1
|
Yang M, Lin Z, Zhuang L, Pan L, Wang R, Chen H, Hu Z, Shen W, Zhuo J, Yang X, Li H, He C, Yang Z, Xie Q, Dong S, Chen J, Su R, Wei X, Yin J, Zheng S, Lu D, Xu X. An inflammatory liquid fingerprint predicting tumor recurrence after liver transplantation for hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e678. [PMID: 39188937 PMCID: PMC11345533 DOI: 10.1002/mco2.678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Tumor recurrence is a life-threatening complication after liver transplantation (LT) for hepatocellular carcinoma (HCC). Precise recurrence risk stratification before transplantation is essential for the management of recipients. Here, we aimed to establish an inflammation-related prediction model for posttransplant HCC recurrence based on pretransplant peripheral cytokine profiling. Two hundred and ninety-three patients who underwent LT in two independent medical centers were enrolled, and their pretransplant plasma samples were sent for cytokine profiling. We identified four independent risk factors, including alpha-fetoprotein, systemic immune-inflammation index, interleukin 6, and osteocalcin in the training cohort (n = 190) by COX regression analysis. A prediction model named inflammatory fingerprint (IFP) was established based on the above factors. The IFP effectively predicted posttransplant recurrence (area under the receiver operating characteristic curve [AUROC]: 0.792, C-index: 0.736). The high IFP group recipients had significantly worse 3-year recurrence-free survival rates (37.9 vs. 86.9%, p < 0.001). Simultaneous T-cell profiling revealed that recipients with high IFP were characterized by impaired T cell function. The IFP also performed well in the validation cohort (n = 103, AUROC: 0.807, C-index: 0.681). In conclusion, the IFP efficiently predicted posttransplant HCC recurrence and helped to refine pretransplant risk stratification. Impaired T cell function might be the intrinsic mechanism for the high recurrence risk of recipients in the high IFP group.
Collapse
Affiliation(s)
- Modan Yang
- Department of Breast SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- NHC Key Laboratory of Combined Multi‐Organ TransplantationZhejiang UniversityHangzhouChina
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Linhui Pan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Rui Wang
- Zhejiang University School of MedicineHangzhouChina
| | - Hao Chen
- Zhejiang University School of MedicineHangzhouChina
| | - Zhihang Hu
- Zhejiang University School of MedicineHangzhouChina
| | - Wei Shen
- Zhejiang University School of MedicineHangzhouChina
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Huigang Li
- Zhejiang University School of MedicineHangzhouChina
| | - Chiyu He
- Zhejiang University School of MedicineHangzhouChina
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Qinfen Xie
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Siyi Dong
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Junli Chen
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Renyi Su
- Zhejiang University School of MedicineHangzhouChina
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Junjie Yin
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐Organ TransplantationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)School of Clinical MedicineHangzhou Medical CollegeHangzhouChina
| | - Xiao Xu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)School of Clinical MedicineHangzhou Medical CollegeHangzhouChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
2
|
Vlahopoulos SA. Divergent Processing of Cell Stress Signals as the Basis of Cancer Progression: Licensing NFκB on Chromatin. Int J Mol Sci 2024; 25:8621. [PMID: 39201306 PMCID: PMC11354898 DOI: 10.3390/ijms25168621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammation is activated by diverse triggers that induce the expression of cytokines and adhesion molecules, which permit a succession of molecules and cells to deliver stimuli and functions that help the immune system clear the primary cause of tissue damage, whether this is an infection, a tumor, or a trauma. During inflammation, short-term changes in the expression and secretion of strong mediators of inflammation occur, while long-term changes occur to specific groups of cells. Long-term changes include cellular transdifferentiation for some types of cells that need to regenerate damaged tissue, as well as death for specific immune cells that can be detrimental to tissue integrity if they remain active beyond the boundaries of essential function. The transcriptional regulator NFκB enables some of the fundamental gene expression changes during inflammation, as well as during tissue development. During recurrence of malignant disease, cell stress-induced alterations enable the growth of cancer cell clones that are substantially resistant to therapeutic intervention and to the immune system. A number of those alterations occur due to significant defects in feedback signal cascades that control the activity of NFκB. Specifically, cell stress contributes to feedback defects as it overrides modules that otherwise control inflammation to protect host tissue. NFκB is involved in both the suppression and promotion of cancer, and the key distinctive feature that determines its net effect remains unclear. This paper aims to provide a clear answer to at least one aspect of this question, namely the mechanism that enables a divergent response of cancer cells to critical inflammatory stimuli and to cell stress in general.
Collapse
|
3
|
Ma X, Cui M, Guo Y. Bioinformatics analysis of the association between obesity and gastric cancer. Front Genet 2024; 15:1385559. [PMID: 39011399 PMCID: PMC11246963 DOI: 10.3389/fgene.2024.1385559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Background Obesity and gastric cancer (GC) are prevalent diseases worldwide. In particular, the number of patients with obesity is increasing annually, while the incidence and mortality rates of GC are ranked high. Consequently, these conditions seriously affect the quality of life of individuals. While evidence suggests a strong association between these two conditions, the underlying mechanisms of this comorbidity remain unclear. Methods We obtained the gene expression profiles of GSE94752 and GSE54129 from the Gene Expression Omnibus database. To investigate the associated biological processes, pathway enrichment analyses were conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes for the shared differentially expressed genes in obesity and GC. A protein-protein interaction (PPI) network was subsequently established based on the Search Tool for the Retrieval of Interacting Genes (STRING) database, followed by the screening of the core modules and central genes in this network using Cytoscape plug-in MCODE. Furthermore, we scrutinized the co-expression network and the interplay network of transcription factors (TFs), miRNAs, and mRNAs linked to these central genes. Finally, we conducted further analyses using different datasets to validate the significance of the hub genes. Results A total of 246 shared differentially expressed genes (209 upregulated and 37 downregulated) were selected for ensuing analyses. Functional analysis emphasized the pivotal role of inflammation and immune-associated pathways in these two diseases. Using the Cytoscape plug-in CytoHubba, nine hub genes were identified, namely, CXCR4, CXCL8, CXCL10, IL6, TNF, CCL4, CXCL2, CD4, and CCL2. IL6 and CCL4 were confirmed as the final hub genes through validation using different datasets. The TF-miRNA-mRNA regulatory network showed that the TFs primarily associated with the hub genes included RELA and NFKB1, while the predominantly associated miRNAs included has-miR-195-5p and has-miR-106a-5p. Conclusion Using bioinformatics methods, we identified two hub genes from the Gene Expression Omnibus datasets for obesity and GC. In addition, we constructed a network of hub genes, TFs, and miRNAs, and identified the major related TFs and miRNAs. These factors may be involved in the common molecular mechanisms of obesity and GC.
Collapse
Affiliation(s)
- Xiaole Ma
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Miao Cui
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuntong Guo
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Krishnamohan M, Kaplanov I, Maudi-Boker S, Yousef M, Machluf-Katz N, Cohen I, Elkabets M, Titus J, Bersudsky M, Apte RN, Voronov E, Braiman A. Tumor Cell-Associated IL-1α Affects Breast Cancer Progression and Metastasis in Mice through Manipulation of the Tumor Immune Microenvironment. Int J Mol Sci 2024; 25:3950. [PMID: 38612760 PMCID: PMC11011794 DOI: 10.3390/ijms25073950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.
Collapse
Affiliation(s)
- Mathumathi Krishnamohan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Irena Kaplanov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Sapir Maudi-Boker
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Muhammad Yousef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Noy Machluf-Katz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Idan Cohen
- Cancer Center, Emek Medical Center, Afula 18101, Israel;
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Jaison Titus
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| |
Collapse
|
5
|
Jin Y, Cai Q, Wang L, Ji J, Sun Y, Jiang J, Wang C, Wu J, Zhang B, Zhao L, Qi F, Yu B, Zhang J. Paracrine activin B-NF-κB signaling shapes an inflammatory tumor microenvironment in gastric cancer via fibroblast reprogramming. J Exp Clin Cancer Res 2023; 42:269. [PMID: 37858201 PMCID: PMC10585924 DOI: 10.1186/s13046-023-02861-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Important roles of INHBB in various malignancies are increasingly identified. The underlying mechanisms in gastric cancer (GC) microenvironment are still greatly unexplored. METHODS The clinical significance of INHBB and the correlation between INHBB and p-p65 in GC were assessed through analyzing publicly available databases and human paraffin embedded GC tissues. The biological crosstalk of INHBB between GC cells and fibroblasts was explored both in vitro and in vivo. RNA-seq analyses were performed to determine the mechanisms which regulating fibroblasts reprogramming. Luciferase reporter assay and chromatin immunoprecipitation (CHIP) assay were used to verify the binding relationship of p65 and INHBB in GC cells. RESULTS Our study showed that INHBB level was significantly higher in GC, and that increased INHBB was associated with poor survival. INHBB positively regulates the proliferation, migration, and invasion of GC cells in vitro. Also, activin B promotes the occurrence of GC by reprogramming fibroblasts into cancer-associated fibroblasts (CAFs). The high expression of INHBB in GC cells activates the NF-κB pathway of normal gastric fibroblasts by secreting activin B, and promotes fibroblasts proliferation, migration, and invasion. In addition, activin B activates NF-κB pathway by controlling TRAF6 autoubiquitination to induce TAK1 phosphorylation in fibroblasts. Fibroblasts activated by activin B can induce the activation of p65 phosphorylation of GC cells by releasing pro-inflammatory factors IL-1β. p65 can directly bind to the INHBB promoter and increase the INHBB transcription of GC cells, thus establishing a positive regulatory feedback loop to promote the progression of GC. CONCLUSIONS GC cells p65/INHBB/activin B and fibroblasts p65/IL-1β signal loop led to the formation of a whole tumor-promoting inflammatory microenvironment, which might be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
| | - Lingquan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
| | - Jun Ji
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
| | - Ying Sun
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
| | - Benyan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
| | - Liqin Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
| | - Feng Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China
| | - Beiqin Yu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, 200025, Shanghai, China.
| |
Collapse
|
6
|
Ben-Yaakov H, Meshel T, Pasmanik-Chor M, Körner C, Ben-Baruch A. A Tumor Microenvironment-Driven Network Regulated by STAT3 and p65 Negatively Controls the Enrichment of Cancer Stem Cells in Human HR+/HER2- Breast Cancer. Cancers (Basel) 2023; 15:cancers15082255. [PMID: 37190183 DOI: 10.3390/cancers15082255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Hormone receptor-positive and HER2-negative (HR+/HER2-; luminal A) tumors are prevalent in breast cancer. Our past studies demonstrated that "TME Stimulation" (estrogen + TNFα + EGF, representing three arms of the tumor microenvironment, TME) has enriched metastasis-forming cancer stem cells (CSCs) in HR+/HER2- human breast cancer cells. Here, following information obtained by RNAseq analyses of TME-stimulated CSCs and Non-CSCs, we found that TME Stimulation has induced the activation of S727-STAT3, Y705-STAT3, STAT1 and p65. Upon TME Stimulation, stattic (STAT3 inhibitor) usage demonstrated that Y705-STAT3 activation negatively controlled CSC enrichment and epithelial-to-mesenchymal transition (EMT) traits, while inducing CXCL8 (IL-8) and PD-L1 expression. However, STAT3 knock-down (siSTAT3) had no effect on these functions; in terms of CSC enrichment, p65 had down-regulatory roles that compensated for the loss of an entire STAT3 protein. Y705-STAT3 and p65 acted additively in reducing CSC enrichment, and Y705A-STAT3 variant + sip65 has enriched chemo-resistant CSCs. Clinical data analyses revealed an inverse correlation between Y705-STAT3 + p65 phosphorylation and CSC signature in luminal A patients, and connection to improved disease course. Overall, we find regulatory roles for Y705-STAT3 and p65 in TME-stimulated HR+/HER2- tumors, with the ability to limit CSC enrichment. These findings raise concerns about using inhibitors of STAT3 and p65 as therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Hagar Ben-Yaakov
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Wang J, Johnston B, Berraondo P. Editorial: Cytokine and cytokine receptor-based immunotherapies: Updates, controversies, challenges, and future perspectives. Front Immunol 2022; 13:985326. [PMID: 35958607 PMCID: PMC9361787 DOI: 10.3389/fimmu.2022.985326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jun Wang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.,Canadian Center for Vaccinology, Halifax, NS, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
8
|
Ben-Baruch A. Tumor Necrosis Factor α: Taking a Personalized Road in Cancer Therapy. Front Immunol 2022; 13:903679. [PMID: 35663982 PMCID: PMC9157545 DOI: 10.3389/fimmu.2022.903679] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Baram T, Erlichman N, Dadiani M, Balint-Lahat N, Pavlovski A, Meshel T, Morzaev-Sulzbach D, Gal-Yam EN, Barshack I, Ben-Baruch A. Chemotherapy Shifts the Balance in Favor of CD8+ TNFR2+ TILs in Triple-Negative Breast Tumors. Cells 2021; 10:cells10061429. [PMID: 34201054 PMCID: PMC8229590 DOI: 10.3390/cells10061429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is primarily treated via chemotherapy; in parallel, efforts are made to introduce immunotherapies into TNBC treatment. CD4+ TNFR2+ lymphocytes were reported as Tregs that contribute to tumor progression. However, our published study indicated that TNFR2+ tumor-infiltrating lymphocytes (TNFR2+ TILs) were associated with improved survival in TNBC patient tumors. Based on our analyses of the contents of CD4+ and CD8+ TILs in TNBC patient tumors, in the current study, we determined the impact of chemotherapy on CD4+ and CD8+ TIL subsets in TNBC mouse tumors. We found that chemotherapy led to (1) a reduction in CD4+ TNFR2+ FOXP3+ TILs, indicating that chemotherapy decreased the content of CD4+ TNFR2+ Tregs, and (2) an elevation in CD8+ TNFR2+ and CD8+ TNFR2+ PD-1+ TILs; high levels of these two subsets were significantly associated with reduced tumor growth. In spleens of tumor-bearing mice, chemotherapy down-regulated CD4+ TNFR2+ FOXP3+ cells but the subset of CD8+ TNFR2+ PD-1+ was not present prior to chemotherapy and was not increased by the treatment. Thus, our data suggest that chemotherapy promotes the proportion of protective CD8+ TNFR2+ TILs and that, unlike other cancer types, therapeutic strategies directed against TNFR2 may be detrimental in TNBC.
Collapse
Affiliation(s)
- Tamir Baram
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Nofar Erlichman
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Maya Dadiani
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Nora Balint-Lahat
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Anya Pavlovski
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Tsipi Meshel
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Dana Morzaev-Sulzbach
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Einav Nili Gal-Yam
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Iris Barshack
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978-01, Israel
| | - Adit Ben-Baruch
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
- Correspondence: ; Tel.: +972-3-6407933 or +972-3-6405491; Fax: +972-3-6422046
| |
Collapse
|
10
|
Baram T, Rubinstein-Achiasaf L, Ben-Yaakov H, Ben-Baruch A. Inflammation-Driven Breast Tumor Cell Plasticity: Stemness/EMT, Therapy Resistance and Dormancy. Front Oncol 2021; 10:614468. [PMID: 33585241 PMCID: PMC7873936 DOI: 10.3389/fonc.2020.614468] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular heterogeneity poses an immense therapeutic challenge in cancer due to a constant change in tumor cell characteristics, endowing cancer cells with the ability to dynamically shift between states. Intra-tumor heterogeneity is largely driven by cancer cell plasticity, demonstrated by the ability of malignant cells to acquire stemness and epithelial-to-mesenchymal transition (EMT) properties, to develop therapy resistance and to escape dormancy. These different aspects of cancer cell remodeling are driven by intrinsic as well as by extrinsic signals, the latter being dominated by factors of the tumor microenvironment. As part of the tumor milieu, chronic inflammation is generally regarded as a most influential player that supports tumor development and progression. In this review article, we put together recent findings on the roles of inflammatory elements in driving forward key processes of tumor cell plasticity. Using breast cancer as a representative research system, we demonstrate the critical roles played by inflammation-associated myeloid cells (mainly macrophages), pro-inflammatory cytokines [such as tumor necrosis factor α (TNFα) and interleukin 6 (IL-6)] and inflammatory chemokines [primarily CXCL8 (interleukin 8, IL-8) and CXCL1 (GROα)] in promoting tumor cell remodeling. These inflammatory components form a common thread that is involved in regulation of the three plasticity levels: stemness/EMT, therapy resistance, and dormancy. In view of the fact that inflammatory elements are a common denominator shared by different aspects of tumor cell plasticity, it is possible that their targeting may have a critical clinical benefit for cancer patients.
Collapse
Affiliation(s)
- Tamir Baram
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Linor Rubinstein-Achiasaf
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Ben-Yaakov
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Prospects for NK Cell Therapy of Sarcoma. Cancers (Basel) 2020; 12:cancers12123719. [PMID: 33322371 PMCID: PMC7763692 DOI: 10.3390/cancers12123719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Sarcomas are a group of aggressive tumors originating from mesenchymal tissues. Patients with advanced disease have poor prognosis due to the ineffectiveness of current treatment protocols. A subset of lymphocytes called natural killer (NK) cells is capable of effective surveillance and clearance of sarcomas, constituting a promising tool for immunotherapeutic treatment. However, sarcomas can cause impairment in NK cell function, associated with enhanced tumor growth and dissemination. In this review, we discuss the molecular mechanisms of sarcoma-mediated suppression of NK cells and their implications for the design of novel NK cell-based immunotherapies against sarcoma. Abstract Natural killer (NK) cells are innate lymphoid cells with potent antitumor activity. One of the most NK cell cytotoxicity-sensitive tumor types is sarcoma, an aggressive mesenchyme-derived neoplasm. While a combination of radical surgery and radio- and chemotherapy can successfully control local disease, patients with advanced sarcomas remain refractory to current treatment regimens, calling for novel therapeutic strategies. There is accumulating evidence for NK cell-mediated immunosurveillance of sarcoma cells during all stages of the disease, highlighting the potential of using NK cells as a therapeutic tool. However, sarcomas display multiple immunoevasion mechanisms that can suppress NK cell function leading to an uncontrolled tumor outgrowth. Here, we review the current evidence for NK cells’ role in immune surveillance of sarcoma during disease initiation, promotion, progression, and metastasis, as well as the molecular mechanisms behind sarcoma-mediated NK cell suppression. Further, we apply this basic understanding of NK–sarcoma crosstalk in order to identify and summarize the most promising candidates for NK cell-based sarcoma immunotherapy.
Collapse
|
12
|
Wang B, Jing T, Jin W, Chen J, Wu C, Wang M, Liu Y. KIAA1522 potentiates TNFα-NFκB signaling to antagonize platinum-based chemotherapy in lung adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:170. [PMID: 32854746 PMCID: PMC7450600 DOI: 10.1186/s13046-020-01684-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
Background The platinum-based chemotherapy is the first-line regimen for the treatment of Non-small cell lung cancer (NSCLC). However, the therapeutic efficiency is largely limited by tenacious chemo-insensitivity that results in inferior prognosis in a cohort of patients. It has been known that KIAA1522 is aberrantly expressed and implicated in several types of solid tumors including NSCLC. Nowadays, knowledge about this gene is quite limited. Here, we aimed to identify the role of KIAA1522 in lung adenocarcinomas, and the molecular events that underlie KIAA1522-mediated chemoresistance to the platinum. Methods Immunohistochemistry were used to detect KIAA1522 expression in clinical NSCLC samples. Then, the survival analyses were performed to assess the link between KIAA1522 expression and overall survival or therapeutic outcome. In vivo depletion of KIAA1522 in adenocarcinoma cells were achieved by adeno-associated virus-mediated sgRNA/Cre delivery into the conditional KrasG12D/Cas9 expressed mice, which were designated to identify the roles of KIAA1522 in tumorigenesis and/or chemotherapy responses. The effects of KIAA1522 and downstream molecular events were studied by pharmacology in mice model and assays using in vitro cultured cells. The clinical relevance of our findings was examined by data-mining of online datasets from multiple cohorts. Results The clinical evidences reveal that KIAA1522 independently predicts both the overall survival and the outcome of platinum-based chemotherapy in lung adenocarcinomas. By using a KrasG12D-driven murine lung adenocarcinoma model and performing in vitro assays, we demonstrated that KIAA1522 is a critical positive regulator of lung adenocarcinoma and a modulator of cisplatin response. KIAA1522 potentiates the TNFα-TNFR2-NFκB signaling which in turn intensifies recalcitrance to cisplatin treatment. These results were further manifested by integrative bioinformatic analyses of independent datasets, in which KIAA1522 is tightly associated with the activity of TNFα-NFκB pathway and the cisplatin-resistant gene signatures. More strikingly, overexpression of KIAA1522 counteracts the cisplatin-induced tumor growth arrest in vivo, and this effect can be remarkably diminished by the disruption of NFκB activity. Conclusion High expression of KIAA1522 is turned out to be an indicator of dismal effectiveness of platinum-based therapy in lung adenocarcinomas. KIAA1522 hyperactivates TNFα-NFκB signaling to facilitate resistance to platinum reagents. Targeting NFκB signaling through small molecule inhibitors may be a rational strategy to conquer chemoresistance and synergize platinum-based chemotherapy in KIAA1522 overexpressed lung adenocarcinomas.
Collapse
Affiliation(s)
- Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Tiantian Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Jinnan Chen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Chengsi Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Huang X, Tian Y, Shi W, Chen J, Yan L, Ren L, Zhang X, Zhu J. Role of inflammation in the malignant transformation of pleural mesothelial cells induced by multi-walled carbon nanotubes. Nanotoxicology 2020; 14:947-967. [PMID: 32574520 DOI: 10.1080/17435390.2020.1777477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are one of the most widely used types of novel nano-fiber materials. The aim of this study was to establish an experimental system based on actual exposure dosage and environments and explore the roles and mechanisms of inflammation in the malignant transformation of pleural mesothelial cells induced by MWCNTs after low doses and long-term exposure. Here, we established an in vitro system by co-culturing macrophages and mesothelial cells and exposing these cells to high aspect ratio MWCNTs (0.1 μg/mL) for three months. Results indicated that IL-1β, secreted by macrophages stimulated by MWCNTs, may significantly enhance the release of inflammatory cytokines, such as IL-8, TNF-α, and IL-6, from mesothelial cells. Results obtained from proliferation, migration, invasion, colony formation, and chromosomal aberration studies indicated that MWCNTs may promote malignant transformation of mesothelial cells after long-term and low-dose exposure via inflammation. Furthermore, the obtained results demonstrated that the NF-κB/IL-6/STAT3 pathway was active in the malignant transformation of Met 5A cells, induced by MWCNTs, and played an important role in the process. In conclusion, our results showed that the NF-κB (p65)/IL-6/STAT3 molecular pathway, which was mediated by inflammation, played an important role in the malignant transformation of pleural mesothelial cells induced by MWCNTs. These findings also provide novel ideas and references for the treatment of mesothelioma and offers options for the occupational safety of nanomaterial practitioners.
Collapse
Affiliation(s)
- Xiaopei Huang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Yijun Tian
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Wenjing Shi
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Jikuai Chen
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Lang Yan
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Lijun Ren
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Xiaofang Zhang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Jiangbo Zhu
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| |
Collapse
|