median overall survival was 71.0 versus 99.0 weeks, respectively. The most frequent treatment-emergent adverse event was injection-site reactions (47 events, grades 1-3) reported in 93.3% (n = 42/45) of participants. CONCLUSIONS S-588410 demonstrated a high CTL induction rate, acceptable safety profile, and modest clinical response, as maintenance therapy in participants with advanced or metastatic UC who had received first-line platinum-based chemotherapy (EudraCT 2013-005274-22).
Collapse
Affiliation(s)
- Nobuaki Shimizu
- Department of Urology, Gunma Prefectural Cancer Center, Ota, Gunma, Japan
| | | | - Wataru Obara
- Department of Urology, Iwate Medical University, Morioka, Iwate, Japan
| | - Toshinari Yamasaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Fujioka
- Department of Urology, Iwate Medical University, Morioka, Iwate, Japan
| |
Collapse
|
4
|
Valenza C, Antonarelli G, Giugliano F, Aurilio G, Verri E, Briganti A, Curigliano G, Necchi A. Emerging treatment landscape of non-muscle invasive bladder cancer. Expert Opin Biol Ther 2022; 22:717-734. [PMID: 35634893 DOI: 10.1080/14712598.2022.2082869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Non-muscle invasive bladder cancer (NMIBC) accounts for 70-75% of all bladder cancers and is a heterogeneous disease characterized by a wide spectrum of recurrences and progression. Adjuvant treatment for intermediate- and high-risk NMIBC is mainly represented by Bacillus Calmette Guerin (BCG). However, 20%-40% of patients develop disease recurrences or persistence following BCG treatment and are classified as "BCG unresponsive' (BCGu), thus representing a therapeutic challenge due to their worse prognosis and unavailability of effective intravesical treatments. AREAS COVERED We provide an overview of completed and ongoing clinical trials assessing the role of innovative immunological and target agents in patients with BCGu and BCG naive (BCGn) NMIBCs. New treatment options are emerging, demonstrating promising clinical activity, namely, pembrolizumab, atezolizumab, oportuzumab monatox, nadofaragene firadenovec, and N-803. EXPERT OPINION The increasing number of newer therapeutic agents for patients with NMIBC poses challenges regarding the choice of the most suited treatment option for each patient and the best treatment sequence, given their diverse mechanisms of action and varying degrees of activity. Tailored treatment approaches are advocated, based on a deeper comprehension of disease features, available therapies, patient's characteristics, and consequently, on the identification and validation of prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan, Italy.,(DIPO), University of MilanDepartment of Oncology and Hemato-Oncology, Milan, Italy
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan, Italy.,(DIPO), University of MilanDepartment of Oncology and Hemato-Oncology, Milan, Italy
| | - Federica Giugliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan, Italy.,(DIPO), University of MilanDepartment of Oncology and Hemato-Oncology, Milan, Italy
| | - Gaetano Aurilio
- Division of Urogenital and Head and Neck Tumours, European Institute of Oncology, Milan, Italy
| | - Elena Verri
- Division of Urogenital and Head and Neck Tumours, European Institute of Oncology, Milan, Italy
| | - Alberto Briganti
- San Raffaele Department of Medical Oncology, IRCCS San Raffaele Hospital and Scientific InstituteUniversity Vita-Salute, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan, Italy.,(DIPO), University of MilanDepartment of Oncology and Hemato-Oncology, Milan, Italy
| | - Andrea Necchi
- San Raffaele Department of Medical Oncology, IRCCS San Raffaele Hospital and Scientific InstituteUniversity Vita-Salute, Milan, Italy
| |
Collapse
|
5
|
Nelson BE, Hong A, Jana B. Elucidation of Novel Molecular Targets for Therapeutic Strategies in Urothelial Carcinoma: A Literature Review. Front Oncol 2021; 11:705294. [PMID: 34422659 PMCID: PMC8374860 DOI: 10.3389/fonc.2021.705294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Urothelial carcinoma therapy is a rapidly evolving and expanding field. Traditional cytotoxic chemotherapy regimens have not produced optimal long-term outcomes, and many urothelial cancer patients have comorbidities that disqualify them as chemotherapy candidates. In recent years, a plethora of novel therapeutic agents that target diverse molecular pathways has emerged as alternative treatment modalities for not only metastatic urothelial carcinoma, but also for muscle-invasive bladder cancer and non-muscle invasive bladder cancer in adjuvant and definitive settings. This review paper aims to discuss the various categories of therapeutic agents for these different types of urothelial cancer, discussing immunotherapy, antibody-drug conjugates, kinase inhibitors, CAR-T cell therapy, peptide vaccination, and other drugs targeting pathways such as angiogenesis, DNA synthesis, mTOR/PI3K/AKT, and EGFR/HER-2.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Hematology and Oncology, University of Texas Medical Branch, Galveston, TX, United States
| | - Angelina Hong
- School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Bagi Jana
- Department of Hematology and Oncology, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Basile G, Pederzoli F, Bandini M, Raggi D, Gallina A, Salonia A, Briganti A, Montorsi F, Spiess PE, Necchi A. Intermediate- and high-risk nonmuscle invasive bladder cancer: Where do we stand? Urol Oncol 2021; 39:631-641. [PMID: 33766463 DOI: 10.1016/j.urolonc.2021.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The standard of care for intermediate- and high-risk non-muscle invasive bladder cancer (NMIBC) patients is transurethral resection of bladder tumor followed by intravesical adjuvant immunotherapy with Bacillus Calmette-Guerin (BCG). However, a non-negligible portion of patients is doomed to fail BCG-therapy and, consequently, undergo radical cystectomy as only treatment option available. In this context, effective options to improve tumor response, thus delaying or even avoiding radical cystectomy, are urgently needed. A narrative review of the literature was performed to summarize the rationale and the clinical outcomes regarding the use of immunotherapy and novel therapeutic perspectives both for BCG-treated and BCG-naïve NMIBC patients. RESULTS Several clinical trials are currently investigating immune checkpoint inhibitors and novel targeted approaches, including cancer vaccines, for NMIBC patients with BCG-naïve and BCG-unresponsive disease. Despite the lack of long-term safety data, novel therapeutic options, both by systemic and intravesical delivery, demonstrated a good tolerability, antitumor efficacy, and low rates of recurrence and/or progression to muscle-invasive disease. CONCLUSIONS Although clinical data available are mostly limited to phase I/II trials, novel targeted therapies have raised as an effective and reliable approach for patients failing BCG and for those who are therapy naïve. Phase III trials will be crucial in order to change the current clinical practice, after many years in which BCG was the only therapy available for intermediate- and high-risk NMIBC patients.
Collapse
Affiliation(s)
- Giuseppe Basile
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy.
| | - Filippo Pederzoli
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Bandini
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Raggi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Gallina
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Salonia
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Briganti
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Montorsi
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Andrea Necchi
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
7
|
Liu W, Tang H, Li L, Wang X, Yu Z, Li J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif 2021; 54:e13025. [PMID: 33754407 PMCID: PMC8088465 DOI: 10.1111/cpr.13025] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
The peptide‐based therapeutic cancer vaccines have attracted enormous attention in recent years as one of the effective treatments of tumour immunotherapy. Most of peptide‐based vaccines are based on epitope peptides stimulating CD8+ T cells or CD4+ T helper cells to target tumour‐associated antigens (TAAs) or tumour‐specific antigens (TSAs). Some adjuvants and nanomaterials have been exploited to optimize the efficiency of immune response of the epitope peptide to improve its clinical application. At present, numerous peptide‐based therapeutic cancer vaccines have been developed and achieved significant clinical benefits. Similarly, the combination of peptide‐based vaccines and other therapies has demonstrated a superior efficacy in improving anti‐cancer activity. We delve deeper into the choices of targets, design and screening of epitope peptides, clinical efficacy and adverse events of peptide‐based vaccines, and strategies combination of peptide‐based therapeutic cancer vaccines and other therapies. The review will provide a detailed overview and basis for future clinical application of peptide‐based therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Luanfeng Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Jianping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Transfusion Medicine Institute, Liaoning Blood Center, Shenyang, China.,Transfusion Medicine Institute, Harbin Blood Center, Harbin, China
| |
Collapse
|
8
|
Abstract
Bladder cancer has been successfully treated with immunotherapy, whereas prostate cancer is a cold tumor with inadequate immune-related treatment response. A greater understanding of the tumor microenvironment and methods for harnessing the immune system to address tumor growth will be needed to improve immunotherapies for both prostate and bladder cancer. Here, we provide an overview of prostate and bladder cancer, including fundamental aspects of the disease and treatment, the elaborate cellular makeup of the tumor microenvironment, and methods for exploiting relevant pathways to develop more effective treatments.
Collapse
|
9
|
Wieczorek E, Garstka MA. Recurrent bladder cancer in aging societies: Importance of major histocompatibility complex class I antigen presentation. Int J Cancer 2020; 148:1808-1820. [PMID: 33105025 DOI: 10.1002/ijc.33359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Aging is associated with an insufficient immune response that may lead to the initiation and progression of various malignancies. Bladder cancer (BC), prevalent in elderly patients, predominantly presents as recurrent nonmuscle invasive BC that requires further treatment. There is much interest in the activation of patients' immune cells with the focus on CD8+ T cells. Successful therapy should also ensure the efficient presentation of BC antigens by major histocompatibility complex (MHC) class I molecules. The purpose of this systematic review is to present the existing literature on the role of MHC class I in BC research and therapy. The bibliographic databases PubMed and Web of Science were searched for articles published between January 2009 and September 2020 that addressed MHC class I relationship to BC. We searched for available relevant publications on MHC class I and its role and regulation in BC, aging and MHC class I importance in BC immunotherapy. Based on the provided evidence, we propose that the loss of MHC class I expression in BC may lead to its recurrence after the transurethral resection and unresponsiveness to Bacillus Calmette-Guerin immunotherapy. We discuss different ways to enhance MHC class I antigen presentation to CD8+ T cells in BC treatment. The immune status characterized by MHC class I expression patterns and cancer-infiltrating immune cells may provide valuable prognostic information about which patients may benefit from transurethral resection of BC and additional immunotherapy.
Collapse
Affiliation(s)
- Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
An Epithelial-Mesenchymal Transition (EMT) Preoperative Nomogram for Prediction of Lymph Node Metastasis in Bladder Cancer (BLCA). DISEASE MARKERS 2020; 2020:8833972. [PMID: 33204364 PMCID: PMC7656235 DOI: 10.1155/2020/8833972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023]
Abstract
Lymph node (LN) metastasis is a lethal independent risk factor for patients with bladder cancer (BLCA). Accurate evaluation of LN metastasis is of vital importance for disease staging, treatment selection, and prognosis prediction. Several histopathologic parameters are available to predict LN metastasis postoperatively. To date, medical imaging techniques have made a great contribution to preoperatively diagnosis of LN metastasis, but it also exhibits substantial false positives. Therefore, a reliable and robust method to preoperatively predict LN metastasis is urgently needed. Here, we selected 19 candidate genes related to epithelial-mesenchymal transition (EMT) across the LN metastasis samples, which was previously reported to be responsible for the subtype transition and correlation with malignancy and prognosis of BLCA, to establish an EMT-LN signature through LASSO logistic regression analysis. The EMT-LN signature could significantly predict LN metastasis with high accuracy in the TCGA-BLCA cohort, as well as several independent cohorts. As integrating with C3orf70 mutation, we developed an individualized prediction nomogram based on the EMT-LN signature. The nomogram exhibited good discrimination on LN metastasis status, with AUC of 71.7% and 75.9% in training and testing datasets of the TCGA-BLCA cohort. Moreover, the EMT-LN nomogram displayed good calibration with p > 0.05 in the Hosmer-Lemeshow goodness of fit test. Decision curve analysis (DCA) revealed that the EMT-LN nomogram was of high potential for clinical utility. In summary, we established an EMT-LN nomogram integrating an EMT-LN signature and C3orf70 mutation status, which acted as an easy-to-use tool to facilitate preoperative prediction of LN metastasis in BLCA individuals.
Collapse
|
11
|
Rossi JF, Céballos P, Lu ZY. Immune precision medicine for cancer: a novel insight based on the efficiency of immune effector cells. Cancer Commun (Lond) 2019; 39:34. [PMID: 31200766 PMCID: PMC6567551 DOI: 10.1186/s40880-019-0379-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer cell growth is associated with immune surveillance failure. Nowadays, restoring the desired immune response against cancer cells remains a major therapeutic strategy. Due to the recent advances in biological knowledge, efficient therapeutic tools have been developed to support the best bio-clinical approaches for immune precision therapy. One of the most important successes in immune therapy is represented by the applicational use of monoclonal antibodies, particularly the use of rituximab for B-cell lymphoproliferative disorders. More recently, other monoclonal antibodies have been developed, to inhibit immune checkpoints within the tumor microenvironment that limit immune suppression, or to enhance some immune functions with immune adjuvants through different targets such as Toll-receptor agonists. The aim is to inhibit cancer proliferation by the diminishing/elimination of cancer residual cells and clinically improving the response duration with no or few adverse effects. This effect is supported by enhancing the number, functions, and activity of the immune effector cells, including the natural killer (NK) lymphocytes, NKT-lymphocytes, γδ T-lymphocytes, cytotoxic T-lymphocytes, directly or indirectly through vaccines particularly with neoantigens, and by lowering the functions of the immune suppressive cells. Beyond these new therapeutics and their personalized usage, new considerations have to be taken into account, such as epigenetic regulation particularly from microbiota, evaluation of transversal functions, particularly cellular metabolism, and consideration to the clinical consequences at the body level. The aim of this review is to discuss some practical aspects of immune therapy, giving to clinicians the concept of immune effector cells balancing between control and tolerance. Immunological precision medicine is a combination of modern biological knowledge and clinical therapeutic decisions in a global vision of the patient.
Collapse
Affiliation(s)
- Jean-François Rossi
- Institut Sainte Catherine, 84918, Avignon, France. .,Université Montpellier 1, UFR Médecine, 34396, Montpellier, France. .,Département d'Hématologie, CHU de Montpellier, 34295, Montpellier, France.
| | - Patrice Céballos
- Département d'Hématologie, CHU de Montpellier, 34295, Montpellier, France
| | - Zhao-Yang Lu
- Unité de Thérapie Cellulaire, CHU Saint-Eloi, 34295, Montpellier, France
| |
Collapse
|
12
|
Zhao H, Yu M, Sui L, Gong B, Zhou B, Chen J, Gong Z, Hao C. High Expression of DEPDC1 Promotes Malignant Phenotypes of Breast Cancer Cells and Predicts Poor Prognosis in Patients With Breast Cancer. Front Oncol 2019; 9:262. [PMID: 31032225 PMCID: PMC6473048 DOI: 10.3389/fonc.2019.00262] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
DEP domain containing 1 (DEPDC1) is a novel tumor-associated gene, which is aberrantly expressed in multiple types of cancer and involves in tumorigenesis and cancer progression. Here, we examined the functional involvement and underlying mechanism of DEPDC1 in breast cancer. In this study, the immunohistochemistry results demonstrated that DEPDC1 was high-expressed in breast cancer tissues compared with the paired adjacent normal breast tissues, and its tendency at protein level was consistent with mRNA level from TCGA data. Moreover, DEPDC1 mRNA level revealed the strongest association with poor prognosis and development in breast cancer. In vitro assays showed that DEPDC1 overexpression resulted in significant promotion of proliferation by regulating cell cycle in MCF-7 cells, whilst an opposite effect was found in the MDA-MB-231 cells with DEPDC1 deletion. Notably, further investigation indicated DEPDC1's ability of promoting breast cancer cells migration and invasion. In addition, we discovered that DEPDC1 caused hyper-activation of PI3K/AKT/mTOR signaling in breast cancer cells. Therefore, the increased DEPDC1 expression in breast cancer is correlated with disease progression and poor survival, which suggested that DEPDC1 might be a potential therapeutic target against this disease.
Collapse
Affiliation(s)
- Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Mingwei Yu
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Laijian Sui
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Benjiao Gong
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Bo Zhou
- Department of Special Education, Binzhou Medical University, Yantai, China
| | - Jian Chen
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhaohua Gong
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Cuifang Hao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
13
|
Intravesical Mycobacterium brumae triggers both local and systemic immunotherapeutic responses against bladder cancer in mice. Sci Rep 2018; 8:15102. [PMID: 30305693 PMCID: PMC6180069 DOI: 10.1038/s41598-018-33253-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
The standard treatment for high-risk non-muscle invasive bladder cancer (BC) is the intravesical administration of live Mycobacterium bovis BCG. Previous studies suggest improving this therapy by implementing non-pathogenic mycobacteria, such as Mycobacterium brumae, and/or different vehicles for mycobacteria delivery, such as an olive oil (OO)-in-water emulsion. While it has been established that BCG treatment activates the immune system, the immune effects of altering the mycobacterium and/or the preparation remain unknown. In an orthotopic murine BC model, local immune responses were assessed by measuring immune cells into the bladder and macromolecules in the urine by flow cytometry and multiplexing, respectively. Systemic immune responses were analyzed by quantifying sera anti-mycobacteria antibody levels and recall responses of ex vivo splenocytes cultured with mycobacteria antigens. In both BCG- and M. brumae-treated mice, T, NK, and NKT cell infiltration in the bladder was significantly increased. Notably, T cell infiltration was enhanced in OO-in-water emulsified mycobacteria-treated mice, and urine IL-6 and KC concentrations were elevated. Furthermore, mycobacteria treatment augmented IgG antibody production and splenocyte proliferation, especially in mice receiving OO-in-water emulsified mycobacteria. Our data demonstrate that intravesical mycobacterial treatment triggers local and systemic immune responses, which are most significant when OO-in-water emulsified mycobacteria are used.
Collapse
|