1
|
Zhang H, Du Y, Liu X, Gao R, Xu X, Hou X, Liu Z, Xin P, Wu W, Liu T, Zhao Y, Zhou H, Jiang Y. Enhancing curcumol delivery through PD-1 targeted nanocarriers: A novel therapeutic approach for prostate cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156595. [PMID: 40220412 DOI: 10.1016/j.phymed.2025.156595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Prostate cancer is a prevalent form of cancer that impacts men on a global scale, and its treatment faces challenges such as tumor metastasis, immune resistance, and epigenetic abnormalities. Most current research focuses on nanocarriers with a single function, but the dual mechanism of action-enhancing immune response and regulating EZH2 epigenetic modification-has not been reported. PURPOSE This study is the first to construct an engineered outer membrane vesicle (OMV) delivery system loaded with PD-1 antibody and Curcumol, combining two cutting-edge approaches: tumor immunotherapy and epigenetic regulation. We developed a nanocarrier system based on engineered OMVs (OMV-PD-1) to deliver the natural anticancer compound Curcumol, aiming to regulate epigenetic modifications and enhance tumor immune responses, thereby effectively inhibiting the proliferation and metastasis of prostate cancer cells. METHODS OMV-PD-1 was prepared using recombinant technology, and its characteristics were identified through the application of liquid chromatography-mass spectrometry (LC-MS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). We assessed its antitumor activity against prostate cancer cells (PC3) in vitro and in vivo and explored its molecular mechanisms through RNA sequencing and gene set enrichment analysis (GSEA). RESULTS An outstanding encapsulation efficiency and a delayed drug release profile were evident in OMV-PD-1/Curcumol. In vitro experiments demonstrated that the system significantly inhibited PC3 cell migration (77.25 % inhibition) and invasion (73.03 % inhibition), and regulated histone methylation modifications (such as H3K9 and H3K27) by downregulating EZH2 gene expression. In vivo experiments confirmed its excellent tumor targeting in a humanized mouse model, significantly inhibiting tumor growth and enhancing immune responses, such as increased NK cell infiltration and elevated pro-inflammatory cytokine levels. CONCLUSION The OMV-PD-1/Curcumol delivery system developed in this study not only hinders the aggressive actions of prostate cancer cells by regulating epigenetic modifications but also significantly stimulates antitumor immune responses, offering a unique and readily implementable therapeutic avenue.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, The First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Yang Du
- Department of Urology, The First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Xujia Liu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, China
| | - Ruxu Gao
- Department of Urology, The Cancer Hospital of Dalian University of Technology&Liaoning Cancer Hospital and institute, Shenyang, Liaoning Province 110042, China
| | - Xiaoxiao Xu
- Department of Urology, The First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Xiaolong Hou
- Department of Urology, The First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Zhenghua Liu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Weiwei Wu
- Department of Urology, The First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Tao Liu
- Department of Urology, The First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China.
| | - Hongxu Zhou
- Department of Anesthesiology, The First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China.
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
2
|
Guo RR, Heijs B, Wang WJ, Wuhrer M, Liu L, Lageveen-Kammeijer GSM, Voglmeir J. Insight into distribution and composition of nonhuman N-Glycans in mammalian organs via MALDI-TOF and MALDI-MSI. Carbohydr Polym 2025; 351:123065. [PMID: 39778995 DOI: 10.1016/j.carbpol.2024.123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs. By studying heart, kidney, and liver tissues from pig, cattle, and sheep, we aimed to gain insights into the abundance and spatial distribution of α-Gal- or Neu5Gc-containing N-glycans. N-glycomes were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), MALDI-mass spectrometry imaging (MSI), and capillary electrophoresis-electrospray ionization (CE-ESI)-MS. Both α-Gal- and Neu5Gc-containing N-glycans were present in all samples, with α-Gal-modified N-glycans being the most abundant nonhuman carbohydrate motif. The abundance of N-glycans terminating with α-Gal or Neu5Gc was higher in heart and kidney samples than livers. MSI revealed kidneys had the highest glycosylation levels, and α-Gal-containing N-glycans were abundant in the kidney cortex but scarce in the medulla. This study enhances our understanding of α-Gal- and Neu5Gc-modified N-glycans in animal organs and may guide research on carbohydrate antigen-induced immune rejection in xenotransplantation.
Collapse
Affiliation(s)
- Rui-Rui Guo
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453000, China; Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Wen-Jun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guinevere S M Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands; Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713, AV, Groningen, the Netherlands.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Fan C, Xiong F, Zhang S, Gong Z, Liao Q, Li G, Guo C, Xiong W, Huang H, Zeng Z. Role of adhesion molecules in cancer and targeted therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:940-957. [PMID: 38212458 DOI: 10.1007/s11427-023-2417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 01/13/2024]
Abstract
Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them. Various mechanisms deregulate adhesion molecules in cancer, enabling tumor cells to proliferate without restraint, invade through tissue boundaries, escape from immune surveillance, and survive in the tumor microenvironment. Recent studies have revealed that adhesion molecules also drive angiogenesis, reshape metabolism, and are involved in stem cell self-renewal. In this review, we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment, as well as the therapeutic strategies targeting adhesion molecules. These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.
Collapse
Affiliation(s)
- Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
| |
Collapse
|
4
|
Müller D. Targeting Co-Stimulatory Receptors of the TNF Superfamily for Cancer Immunotherapy. BioDrugs 2023; 37:21-33. [PMID: 36571696 PMCID: PMC9836981 DOI: 10.1007/s40259-022-00573-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
The clinical approval of immune checkpoint inhibitors is an important advancement in the field of cancer immunotherapy. However, the percentage of beneficiaries is still limited and it is becoming clear that combination therapies are required to further enhance the treatment efficacy. The potential of strategies targeting the immunoregulatory network by "hitting the gas pedal" as opposed to "blocking the brakes" is being recognized and intensively investigated. Hence, next to immune checkpoint inhibitors, agonists of co-stimulatory receptors of the tumor necrosis factor superfamily (TNF-SF) are emerging as promising options to expand the immunomodulatory toolbox. In this review the development of different categories of recombinant antibody and ligand-based agonists of 4-1BB, OX40, and GITR is summarized and discussed in the context of the challenges presented by the structural and mechanistical features of the TNFR-SF. An overview of current formats, trends, and clinical studies is provided.
Collapse
Affiliation(s)
- Dafne Müller
- grid.5719.a0000 0004 1936 9713Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Yang F, Yan S, Zhu L, Wang FX, Liu F, Cheng L, Yao H, Wu N, Lu R, Wu H. Evaluation of panel of neutralising murine monoclonal antibodies and a humanised bispecific antibody against influenza A(H1N1)pdm09 virus infection in a mouse model. Antiviral Res 2022; 208:105462. [DOI: 10.1016/j.antiviral.2022.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
|
6
|
Chu J, Gao F, Yan M, Zhao S, Yan Z, Shi B, Liu Y. Natural killer cells: a promising immunotherapy for cancer. J Transl Med 2022; 20:240. [PMID: 35606854 PMCID: PMC9125849 DOI: 10.1186/s12967-022-03437-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022] Open
Abstract
As a promising alternative platform for cellular immunotherapy, natural killer cells (NK) have recently gained attention as an important type of innate immune regulatory cell. NK cells can rapidly kill multiple adjacent cancer cells through non-MHC-restrictive effects. Although tumors may develop multiple resistance mechanisms to endogenous NK cell attack, in vitro activation, expansion, and genetic modification of NK cells can greatly enhance their anti-tumor activity and give them the ability to overcome drug resistance. Some of these approaches have been translated into clinical applications, and clinical trials of NK cell infusion in patients with hematological malignancies and solid tumors have thus far yielded many encouraging clinical results. CAR-T cells have exhibited great success in treating hematological malignancies, but their drawbacks include high manufacturing costs and potentially fatal toxicity, such as cytokine release syndrome. To overcome these issues, CAR-NK cells were generated through genetic engineering and demonstrated significant clinical responses and lower adverse effects compared with CAR-T cell therapy. In this review, we summarize recent advances in NK cell immunotherapy, focusing on NK cell biology and function, the types of NK cell therapy, and clinical trials and future perspectives on NK cell therapy.
Collapse
Affiliation(s)
- Junfeng Chu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Meimei Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Shuang Zhao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Zheng Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Bian Shi
- Department of Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| | - Yanyan Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
7
|
Van De Vyver AJ, Marrer-Berger E, Wang K, Lehr T, Walz AC. Cytokine Release Syndrome By T-cell-Redirecting Therapies: Can We Predict and Modulate Patient Risk? Clin Cancer Res 2021; 27:6083-6094. [PMID: 34162679 DOI: 10.1158/1078-0432.ccr-21-0470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
T-cell-redirecting therapies are promising new therapeutic options in the field of cancer immunotherapy, but the development of these modalities is challenging. A commonly observed adverse event in patients treated with T-cell-redirecting therapies is cytokine release syndrome (CRS). Its clinical manifestation is a burden on patients, and continues to be a big hurdle in the clinical development of this class of therapeutics. We review different T-cell-redirecting therapies, discuss key factors related to cytokine release and potentially leading to CRS, and present clinical mitigation strategies applied for those modalities. We propose to dissect those risk factors into drug-target-disease-related factors and individual patient risk factors. Aiming to optimize the therapeutic intervention of these modalities, we illustrate how the knowledge on drug-target-disease-related factors, such as target expression, binding affinity, and target accessibility, can be leveraged in a model-based framework and highlight with case examples how modeling and simulation is applied to guide drug discovery and development. We draw attention to the current gaps in predicting the individual patient's risk towards a high-grade CRS, which requires further considerations of risk factors related, but not limited to, the patient's demographics, genetics, underlying pathologies, treatment history, and environmental exposures. The drug-target-disease-related factors together with the individual patient's risk factors can be regarded as the patient's propensity for developing CRS in response to therapy. As an outlook, we suggest implementing a risk scoring system combined with mechanistic modeling to enable the prediction of an individual patient's risk of CRS for a given therapeutic intervention.
Collapse
Affiliation(s)
- Arthur J Van De Vyver
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland. .,Saarland University, Department of Clinical Pharmacy, Saarbrücken, Germany
| | - Estelle Marrer-Berger
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Ken Wang
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Thorsten Lehr
- Saarland University, Department of Clinical Pharmacy, Saarbrücken, Germany
| | - Antje-Christine Walz
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| |
Collapse
|