1
|
Hashimoto K, Nishimura S, Goto K. PD‑1/PD‑L1 immune checkpoint in bone and soft tissue tumors (Review). Mol Clin Oncol 2025; 22:31. [PMID: 39989606 PMCID: PMC11843085 DOI: 10.3892/mco.2025.2826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
Anti-programmed cell death 1 (PD-1)/PD-1 ligand-1 (PD-L1) drugs have been used clinically, including those for skin cancer, with reasonable efficacy. Despite extensive ongoing research on bone and soft tissue sarcomas, there is a paucity of reviews that present a coherent picture. The present article is a comprehensive narrative review on the role of the PD-1/PD-L1 immune checkpoint in bone and soft tissue tumors. The review outlines the biological functions and mechanisms of action of PD-1/PD-L1 and its expression and clinical significance in various tumor types, including osteosarcoma and soft tissue sarcoma. Clinical trial results of immune checkpoint inhibitors, their association with prognosis, mechanisms of resistance to therapy, immune-related adverse events, and their potential in combination therapies, were also discussed.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shunji Nishimura
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama, Osaka 589-8511, Japan
| | - Koji Goto
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
2
|
Paudel A, Chattopadhyay P, Rose B, Watson A, D’Amato G, Trent J, Bialick S, Jonczak E. Systemic Treatment in Soft Tissue Sarcomas: Are We Making a Difference? Cancers (Basel) 2025; 17:889. [PMID: 40075735 PMCID: PMC11898467 DOI: 10.3390/cancers17050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Soft tissue sarcomas [STSs] are rare tumors of mesodermal origin that arise in diverse tissues such as muscles, fat, and nerves. There are over 100 subtypes of STS, each with distinct clinical behaviors and responses to treatment. Recent advances in treatment have moved towards histology-specific approaches, emphasizing the integration of pathological, immunohistochemical, and molecular features to guide treatment. Localized STS is primarily treated with surgery, often supplemented by neoadjuvant or adjuvant radiation and/or chemotherapy. However, about half of patients with localized disease will progress to an advanced stage, which is typically managed with systemic therapies including anthracycline-based chemotherapy such as doxorubicin or epirubicin. Despite these treatments, the survival rates for most subtypes of advanced metastatic STS remain relatively low. While anthracycline-based chemotherapy remains the mainstay of treatment, ongoing research into the biology of STSs is enhancing our understanding and approach to these complex tumors with an expansion beyond chemotherapy to include targeted therapy and immunotherapy to improve response rates and survival outcomes. This review focuses on STS other than gastrointestinal stromal tumors [GISTs], examines the current systemic treatment strategies, highlights recent advances, and explores future directions in the systemic therapy of sarcoma patients.
Collapse
Affiliation(s)
- Amrit Paudel
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| | - Priya Chattopadhyay
- Department of Internal Medicine, Jackson Health System, University of Miami, Miami, FL 33136, USA; (P.C.); (B.R.)
| | - Brandon Rose
- Department of Internal Medicine, Jackson Health System, University of Miami, Miami, FL 33136, USA; (P.C.); (B.R.)
| | - Aleksandra Watson
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| | - Gina D’Amato
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| | - Jonathan Trent
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| | - Steven Bialick
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| | - Emily Jonczak
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| |
Collapse
|
3
|
Benesova I, Capkova L, Ozaniak A, Pacas P, Kopeckova K, Galova D, Lischke R, Buchler T, Ozaniak Strizova Z. A comprehensive analysis of CD47 expression in various histological subtypes of soft tissue sarcoma: exploring novel opportunities for macrophage-directed treatments. J Cancer Res Clin Oncol 2024; 150:134. [PMID: 38493445 PMCID: PMC10944806 DOI: 10.1007/s00432-024-05661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE The CD47 molecule, often referred to as the "do not eat me" signal, is frequently overexpressed in tumor cells. This signaling pathway limits phagocytosis by macrophages. Our objective was to determine CD47 abundance in various soft tissue sarcomas (STS) to investigate whether it could serve as a potential evasion mechanism for tumor cells. Additionally, we aimed to assess the prognostic value of CD47 expression by examining its association with different clinicopathological factors. This study aimed to elucidate the significance of CD47 in the context of emerging anti-tumor targeting approaches. METHODS In this retrospective study, formalin-fixed paraffine-embedded (FFPE) tumor tissues of 55 treatment-naïve patients were evaluated by immunohistochemistry for the abundance of CD47 molecule on tumor cells. The categorization of CD47 positivity was as follows: 0 (no staining of tumor cells), 1 + (less than 1/3 of tumor area positive), 2 + (between 1/3 and 2/3 of tumor area positive), and 3 + (more than 2/3 of tumor area positive for CD47). Next, we compared CD47 abundance between different tumor grades (G1-3). We used Kaplan-Meier survival curves with log-rank test to analyze the differences in survival between patients with different CD47 expression. Moreover, we performed Cox proportional hazards regression model to evaluate the clinical significance of CD47. RESULTS CD47 is widely prevalent across distinct STS subtypes. More than 80% of high grade undifferentiated pleiomorphic sarcoma (UPS), 70% of myxofibrosarcoma (MFS) and more than 60% of liposarcoma (LPS) samples displayed a pattern of moderate-to-diffuse positivity. This phenomenon remains consistent regardless of the tumor grade. However, there was a tendency for higher CD47 expression levels in the G3 group compared to the combined G1 + G2 groups when all LPS, MFS, and UPS were analyzed together. No significant associations were observed between CD47 abundance, death, and metastatic status. Additionally, high CD47 expression was associated with a statistically significant increase in progression-free survival in the studied cohort of patients. CONCLUSION This study highlights the potential of the CD47 molecule as a promising immunotherapeutic target in STS, particularly given its elevated expression levels in diverse sarcoma types. Our data showed a notable trend linking CD47 expression to tumor grade, while also suggesting an interesting correlation between enhanced abundance of CD47 expression and a reduced hazard risk of disease progression. Although these findings shed light on different roles of CD47 in STS, further research is crucial to assess its potential in clinical settings.
Collapse
Affiliation(s)
- Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Linda Capkova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Katerina Kopeckova
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Dominika Galova
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Robert Lischke
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic.
| |
Collapse
|
4
|
Abd Elmoneim HM, Huwait HF, Nafady-Hego H, Mohamed FA. PROGNOSTIC IMPLICATIONS OF PD-L1 EXPRESSION AND LOSS OF PTEN IN PATIENTS WITH RHABDOMYOSARCOMA, EWING'S SARCOMA AND OSTEOSARCOMA. Exp Oncol 2023; 45:337-350. [PMID: 38186021 DOI: 10.15407/exp-oncology.2023.03.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND In children, osteosarcoma (OS), Ewing's sarcoma (ES), and rhabdomyosarcoma (RMS) are the most common sarcomas. A link between the anti-programmed death ligand-1 PD-L1 and the tumor suppressor phosphatase and tensin homologue (PTEN) expression has been described in many tumors. The aim of this work is to determine clinicopathological relationships and the possible prognostic significance of PD-L1 and PTEN expression in rhabdomyosarcoma (RMS), Ewing's sarcoma (ES), and osteosarcoma (OS). MATERIALS AND METHODS Expression of PD-L1 and PTEN were examined by immunohistochemistry in 45 archival RMS, ES, and OS cases. RESULTS The positive expression of PD-L1 was found in 16.7% and 31.6% of ES and OS, respectively. The negative PD-L1 was related to a substantially longer survival in ES cases (p = 0.045), but positive PD-L1 expression was significantly associated with the increased tumor stage and vascular invasion in the OS cases (p = 0.005 and p = 0.002), respectively. On the other hand, PTEN loss was strongly associated with deep tumor, high tumor grade, and recurrence in RMS (p = 0.002, p = 0.045, and p = 0.026, respectively). However, PTEN loss was significantly absent in ES as tumor grade increased (p = 0.031). It is noteworthy that tumor recurrence, the loss of PTEN, and positive PD-L1 were all considered predictive factors in OS patients (p = 0.045, p = 0.032, and p = 0.02, respectively). CONCLUSIONS In children, OS and ES have positive PD-L1 expression, which has an independent unfavorable prognostic effect and raises the possibility of using PD-L1 as a therapeutic target. OS, ES, and RMS prognosis are all predicted by PTEN loss.
Collapse
Affiliation(s)
- H M Abd Elmoneim
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - H F Huwait
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - H Nafady-Hego
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- Laboratory Department, Al Tahrir Medical Center, Doha, Qatar
| | - Fez A Mohamed
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Lobrano R, Paliogiannis P, Zinellu A, Palmieri G, Persico I, Mangoni AA, Cossu A. PD-L1 Expression in Cutaneous Angiosarcomas: A Systematic Review with Meta-Analysis. Curr Oncol 2023; 30:5135-5144. [PMID: 37232846 DOI: 10.3390/curroncol30050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
Cutaneous angiosarcoma (CAS) is the most common type of angiosarcoma that predominantly affects older Caucasians. The outcomes of immunotherapy in CAS are currently under investigation in relation to the expression of programmed death ligand 1 (PD-L1) and other biomarkers. We performed a systematic review and metanalysis of data from the current literature reporting on PD-L1 immunohistochemistry expression. A systematic search of publications in the electronic databases PubMed, Web of Science, and Scopus was conducted using the following terms: "PD-L1" and "angiosarcomas". A total of ten studies reporting on 279 cases were identified and included in the meta-analysis. The pooled prevalence of PD-L1 expression in CAS was 54% (95% CI 36-71%), with high heterogeneity (I2 = 84.81%, p < 0.001). In sub-group analysis, the proportion of PD-L1 expression in CAS was significantly (p = 0.049) lower in Asian studies (ES = 35%, 95% CI 28-42%, I2 = 0.0%, p = 0.46) than in European studies (ES = 71%, 95% CI 51-89%, I2 = 48.91%, p = 0.12).
Collapse
Affiliation(s)
- Renato Lobrano
- Anatomic Pathology and Histology, University Hospital (AOU) of Sassari, Via Matteotti 60, 07100 Sassari, Italy
| | - Panagiotis Paliogiannis
- Anatomic Pathology and Histology, University Hospital (AOU) of Sassari, Via Matteotti 60, 07100 Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Giuseppe Palmieri
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
- Institute of Genetic and Biomolecular Research, National Research Council (CNR), Traversa La Crucca 3, 07100 Sassari, Italy
| | - Ivana Persico
- Institute of Genetic and Biomolecular Research, National Research Council (CNR), Traversa La Crucca 3, 07100 Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Flinders Drive, Bedford Park, Adelaide, SA 5042, Australia
| | - Antonio Cossu
- Anatomic Pathology and Histology, University Hospital (AOU) of Sassari, Via Matteotti 60, 07100 Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| |
Collapse
|
6
|
Berclaz LM, Altendorf-Hofmann A, Lindner LH, Burkhard-Meier A, Di Gioia D, Dürr HR, Klein A, Albertsmeier M, Schmidt-Hegemann NS, Klauschen F, Knösel T. TIM-3 Qualifies as a Potential Immunotherapeutic Target in Specific Subsets of Patients with High-Risk Soft Tissue Sarcomas (HR-STS). Cancers (Basel) 2023; 15:2735. [PMID: 37345075 DOI: 10.3390/cancers15102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
(1) Background: The expression of T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), an immune checkpoint receptor on T cells, has been associated with dismal outcomes and advanced tumor stages in various solid tumors. The blockade of TIM-3 is currently under examination in several clinical trials. This study examines TIM-3 expression in high-risk soft tissue sarcomas (HR-STS). (2) Methods: Tumor cell expression of TIM-3 on protein level was analyzed in pre-treatment biopsies of patients with HR-STS. TIM-3 expression was correlated with clinicopathological parameters including tumor-infiltrating lymphocyte (TIL) counts, programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PDL-1) expression in patients with HR-STS. Survival dependent on the expression of TIM-3 was analyzed. (3) Results: TIM-3 expression was observed in 101 (56%) out of 179 pre-treatment biopsies of patients with HR-STS. TIM-3 expression was significantly more often observed in undifferentiated pleomorphic sarcomas (UPS) compared to other histological subtypes (p < 0.001), high TIL counts (p < 0.001), and high PD-1 (p < 0.001) and PD-L1 expression (p < 0.001). TIM-3 expression did not have a prognostic impact on survival in patients with HR-STS. (4) Conclusions: This is the first study to demonstrate a significant tumor cell expression of TIM-3 in specific subsets of patients with HR-STS. TIM-3 qualifies as a potential immunotherapeutic target in HR-STS.
Collapse
Affiliation(s)
- Luc M Berclaz
- Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Annelore Altendorf-Hofmann
- Department of General, Visceral and Vascular Surgery, Friedrich-Schiller University Jena, 07747 Jena, Germany
| | - Lars H Lindner
- Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Anton Burkhard-Meier
- Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Dorit Di Gioia
- Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Hans Roland Dürr
- Orthopaedic Oncology, Department of Orthopaedics and Trauma Surgery, University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Alexander Klein
- Orthopaedic Oncology, Department of Orthopaedics and Trauma Surgery, University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Markus Albertsmeier
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Nina-Sophie Schmidt-Hegemann
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| |
Collapse
|
7
|
Gingrich AA, Nassif EF, Roland CL, Keung EZ. The Landscape of Immunotherapy for Retroperitoneal Sarcoma. Curr Oncol 2023; 30:2144-2158. [PMID: 36826126 PMCID: PMC9955848 DOI: 10.3390/curroncol30020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Significant multidisciplinary scientific effort has been undertaken to understand the heterogeneous family of neoplasms that comprise soft tissue sarcomas. Within this family of neoplasms, outcomes for retroperitoneal sarcomas (RPS) are currently limited given a lack of effective therapies. In this review, we focus on immunotherapy and its relationship with the common RPS histologic subtypes. Although initial outcomes for RPS patients with immune checkpoint inhibition alone have been somewhat disappointing, subsequent analyses on histologies, the tumor microenvironment, sarcoma immune class, tumor infiltrating lymphocytes and genetic analysis for tumor mutational burden have yielded insight into the interplay between sarcomas and immunotherapy. Such approaches have all provided critical insight into the environment and characterization of these tumors, with targets for potential immunotherapy in future clinical trials. With this insight, molecularly tailored combination treatments for improving response rates and oncologic outcomes for RPS are promising.
Collapse
Affiliation(s)
- Alicia A. Gingrich
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elise F. Nassif
- Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christina L. Roland
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emily Z. Keung
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Current State of Immunotherapy and Mechanisms of Immune Evasion in Ewing Sarcoma and Osteosarcoma. Cancers (Basel) 2022; 15:cancers15010272. [PMID: 36612267 PMCID: PMC9818129 DOI: 10.3390/cancers15010272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
We argue here that in many ways, Ewing sarcoma (EwS) is a unique tumor entity and yet, it shares many commonalities with other immunologically cold solid malignancies. From the historical perspective, EwS, osteosarcoma (OS) and other bone and soft-tissue sarcomas were the first types of tumors treated with the immunotherapy approach: more than 100 years ago American surgeon William B. Coley injected his patients with a mixture of heat-inactivated bacteria, achieving survival rates apparently higher than with surgery alone. In contrast to OS which exhibits recurrent somatic copy-number alterations, EwS possesses one of the lowest mutation rates among cancers, being driven by a single oncogenic fusion protein, most frequently EWS-FLI1. In spite these differences, both EwS and OS are allied with immune tolerance and low immunogenicity. We discuss here the potential mechanisms of immune escape in these tumors, including low representation of tumor-specific antigens, low expression levels of MHC-I antigen-presenting molecules, accumulation of immunosuppressive M2 macrophages and myeloid proinflammatory cells, and release of extracellular vesicles (EVs) which are capable of reprogramming host cells in the tumor microenvironment and systemic circulation. We also discuss the vulnerabilities of EwS and OS and potential novel strategies for their targeting.
Collapse
|
10
|
Abstract
Undifferentiated small round cell sarcomas (SRCSs) of bone and soft tissue comprise a heterogeneous group of highly aggressive tumours associated with a poor prognosis, especially in metastatic disease. SRCS entities mainly occur in the third decade of life and can exhibit striking disparities regarding preferentially affected sex and tumour localization. SRCSs comprise new entities defined by specific genetic abnormalities, namely EWSR1-non-ETS fusions, CIC-rearrangements or BCOR genetic alterations, as well as EWSR1-ETS fusions in the prototypic SRCS Ewing sarcoma. These gene fusions mainly encode aberrant oncogenic transcription factors that massively rewire the transcriptome and epigenome of the as yet unknown cell or cells of origin. Additional mutations or copy number variants are rare at diagnosis and, depending on the tumour entity, may involve TP53, CDKN2A and others. Histologically, these lesions consist of small round cells expressing variable levels of CD99 and specific marker proteins, including cyclin B3, ETV4, WT1, NKX3-1 and aggrecan, depending on the entity. Besides locoregional treatment that should follow standard protocols for sarcoma management, (neo)adjuvant treatment is as yet ill-defined but generally follows that of Ewing sarcoma and is associated with adverse effects that might compromise quality of life. Emerging studies on the molecular mechanisms of SRCSs and the development of genetically engineered animal models hold promise for improvements in early detection, disease monitoring, treatment-related toxicity, overall survival and quality of life.
Collapse
|
11
|
Resag A, Toffanin G, Benešová I, Müller L, Potkrajcic V, Ozaniak A, Lischke R, Bartunkova J, Rosato A, Jöhrens K, Eckert F, Strizova Z, Schmitz M. The Immune Contexture of Liposarcoma and Its Clinical Implications. Cancers (Basel) 2022; 14:cancers14194578. [PMID: 36230502 PMCID: PMC9559230 DOI: 10.3390/cancers14194578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Liposarcomas (LPS) are the most frequent malignancies in the soft tissue sarcoma family and consist of five distinctive histological subtypes, termed well-differentiated LPS, dedifferentiated LPS (DDLPS), myxoid LPS (MLPS), pleomorphic LPS, and myxoid pleomorphic LPS. They display variations in genetic alterations, clinical behavior, and prognostic course. While accumulating evidence implicates a crucial role of the tumor immune contexture in shaping the response to anticancer treatments, the immunological landscape of LPS is highly variable across different subtypes. Thus, DDLPS is characterized by a higher abundance of infiltrating T cells, yet the opposite was reported for MLPS. Interestingly, a recent study indicated that the frequency of pre-existing T cells in soft tissue sarcomas has a predictive value for immune checkpoint inhibitor (CPI) therapy. Additionally, B cells and tertiary lymphoid structures were identified as potential biomarkers for the clinical outcome of LPS patients and response to CPI therapy. Furthermore, it was demonstrated that macrophages, predominantly of M2 polarization, are frequently associated with poor prognosis. An improved understanding of the complex LPS immune contexture enables the design and refinement of novel immunotherapeutic approaches. Here, we summarize recent studies focusing on the clinicopathological, genetic, and immunological determinants of LPS.
Collapse
Affiliation(s)
- Antonia Resag
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Giulia Toffanin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padova, Italy
| | - Iva Benešová
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Luise Müller
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Vlatko Potkrajcic
- Department of Radiation Oncology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| | - Andrej Ozaniak
- Third Department of Surgery, First Faculty of Medicine, Charles University, University Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Robert Lischke
- Third Department of Surgery, First Faculty of Medicine, Charles University, University Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Antonio Rosato
- Department of Surgery Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy
| | - Korinna Jöhrens
- Institute of Pathology, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
- Department of Radiation Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic
- Correspondence: (Z.S.); (M.S.); Tel.: +420-604712471 (Z.S.); +49-351-458-6501 (M.S.)
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: (Z.S.); (M.S.); Tel.: +420-604712471 (Z.S.); +49-351-458-6501 (M.S.)
| |
Collapse
|
12
|
Panagi M, Pilavaki P, Constantinidou A, Stylianopoulos T. Immunotherapy in soft tissue and bone sarcoma: unraveling the barriers to effectiveness. Theranostics 2022; 12:6106-6129. [PMID: 36168619 PMCID: PMC9475460 DOI: 10.7150/thno.72800] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/21/2022] [Indexed: 11/05/2022] Open
Abstract
Sarcomas are uncommon malignancies of mesenchymal origin that can arise throughout the human lifespan, at any part of the body. Surgery remains the optimal treatment modality whilst response to conventional treatments, such as chemotherapy and radiation, is minimal. Immunotherapy has emerged as a novel approach to treat different cancer types but efficacy in soft tissue sarcoma and bone sarcoma is limited to distinct subtypes. Growing evidence shows that cancer-stroma cell interactions and their microenvironment play a key role in the effectiveness of immunotherapy. However, the pathophysiological and immunological properties of the sarcoma tumor microenvironment in relation to immunotherapy advances, has not been broadly reviewed. Here, we provide an up-to-date overview of the different immunotherapy modalities as potential treatments for sarcoma, identify barriers posed by the sarcoma microenvironment to immunotherapy, highlight their relevance for impeding effectiveness, and suggest mechanisms to overcome these barriers.
Collapse
Affiliation(s)
- Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | | - Anastasia Constantinidou
- Medical School, University of Cyprus, Nicosia, Cyprus
- Bank of Cyprus Oncology Centre, Nicosia, Cyprus
- Cyprus Cancer Research Institute, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
13
|
A Newly Established Cuproptosis-Associated Long Non-Coding RNA Signature for Predicting Prognosis and Indicating Immune Microenvironment Features in Soft Tissue Sarcoma. JOURNAL OF ONCOLOGY 2022; 2022:8489387. [PMID: 35847354 PMCID: PMC9279026 DOI: 10.1155/2022/8489387] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/16/2022]
Abstract
Cuproptosis, a new type of programmed cell death, is involved in the development and progression of malignancies. The study of cuproptosis-associated long non-coding RNAs (lncRNAs) in soft tissue sarcomas (STSs) is however limited. There is also uncertainty regarding the prognostic accuracy of cuproptosis-associated lncRNAs in STSs and their relationship to the tumor immune microenvironment. The aim of this study was to determine the prognostic significance of cuprotosis-associated lncRNAs in STSs and their relationship to the tumor immune microenvironment. Transcriptomic and clinical data from patients with STSs were obtained through The Cancer Genome Atlas (TCGA). Overall, 259 patients were randomly allocated to a training group or a testing group. In the training group, a cuproptosis-associated lncRNA signature was constructed, and the signature was verified in the testing group. On the basis of risk scores and clinical features, we later developed a hybrid nomogram. We also performed functional and tumor immune microenvironment analysis based on the cuproptosis-associated lncRNA signature. A signature of 5 cuproptosis-associated lncRNAs was created. Based on this signature, we categorized STS patients into high-risk and low-risk groups. The study showed that patients at high risk had a worse prognosis than those at low risk. A nomogram was then constructed combining clinical characteristics with the risk scores, and it was shown to have credible predictive power. Functional enrichment and tumor immune microenvironmental analyses showed that high-risk STSs tend to be immunologically sensitive tumors. In our study, we found a cuproptosis-associated lncRNAs signature, which serves as an independent prognostic indicator. Cuproptosis-associated lncRNAs may play a role in the tumor immune microenvironment, which might be a therapeutic target for patients with STSs.
Collapse
|
14
|
Tay TKY, Yeong JPS, Chen EX, Sam XX, Lim JX, Chan JY. Soft Tissue Leiomyosarcoma With Microsatellite Instability, High Tumor Mutational Burden, and Programmed Death Ligand-1 Expression Showing Pathologic Complete Response to Pembrolizumab: A Case Report. JCO Precis Oncol 2022; 6:e2200068. [PMID: 35939769 PMCID: PMC9384916 DOI: 10.1200/po.22.00068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
| | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore.,Institute of Molecular and Cell Biology, Singapore
| | - Eileen Xueqin Chen
- Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Xin Xiu Sam
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | | | - Jason Yongsheng Chan
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore.,Division of Medical Oncology, National Cancer Center Singapore, Singapore
| |
Collapse
|
15
|
Bi Y, Ge L, Ren X, Pang J, Zhao Y, Liang Z. Tumor microenvironment and its clinicopathological and prognostic associations in surgically resected cutaneous angiosarcoma. Clin Transl Oncol 2022; 24:941-949. [PMID: 35064455 DOI: 10.1007/s12094-021-02744-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Cutaneous angiosarcoma (CAS) is a rare but typically aggressive malignant vascular neoplasm of the skin. Tumor microenvironment (TME) of CAS and its associations with baseline clinicopathological features and patient outcomes are very important, especially when considering the recent advances in understanding of the tumor biology. METHODS/PATIENTS We retrospectively reviewed medical records of patients who underwent surgical resection for CAS at a tertiary Hospital. The pretreated specimens were evaluated by immunohistochemistry for programmed cell death protein 1 (PD-1) and its ligand (PD-L1), densities of tumor infiltrative lymphocytes (TILs) (CD3+, CD4+, CD8+, CD45RO+, FoxP3+), as well as c-MYC and Ki-67 expressions. Overall survival (OS) was estimated by Kaplan-Meier method and compared with Log-rank test. RESULTS A total of 21 CAS patients were identified. Median age was 67 (ranges: 20-81) years, 14 (66.7%) were male, and over 50% had lesions of scalp. Histopathological examination showed a predominantly spindle cell type (57.1%). All patients underwent surgery, 16 (76.2%) were treated further. PD-L1 was positively stained (> 1%) in tumor cells (42.9%) and TILs (23.8%). PD-1 expression (> 1%) was identified in TILs of 11 (52.4%) cases. PD-1/PD-L1 expressions were significantly associated with the higher densities of CD3+, CD4+, CD8+, CD45RO+, and Foxp3+ TILs, but not with patient characteristics or c-MYC or Ki-67 expression. Median OS was 18.5 months (95% CI 6.0-35.9), although no prognostic significance was observed with respect to any clinicopathological features. CONCLUSION We characterized TME and its clinical and prognostic association in CAS. PD-1/PD-L1 expressions were significantly associated with TILs subtypes but not with OS.
Collapse
Affiliation(s)
- Y Bi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China
| | - L Ge
- Department of Pathology, Weifang People's Hospital, Weifang, 261041, China
| | - X Ren
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - J Pang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Y Zhao
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China.
| | - Z Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
16
|
Hashimoto K, Nishimura S, Ito T, Kakinoki R, Akagi M. Immunohistochemical expression and clinicopathological assessment of PD-1, PD-L1, NY-ESO-1, and MAGE-A4 expression in highly aggressive soft tissue sarcomas. Eur J Histochem 2022; 66. [PMID: 35448937 PMCID: PMC9046686 DOI: 10.4081/ejh.2022.3393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/16/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy has altered the treatment paradigm for soft tissue sarcomas (STSs). Considering the limited information regarding the clinical significance of immunohistochemical markers in STS, the purpose of this study was to determine the clinical significance of programmed cell death-1 (PD-1), PD ligand-1(PD-L1), New York esophageal squamous cell carcinoma-1 (NY-ESO-1), and melanoma-associated antigen-A4 (MAGE-A4) expression in STSs. Twenty-two patients (median age, 72.5 years) with STSs treated at our hospital were included in this study. The specimens obtained at the time of biopsy were used to perform immunostaining for PD-1, PD-L1, NY-ESO, and MAGE-A4. The rates of PD-1-, PD-L1-, NY-ESO-, and MAGE-A4-positive cells and cases were calculated. The correlations among the positive cell rates of the immunohistochemical markers as well as their correlations with the histological grade, tumor size, or maximum standardized uptake (SUVmax) value were also determined. The average rates of PD-1-, PD-L1-, NY-ESO-, and MAGE-A4-positive cells were 4.39%, 28.0%, 18.2%, and 39.4%, respectively. PD-1-, PD-L1-, NY-ESO-1-, and MAGE-A4- positive cell rates showed weak to strong correlations with the SUVmax value. Thus, PD-1, PD-L1, NY-ESO, and MAGE-A4 expressions might be involved in the aggressive elements of STSs.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Shunji Nishimura
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Tomohiko Ito
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Ryosuke Kakinoki
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| |
Collapse
|
17
|
Ren H, Bazhin AV, Pretzsch E, Jacob S, Yu H, Zhu J, Albertsmeier M, Lindner LH, Knösel T, Werner J, Angele MK, Bösch F. A novel immune-related gene signature predicting survival in sarcoma patients. Mol Ther Oncolytics 2022; 24:114-126. [PMID: 35024438 PMCID: PMC8718575 DOI: 10.1016/j.omto.2021.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Sarcomas are a heterogeneous group of rare mesenchymal tumors. The migration of immune cells into these tumors and the prognostic impact of tumor-specific factors determining their interaction with these tumors remain poorly understood. The current risk stratification system is insufficient to provide a precise survival prediction and treatment response. Thus, valid prognostic models are needed to guide treatment. This study analyzed the gene expression and outcome of 980 sarcoma patients from seven public datasets. The abundance of immune cells and the response to immunotherapy was calculated. Immune-related genes (IRGs) were screened through a weighted gene co-expression network analysis (WGCNA). A least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish a powerful IRG signature predicting prognosis. The identified IRG signature incorporated 14 genes and identified high-risk patients in sarcoma cohorts. The 14-IRG signature was identified as an independent risk factor for overall and disease-free survival. Moreover, the IRG signature acted as a potential indicator for immunotherapy. The nomogram based on the risk score was built to provide a more accurate survival prediction. The decision tree with IRG risk score discriminated risk subgroups powerfully. This proposed IRG signature is a robust biomarker to predict outcomes and treatment responses in sarcoma patients.
Collapse
Affiliation(s)
- Haoyu Ren
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Sven Jacob
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Haochen Yu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Jiang Zhu
- Department of Liver Surgery and Liver Transplantation Centre, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Markus Albertsmeier
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Lars H Lindner
- Department of Medicine III, SarKUM, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Martin K Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Florian Bösch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
18
|
Liu QQ, Lin HM, Han HW, Yang CN, Liu C, Zhang R. Complete Response to Combined Chemotherapy and Anti-PD-1 Therapy for Recurrent Gallbladder Carcinosarcoma: A Case Report and Literature Review. Front Oncol 2022; 12:803454. [PMID: 35372010 PMCID: PMC8967174 DOI: 10.3389/fonc.2022.803454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background Gallbladder carcinosarcoma (GBCS) is a rare and aggressive malignancy with extremely poor prognosis. Although surgery is regarded as the primary therapy for GBCS, the effective therapeutic strategies for unresected lesions have been poorly defined. Case Presentation We presented a case of a 74-year-old male who underwent radical resection of gallbladder carcinoma at a local hospital. Seven months later, he was admitted to our hospital due to right upper abdominal discomfort. Postoperative radiological examinations showed multiple hepatic lesions, hilar lymph node metastasis, and main portal vein tumor thrombus. The pathological consultation results confirmed GBCS and immunohistochemical examinations revealed PD-L1 expression in 20% of tumor cells. Then, the patient received chemotherapy (Gemcitabine plus Oxaliplatin, GEMOX) in combination with anti-PD-1 therapy. After nine courses of the combination therapy, complete regression of the tumors was achieved with no evidence of relapse till now. Conclusions We, for the first time, reported a patient with recurrent GBCS who benefited from the combined chemotherapy and immunotherapy, providing a potential effective management strategy for the refractory malignant tumor.
Collapse
Affiliation(s)
| | | | | | | | - Chao Liu
- *Correspondence: Chao Liu, ; Rui Zhang,
| | - Rui Zhang
- *Correspondence: Chao Liu, ; Rui Zhang,
| |
Collapse
|
19
|
VISTA in Soft Tissue Sarcomas: A Perspective for Immunotherapy? Cancers (Basel) 2022; 14:cancers14041006. [PMID: 35205752 PMCID: PMC8870227 DOI: 10.3390/cancers14041006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: V domain immunoglobulin suppressor of T cell activation (VISTA) plays a critical role in antitumor immunity and may be a valuable target in cancer immunotherapy. To date, it has never been studied in a large and well-characterised cohort of soft tissue sarcomas (STS). (2) Methods: Using immunohistochemistry, we examined VISTA expression in tumour tissues of 213 high-risk STS. We then analysed whether VISTA was associated with other clinicopathological parameters, including tumour-infiltrating lymphocyte (TIL) counts, programmed death receptor-1 (PD1), programmed death ligand-1 (PDL1), CD3, grading, and long-term survival. (3) Results: We observed VISTA expression in 96 (45%) of 213 specimens with distinct patterns ranging from 26 to 63% for histological subtypes. VISTA was associated with higher grade (G3 vs. G2, p = 0.019), higher TIL counts (p = 0.033), expression of PD1 (p = 0.046), PDL1 (p = 0.031), and CD3+ (p = 0.023). In patients without CD3+ TILs, 10-year survival was higher when VISTA was expressed compared to when there was no VISTA expression (p = 0.013). In a multivariate analysis, VISTA expression was independently associated with prolonged survival (p = 0.043). (4) Conclusions: VISTA is expressed in different STS subtypes and is associated with increased TILs, PD-1, PD-L1, and CD3 expression. Patients with VISTA+ tumours show improved survival. These results may help define future immunotherapeutic approaches in STS.
Collapse
|
20
|
Tomassen T, Weidema ME, Hillebrandt-Roeffen MHS, van der Horst C, Desar IME, Flucke UE, Versleijen-Jonkers YMH. Analysis of PD-1, PD-L1, and T-cell infiltration in angiosarcoma pathogenetic subgroups. Immunol Res 2022; 70:256-268. [PMID: 35043369 PMCID: PMC8916989 DOI: 10.1007/s12026-021-09259-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2024]
Abstract
Angiosarcoma (AS) is a rare malignancy with a poor prognosis. It can develop spontaneously or due to previous radiotherapy (RT), ultraviolet (UV) radiation, or lymphoedema (Stewart Treves AS). Novel therapeutic approaches are needed, but progress is hindered because of the heterogeneity and rarity of AS. In order to explore the potential of immune checkpoint inhibition (ICI), we investigated the protein expression of programmed cell death 1 (PD-1), programmed death-ligand 1 (PD-L1), and CD8 + T cells in 165 AS cases in relation to AS subgroups based on clinical classification and in relation to whole-genome methylation profiling based clusters (A1, A2, B1, B2). High PD-L1 and PD-1 expression were predominantly shown in UV-associated, visceral, and soft tissue AS. RT-associated AS showed predominantly high PD-1 expression. CD8 + T cell infiltration was present in the majority of AS samples. Within the UV-associated AS, two different clusters can be distinguished by DNA methylation profiling. Cases in cluster A1 showed higher PD-1 (p = 0.015), PD-L1 (p = 0.015), and CD8 + T cells (p = 0.008) compared to those in cluster B2, suggesting that these UV-AS tumors are more immunogenic than B2 tumors showing a difference even within one subgroup. In soft tissue AS, combined PD-1 and PD-L1 expression showed a trend toward poor survival (p = 0.051), whereas in UV-associated AS, PD-1 expression correlated with better survival (p = 0.035). In conclusion, we show the presence of PD-1, PD-L1, and CD8 + T cells in the majority of AS but reveal differences between and within AS subgroups, providing prognostic information and indicating to be predictive for ICI.
Collapse
Affiliation(s)
- T Tomassen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M E Weidema
- Department of Medical Oncology (Internal Postal Code: 452), Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - M H S Hillebrandt-Roeffen
- Department of Medical Oncology (Internal Postal Code: 452), Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - C van der Horst
- Department of Medical Oncology (Internal Postal Code: 452), Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - I M E Desar
- Department of Medical Oncology (Internal Postal Code: 452), Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - U E Flucke
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Yvonne M H Versleijen-Jonkers
- Department of Medical Oncology (Internal Postal Code: 452), Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Roulleaux Dugage M, Nassif EF, Italiano A, Bahleda R. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Front Immunol 2021; 12:775761. [PMID: 34925348 PMCID: PMC8678134 DOI: 10.3389/fimmu.2021.775761] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Anti-PD-(L)1 therapies yield a disappointing response rate of 15% across soft-tissue sarcomas, even if some subtypes benefit more than others. The proportions of TAMs and TILs in their tumor microenvironment are variable, and this heterogeneity correlates to histotype. Tumors with a richer CD8+ T cell, M1 macrophage, and CD20+ cells infiltrate have a better prognosis than those infiltrated by M0/M2 macrophages and a high immune checkpoint protein expression. PD-L1 and CD8+ infiltrate seem correlated to response to immune checkpoint inhibitors (ICI), but tertiary lymphoid structures have the best predictive value and have been validated prospectively. Trials for combination therapies are ongoing and focus on the association of ICI with chemotherapy, achieving encouraging results especially with pembrolizumab and doxorubicin at an early stage, or ICI with antiangiogenics. A synergy with oncolytic viruses is seen and intratumoral talimogene laherpavec yields an impressive 35% ORR when associated to pembrolizumab. Adoptive cellular therapies are also of great interest in tumors with a high expression of cancer-testis antigens (CTA), such as synovial sarcomas or myxoid round cell liposarcomas with an ORR ranging from 20 to 50%. It seems crucial to adapt the design of clinical trials to histology. Leiomyosarcomas are characterized by complex genomics but are poorly infiltrated by immune cells and do not benefit from ICI. They should be tested with PIK3CA/AKT inhibition, IDO blockade, or treatments aiming at increasing antigenicity (radiotherapy, PARP inhibitors). DDLPS are more infiltrated and have higher PD-L1 expression, but responses to ICI remain variable across clinical studies. Combinations with MDM2 antagonists or CDK4/6 inhibitors may improve responses for DDLPS. UPS harbor the highest copy number alterations (CNA) and mutation rates, with a rich immune infiltrate containing TLS. They have a promising 15-40% ORR to ICI. Trials for ICB should focus on immune-high UPS. Association of ICI with FGFR inhibitors warrants further exploration in the immune-low group of UPS. Finally translocation-related sarcomas are heterogeneous, and although synovial sarcomas a poorly infiltrated and have a poor response rate to ICI, ASPS largely benefit from ICB monotherapy or its association with antiangiogenics agents. Targeting specific neoantigens through vaccine or adoptive cellular therapies is probably the most promising approach in synovial sarcomas.
Collapse
Affiliation(s)
- Matthieu Roulleaux Dugage
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Elise F. Nassif
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Italiano
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- Département d’Oncologie Médicale, Institut Bergonié, Bordeaux, France
| | - Rastislav Bahleda
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
22
|
Berclaz LM, Altendorf-Hofmann A, Dürr HR, Klein A, Angele MK, Albertsmeier M, Schmidt-Hegemann NS, Di Gioia D, Knösel T, Lindner LH. Expression Patterns of TOP2A and SIRT1 Are Predictive of Survival in Patients with High-Risk Soft Tissue Sarcomas Treated with a Neoadjuvant Anthracycline-Based Chemotherapy. Cancers (Basel) 2021; 13:cancers13194877. [PMID: 34638362 PMCID: PMC8507907 DOI: 10.3390/cancers13194877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular predictors of response to chemotherapy and survival have not been put into clinical practice in high-risk soft tissue sarcomas (HR-STS) by now. The expression of TOP2A and SIRT1 has implications for the mechanism of action of doxorubicin, which is the backbone of chemotherapy in HR-STS. Pre-treatment samples of 167 patients with HR-STS were collected. Protein expression levels of TOP2A and SIRT1 were evaluated with tissue microarrays and immunohistochemistry and correlated with clinicopathological parameters, including overall survival (OS). The expression of TOP2A and SIRT1 was seen in 47% and 60% of patients with HR-STS, respectively. TOP2A expression was associated with higher tumor grading and shorter 5-year OS. The expression of SIRT1 was correlated with a better 5- and 10-year OS. The combination of high SIRT1 and low TOP2A ("Top survivors") significantly predicted a better OS compared to other biomarker combinations. A multivariate analysis confirmed the expression of SIRT1 and the "Top survivor" biomarker combination as independent predictive factors of OS. This is the first study to associate SIRT1 overexpression with a statistically significant prolongation of OS in HR-STS. Both individual markers and their combination can be used as predictive indicators for HR-STS patients scheduled for neoadjuvant anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Luc M. Berclaz
- Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany; (D.D.G.); (L.H.L.)
- Correspondence:
| | - Annelore Altendorf-Hofmann
- Department of General, Visceral and Vascular Surgery, Friedrich-Schiller University Jena, Am Klinikum 1, 07743 Jena, Germany;
| | - Hans Roland Dürr
- Musculoskeletal Oncology, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany; (H.R.D.); (A.K.)
| | - Alexander Klein
- Musculoskeletal Oncology, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany; (H.R.D.); (A.K.)
| | - Martin K. Angele
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.K.A.); (M.A.)
| | - Markus Albertsmeier
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.K.A.); (M.A.)
| | - Nina-Sophie Schmidt-Hegemann
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany;
| | - Dorit Di Gioia
- Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany; (D.D.G.); (L.H.L.)
| | - Thomas Knösel
- LMU Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Thalkirchner Str. 36, 80337 Munich, Germany;
| | - Lars H. Lindner
- Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany; (D.D.G.); (L.H.L.)
| |
Collapse
|
23
|
Tumor and Peripheral Immune Status in Soft Tissue Sarcoma: Implications for Immunotherapy. Cancers (Basel) 2021; 13:cancers13153885. [PMID: 34359785 PMCID: PMC8345459 DOI: 10.3390/cancers13153885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Soft Tissue Sarcomas are a rare and heterogeneous group of tumors, which have a characteristic complexity, leading to a difficult diagnosis and a lack of response to treatment. The aim of this review is to summarize the role of immune cells, soluble plasmatic factors, immune checkpoints; and the expression of immune-related genes predicting survival, response to therapy, and potential immunotherapeutic agents or targets in Soft Tissue Sarcomas. Abstract Soft Tissue Sarcomas (STS) are a heterogeneous and rare group of tumors. Immune cells, soluble factors, and immune checkpoints are key elements of the complex tumor microenvironment. Monitoring these elements could be used to predict the outcome of the disease, the response to therapy, and lead to the development of new immunotherapeutic approaches. Tumor-infiltrating B cells, Natural Killer (NK) cells, tumor-associated neutrophils (TANs), and dendritic cells (DCs) were associated with a better outcome. On the contrary, tumor-associated macrophages (TAMs) were correlated with a poor outcome. The evaluation of peripheral blood immunological status in STS could also be important and is still underexplored. The increased lymphocyte-to-monocyte ratio (LMR) and neutrophil-to-lymphocyte ratio (NLR), higher levels of monocytic myeloid-derived suppressor cells (M-MDSCs), and Tim-3 positive CD8 T cells appear to be negative prognostic markers. Meanwhile, NKG2D-positive CD8 T cells were correlated with a better outcome. Some soluble factors, such as cytokines, chemokines, growth factors, and immune checkpoints were associated with the prognosis. Similarly, the expression of immune-related genes in STS was also reviewed. Despite these efforts, only very little is known, and much research is still needed to clarify the role of the immune system in STS.
Collapse
|
24
|
Hashimoto K, Nishimura S, Ito T, Akagi M. Characterization of PD-1/PD-L1 immune checkpoint expression in soft tissue sarcomas. Eur J Histochem 2021; 65. [PMID: 34218652 PMCID: PMC8273625 DOI: 10.4081/ejh.2021.3203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/25/2021] [Indexed: 02/08/2023] Open
Abstract
Inhibitors of the programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint system are used for treating various malignancies. However, evidence on their use in soft tissue sarcomas (STS) is limited. This study aimed to retrospectively investigate the relationship between the expression of PD-1/PD-L1 and related antigens in STS, and their association with clinical characteristics. Immunostaining for CD4, CD8, PD-1, PD-L1, IL-2, and IFN-γ was performed using pathological specimens harvested at the time of biopsy from 10 patients with undifferentiated pleomorphic sarcoma (UPS), nine with myxofibrosarcoma (MFS), and three with malignant peripheral nerve sheath tumor (MPNST) who were treated at our hospital. Subsequently, the positive immunostaining cell rates were calculated. We also examined the correlation between each immune positive cell rate and age, tissue grade, size, and maximum standardized uptake (SUV-max) values. The 3-year event-free survival (EFS) and overall survival (OS) rates were compared between the positive and negative groups (positive rate >10%; negative <10%) for various immune stains. The positive rates were also compared between the presence and absence of events groups. There was positive staining for the immune checkpoint molecules in every STS type except for PD-1 in MPNST. CD4, CD8, and PD-1 stained lymphocytes in close proximity to the tumor in adjacent tissue sections. A positive correlation was observed between the positive cell rates of each immune component including inflammatory cytokines such as IL-2 and IFN-γ. Additionally, the clinical features positively correlated with the positive PD-1/PD-L1 expression rates. No significant differences in the 3-EFS and OS rates were observed between the PD-1/PD-L1 positive and negative groups. Our results suggest that an inducible immune checkpoint mechanism may be involved in UPS, MFS, and MPNST.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Shunji Nishimura
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Tomohiko Ito
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| |
Collapse
|
25
|
Stevenson VB, Perry SN, Todd M, Huckle WR, LeRoith T. PD-1, PD-L1, and PD-L2 Gene Expression and Tumor Infiltrating Lymphocytes in Canine Melanoma. Vet Pathol 2021; 58:692-698. [PMID: 34169800 DOI: 10.1177/03009858211011939] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Melanoma in humans and dogs is considered highly immunogenic; however, the function of tumor-infiltrating lymphocytes (TILs) is often suppressed in the tumor microenvironment. In humans, current immunotherapies target checkpoint molecules (such as PD-L1, expressed by tumor cells), inhibiting their suppressive effect over TILs. The role of PD-L2, an alternative PD-1 ligand also overexpressed in malignant tumors and in patients with anti-PD-L1 resistance, remains poorly understood. In the current study, we evaluated the expression of checkpoint molecule mRNAs in canine melanoma and TILs. Analysis of checkpoint molecule gene expression was performed by RT-qPCR (real-time quantitative polymerase chain reaction) using total RNA isolated from formalin-fixed and paraffin-embedded melanomas (n = 22) and melanocytomas (n = 9) from the Virginia Tech Animal Laboratory Services archives. Analysis of checkpoint molecule expression revealed significantly higher levels of PDCD1 (PD-1) and CD274 (PD-L1) mRNAs and an upward trend in PDCD1LG2 (PD-L2) mRNA in melanomas relative to melanocytomas. Immunohistochemistry revealed markedly increased numbers of CD3+ T cells in the highest PD-1-expressing subgroup of melanomas compared to the lowest PD-1 expressors, whereas densities of IBA1+ cells (macrophages) were similar in both groups. CD79a+ cell numbers were low for both groups. As in human melanoma, overexpression of the PD-1/PD-L1/PD-L2 axis is a common feature of canine melanoma. High expression of PD-1 and PD-L1 correlates with increased numbers of CD3+ cells. Additionally, the high level of IBA1+ cells in melanomas with low PD-1 expression and low CD3+ cells levels suggest that the expression of checkpoint molecules is modulated by interactions between T cells and cancer cells rather than histiocytes.
Collapse
|
26
|
Toward a Personalized Therapy in Soft-Tissue Sarcomas: State of the Art and Future Directions. Cancers (Basel) 2021; 13:cancers13102359. [PMID: 34068344 PMCID: PMC8153286 DOI: 10.3390/cancers13102359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022] Open
Abstract
Soft-tissue sarcomas are rare tumors characterized by pathogenetic, morphological, and clinical intrinsic variability. Median survival of patients with advanced tumors are usually chemo- and radio-resistant, and standard treatments yield low response rates and poor survival results. The identification of defined genomic alterations in sarcoma could represent the premise for targeted treatments. Summarizing, soft-tissue sarcomas can be differentiated into histotypes with reciprocal chromosomal translocations, with defined oncogenic mutations and complex karyotypes. If the latter are improbably approached with targeted treatments, many suggest that innovative therapies interfering with the identified fusion oncoproteins and altered pathways could be potentially resolutive. In most cases, the characteristic genetic signature is discouragingly defined as "undruggable", which poses a challenge for the development of novel pharmacological approaches. In this review, a summary of genomic alterations recognized in most common soft-tissue sarcoma is reported together with current and future therapeutic opportunities.
Collapse
|
27
|
Candidate Biomarkers for Specific Intraoperative Near-Infrared Imaging of Soft Tissue Sarcomas: A Systematic Review. Cancers (Basel) 2021; 13:cancers13030557. [PMID: 33535618 PMCID: PMC7867119 DOI: 10.3390/cancers13030557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Near-infrared imaging of tumors during surgery facilitates the oncologic surgeon to distinguish malignant from healthy tissue. The technique is based on fluorescent tracers binding to tumor biomarkers on malignant cells. Currently, there are no clinically available fluorescent tracers that specifically target soft tissue sarcomas. This review searched the literature to find candidate biomarkers for soft tissue sarcomas, based on clinically used therapeutic antibodies. The search revealed 7 biomarkers: TEM1, VEGFR-1, EGFR, VEGFR-2, IGF-1R, PDGFRα, and CD40. These biomarkers are abundantly present on soft tissue sarcoma tumor cells and are already being targeted with humanized monoclonal antibodies. The conjugation of these antibodies with a fluorescent dye will yield in specific tracers for image-guided surgery of soft tissue sarcomas to improve the success rates of tumor resections. Abstract Surgery is the mainstay of treatment for localized soft tissue sarcomas (STS). The curative treatment highly depends on complete tumor resection, as positive margins are associated with local recurrence (LR) and prognosis. However, determining the tumor margin during surgery is challenging. Real-time tumor-specific imaging can facilitate complete resection by visualizing tumor tissue during surgery. Unfortunately, STS specific tracers are presently not clinically available. In this review, STS-associated cell surface-expressed biomarkers, which are currently already clinically targeted with monoclonal antibodies for therapeutic purposes, are evaluated for their use in near-infrared fluorescence (NIRF) imaging of STS. Clinically targeted biomarkers in STS were extracted from clinical trial registers and a PubMed search was performed. Data on biomarker characteristics, sample size, percentage of biomarker-positive STS samples, pattern of biomarker expression, biomarker internalization features, and previous applications of the biomarker in imaging were extracted. The biomarkers were ranked utilizing a previously described scoring system. Eleven cell surface-expressed biomarkers were identified from which 7 were selected as potential biomarkers for NIRF imaging: TEM1, VEGFR-1, EGFR, VEGFR-2, IGF-1R, PDGFRα, and CD40. Promising biomarkers in common and aggressive STS subtypes are TEM1 for myxofibrosarcoma, TEM1, and PDGFRα for undifferentiated soft tissue sarcoma and EGFR for synovial sarcoma.
Collapse
|
28
|
Albertsmeier M, Altendorf-Hofmann A, Lindner LH, Issels RD, Kampmann E, Dürr HR, Schubert-Fritschle G, Angele MK, Kirchner T, Jungbluth AA, Knösel T. Cancer Testis Antigens and Immunotherapy: Expression of PRAME Is Associated with Prognosis in Soft Tissue Sarcoma. Cancers (Basel) 2020; 12:E3612. [PMID: 33287125 PMCID: PMC7761656 DOI: 10.3390/cancers12123612] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: PRAME, NY-ESO-1, and SSX2 are cancer testis antigens (CTAs), which are expressed in testicular germ cells with re-expression in numerous cancer types. Their ability to elicit humoral and cellular immune responses have rendered them promising targets for cancer immunotherapy, but they have never been studied in a large and well-characterised cohort of soft tissue sarcomas (STS). (2) Methods: On a protein level, we examined PRAME, NY-ESO-1, and SSX2 expression in tumour tissues of 249 high-risk STS using immunohistochemistry. We correlated expression levels with clinicopathological parameters including tumour-infiltrating lymphocyte (TIL) counts, grading, and long-term survival. (3) Results: Expression of PRAME, NY-ESO-1, and SSX2 was observed in 25 (10%), 19 (8%), and 11 (4%) of 249 specimens with distinct patterns for histo-subtypes. Expression of PRAME was associated with shorter patient survival (p = 0.005) and higher grade (G2 vs. G3, p = 0.001), while NY-ESO-1 expression was correlated with more favourable survival (p = 0.037) and lower grade (G2 vs. G3, p = 0.029). Both PRAME and NY-ESO-1 expression were more frequent in STS with low TIL counts. In multivariate analysis, high PRAME and low SSX2 expression levels as well as metastatic disease and non-radical resections were independent predictors of shorter overall survival. (4) Conclusions: CTAs PRAME, NY-ESO-1, and SSX2 show distinct expression patterns in different STS subtypes. These results demonstrate their prognostic relevance and may guide future immunotherapeutic approaches in STS.
Collapse
Affiliation(s)
- Markus Albertsmeier
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany;
| | - Annelore Altendorf-Hofmann
- Department of General, Visceral and Vascular Surgery, Friedrich-Schiller Universität Jena, Am Klinikum 1, 07743 Jena, Germany;
| | - Lars H. Lindner
- Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.L.); (R.D.I.); (E.K.)
| | - Rolf D. Issels
- Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.L.); (R.D.I.); (E.K.)
| | - Eric Kampmann
- Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.H.L.); (R.D.I.); (E.K.)
| | - Hans-Roland Dürr
- Musculoskeletal Oncology, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany;
| | - Gabriele Schubert-Fritschle
- Munich Cancer Registry (MCR) of the Munich Tumour Centre (TZM), Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany;
| | - Martin K. Angele
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany;
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians-Universität (LMU) Munich, Thalkirchner Str. 36, 80337 Munich, Germany;
| | - Achim A. Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 1275, USA;
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-Universität (LMU) Munich, Thalkirchner Str. 36, 80337 Munich, Germany;
| |
Collapse
|
29
|
Li LQ, Zhang LH, Zhang Y, Lu XC, Zhang Y, Liu YK, Khader MA, Jia-Wen, Tao-Liu, Li JZ. Construction of immune-related gene pairs signature to predict the overall survival of osteosarcoma patients. Aging (Albany NY) 2020; 12:22906-22926. [PMID: 33203792 PMCID: PMC7746392 DOI: 10.18632/aging.104017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to establish the prognosis of osteosarcoma patients based on the characteristics of immune-related gene pairs. We used the lasso Cox regression model to construct and verify the signature consisting of 14 immune-related gene pairs. This signature can accurately predict the overall survival of osteosarcoma patients and is an independent prognostic factor for osteosarcoma patients. For this we constructed a signature-based nomogram. The results of the nomogram show that our signature can bring clinical net benefits. We then assessed the abundance of infiltrating immune cells in each sample, and combine the results of the gene set enrichment analysis of a single sample to explore the differences in the immune microenvironment between IRPG signature groups. The result of gene set enrichment analysis shows the strong relationship between signature and immune system. Finally, we evaluated the relationship between signature and immunotherapy efficiency using algorithms such as TIMI and SubMap to explore patients who might benefit from immunotherapy. In conclusion, our signature can predict the overall survival rate of osteosarcoma patients and provide potential guidance for exploring patients who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Long-Qing Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Liang-Hao Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yan Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xin-Chang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yong-Kui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Manhas Abdul Khader
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia-Wen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao-Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia-Zhen Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
30
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
31
|
Hu C, Chen B, Huang Z, Liu C, Ye L, Wang C, Tong Y, Yang J, Zhao C. Comprehensive profiling of immune-related genes in soft tissue sarcoma patients. J Transl Med 2020; 18:337. [PMID: 32873319 PMCID: PMC7465445 DOI: 10.1186/s12967-020-02512-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Background Immune-related genes (IRGs) have been confirmed to have an important role in tumorigenesis and tumor microenvironment formation. Nevertheless, a systematic analysis of IRGs and their clinical significance in soft tissue sarcoma (STS) patients is lacking. Methods Gene expression files from The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression (GTEx) were used to select differentially expressed genes (DEGs). Differentially expressed immune-related genes (DEIRGs) were determined by matching the DEG and ImmPort gene sets, which were evaluated by functional enrichment analysis. Unsupervised clustering of the identified DEIRGs was conducted, and associations with prognosis, the tumor microenvironment (TME), immune checkpoints, and immune cells were analyzed simultaneously. Two prognostic signatures, one for overall survival (OS) and one for progression free survival (PFS), were established and validated in an independent set. Finally, two transcription factor (TF)-IRG regulatory networks were constructed, and a crucial regulatory axis was validated. Results In total, 364 DEIRGs and four clusters were identified. OS, TME scores, five immune checkpoints, and 12 types of immune cells were found to be significantly different among the four clusters. The two prognostic signatures incorporating 20 DEIRGs showed favorable discrimination and were successfully validated. Two nomograms combining signature and clinical variables were generated. The C-indexes were 0.879 (95%CI 0.832 ~ 0.926) and 0.825 (95%CI 0.776 ~ 0.874) for the OS and PFS signatures, respectively. Finally, TF-IRG regulatory networks were established, and the MYH11-ADM regulatory axis was verified in three independent datasets. Conclusion This comprehensive analysis of the IRG landscape in soft tissue sarcoma revealed novel IRGs related to carcinogenesis and the immune microenvironment. These findings have implications for prognosis and therapeutic responses, which reveal novel potential prognostic biomarkers, promote precision medicine, and provide potential novel targets for immunotherapy.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China.,Qingdao University Medical College, Shandong, 266071, China
| | - Bo Chen
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China.,Wenzhou Medical University, Zhejiang, 325000, China
| | - Zhangheng Huang
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Chuan Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lin Ye
- Wenzhou Medical University, Zhejiang, 325000, China
| | - Cailin Wang
- Wenzhou Medical University, Zhejiang, 325000, China
| | - Yuexin Tong
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Jiaxin Yang
- Wenzhou Medical University, Zhejiang, 325000, China
| | - Chengliang Zhao
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China.
| |
Collapse
|
32
|
Xu F, Zheng J, Fu M, Zhou H. Antiprogrammed cell death protein 1 immunotherapy for angiosarcoma with high programmed death-ligand 1 expression: a case report. Immunotherapy 2020; 12:771-776. [PMID: 32611263 DOI: 10.2217/imt-2020-0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: Angiosarcoma (AS) is a rare malignancy originating from lymphatic or vascular endothelial cells. Prognosis of the disease is usually dismal and there is no effective treatment. Immunotherapy has been proved to be effective for various cancer types. Programmed death-ligand 1 (PD-L1) expression is generally recognized as a biomarker for the prediction of response to anti-PD-(L)1 immunotherapies. Methods & results: Here, we discuss a single case by highlighting the treatment of the antiprogrammed cell death protein 1 drug pembrolizumab with high PD-L1 expression. CT scan demonstrated a confirmed size reduction of some lesions compared with original lesions, which indicates the possible clinical benefit. Conclusion: We speculate that early anti-PD-1 treatment may be a promising strategy for angiosarcoma patients with high PD-L1 expression.
Collapse
Affiliation(s)
- Fei Xu
- Department of Respiratory Diseases, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zheng
- Department of Respiratory Diseases, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Mengjiao Fu
- Department of Respiratory Diseases, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Martín-Broto J, Moura DS, Van Tine BA. Facts and Hopes in Immunotherapy of Soft-Tissue Sarcomas. Clin Cancer Res 2020; 26:5801-5808. [PMID: 32601077 DOI: 10.1158/1078-0432.ccr-19-3335] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Sarcomas are mesenchymal tumors, encompassing more than 175 subtypes, each one with their own genetic complexities. As a result, immunotherapy approaches have not been universally successful across the wide range of diverse subtypes. The actual state of science and the current clinical data utilizing immunotherapy within the soft-tissue sarcomas (STS) will be detailed in this review. More precisely, the review will focus on: (i) the role of the immune microenvironment in the development and activity of new therapeutic approaches; (ii) the recent identification of the sarcoma immune class (SIC) groups, especially group SIC E with its B-cell signature that predicts immunotherapy response; (iii) the clinical trials using PD-1 and/or CTLA-4 inhibitors, which serves as reference for response data, (iv) the promising clinical activity from the combination of anti-angiogenics agents with PD-1 inhibitors, (v) the adapted T-cell therapies for synovial sarcoma that target either NY-ESO or MAGEA4; and (vi) the role for localized therapy using the virotherapy T-VEC with PD-1 inhibitors. Herein, we present the facts and the hopes for the patients with sarcoma, as the field is rapidly advancing its understanding of what and where to use the various types of immunotherapies.
Collapse
Affiliation(s)
- Javier Martín-Broto
- University Hospital Virgen del Rocio, Seville, Spain.,Institute of Biomedicine of Seville (HUVR; CSIC; US), Seville, Spain
| | - David S Moura
- Institute of Biomedicine of Seville (HUVR; CSIC; US), Seville, Spain
| | - Brian A Van Tine
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri. .,Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|