1
|
Ou L, Liu H, Peng C, Zou Y, Jia J, Li H, Feng Z, Zhang G, Yao M. Helicobacter pylori infection facilitates cell migration and potentially impact clinical outcomes in gastric cancer. Heliyon 2024; 10:e37046. [PMID: 39286209 PMCID: PMC11402937 DOI: 10.1016/j.heliyon.2024.e37046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Gastric cancer is a significant health concern worldwide. Helicobacter pylori (HP) infection is associated with gastric cancer risk, but differences between HP-infected and HP-free gastric cancer have not been studied sufficiently. The objective of this study was to investigate the effects of HP infection on the viability and migration of gastric cancer cells and identify potential underlying genetic mechanisms as well as their clinical relevance. Cell counting kit-8, lactate dehydrogenase, wound healing, and transwell assay were applied in the infection model of multiple clones of HP and multiple gastric cancer cell lines. Genes related to HP infection were identified using bioinformatics analysis and subsequently validated using real-time quantitative PCR. The association of these genes with immunity and drug sensitivity of gastric cancer was analyzed. Results showed that HP has no significant impact on viability but increases the migration of gastric cancer cells. We identified 1405 HP-upregulated genes, with their enriched terms relating to cell migration, drug, and immunity. Among these genes, the 82 genes associated with survival showed a significant impact on gastric cancer in consensus clustering and LASSO prognostic model. The top 10 hub HP-associated genes were further identified, and 7 of them were validated in HP-infected cells using real-time quantitative PCR, including ERBB4, DNER, BRINP2, KCTD16, MAPK4, THPO, and VSTM2L. The overexpression experiment showed that KCTD16 medicated the effect of HP on gastric cancer migration. Our findings suggest that HP infection may enhance the migratory potential of gastric cancer cells and these genes might be associated with immunity and drug sensitivity of gastric cancer. In human subjects with gastric cancer, HP presence in tumors may affect migration, immunity, and drug sensitivity.
Collapse
Affiliation(s)
- Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Hengrui Liu
- Cancer Institute, Jinan University, Guangzhou, China
- Tianjin Yinuo Biomedical Co., Ltd, Tianjin, China
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Junwei Jia
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China
| | - Hui Li
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
2
|
Liu Y, Yang DQ, Jiang JN, Jiao Y. Relationship between Helicobacter pylori infection and colorectal polyp/colorectal cancer. World J Gastrointest Surg 2024; 16:1008-1016. [PMID: 38690050 PMCID: PMC11056658 DOI: 10.4240/wjgs.v16.i4.1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 04/22/2024] Open
Abstract
Helicobacter pylori (H. pylori) plays an important role in the development of gastric cancer, although its association to colorectal polyp (CP) or colorectal cancer (CRC) is unknown. In this issue of World Journal of Gastrointestinal Surgery, Zhang et al investigated the risk factors for H. pylori infection after colon polyp resection. Importantly, the researchers used R software to create a prediction model for H. pylori infection based on their findings. This editorial gives an overview of the association between H. pylori and CP/CRC, including the clinical significance of H. pylori as an independent risk factor for CP/CRC, the underlying processes of H. pylori-associated carcinogenesis, and the possible risk factors and identification of H. pylori.
Collapse
Affiliation(s)
- Ying Liu
- Department of General Surgery, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Ding-Quan Yang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jun-Nan Jiang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
3
|
Liu Z, Zhang D, Chen S. Unveiling the gastric microbiota: implications for gastric carcinogenesis, immune responses, and clinical prospects. J Exp Clin Cancer Res 2024; 43:118. [PMID: 38641815 PMCID: PMC11027554 DOI: 10.1186/s13046-024-03034-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
High-throughput sequencing has ushered in a paradigm shift in gastric microbiota, breaking the stereotype that the stomach is hostile to microorganisms beyond H. pylori. Recent attention directed toward the composition and functionality of this 'community' has shed light on its potential relevance in cancer. The microbial composition in the stomach of health displays host specificity which changes throughout a person's lifespan and is subject to both external and internal factors. Distinctive alterations in gastric microbiome signature are discernible at different stages of gastric precancerous lesions and malignancy. The robust microbes that dominate in gastric malignant tissue are intricately implicated in gastric cancer susceptibility, carcinogenesis, and the modulation of immunosurveillance and immune escape. These revelations offer fresh avenues for utilizing gastric microbiota as predictive biomarkers in clinical settings. Furthermore, inter-individual microbiota variations partially account for differential responses to cancer immunotherapy. In this review, we summarize current literature on the influence of the gastric microbiota on gastric carcinogenesis, anti-tumor immunity and immunotherapy, providing insights into potential clinical applications.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Dachuan Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Lv Y, Tian W, Teng Y, Wang P, Zhao Y, Li Z, Tang S, Chen W, Xie R, Lü M, Zhuang Y. Tumor-infiltrating mast cells stimulate ICOS + regulatory T cells through an IL-33 and IL-2 axis to promote gastric cancer progression. J Adv Res 2024; 57:149-162. [PMID: 37086778 PMCID: PMC10918354 DOI: 10.1016/j.jare.2023.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023] Open
Abstract
INTRODUCTION In solid tumors, regulatory T cell (Treg) and mast cell perform different roles depending on the microenvironment. Nevertheless, mast cell and Treg-mediated interactions in gastric cancer (GC) are unclear, as are their regulation, function, and clinical significance. OBJECTIVE The present study demonstrated the mechanism of tumor-infiltrating mast cells stimulating ICOS+ regulatory T cells via the IL-33/IL-2 axis to promote the growth of gastric cancer. METHODS Analyses of 98 patients with GC were conducted to examine mast cell counts, ICOS+ Tregs, and the levels of IL-33 or IL-2. Isolated ICOS+ Treg and CD8+ T cell were stimulated, cultured and tested for their functional abilities in vitro and in vivo. RESULTS GC patients exhibited a significantly more production of IL-33 in tumors. Mast cell stimulated by tumor-derived IL-33 exhibited a prolonged lifespan through IL-33 mediated inhibition of apoptosis. Moreover, mast cells stimulated by tumor-derived IL-33 secreted IL-2, which induced Treg expansion. These inducible Tregs displayed an activated immunosuppressive phenotype with positive expression for the inducible T cell co-stimulator (ICOS). In vitro, IL-2 from IL to 33-stimulated mast cells induced increased numbers of ICOS+ Tregs with increased immunosuppressive activity against proliferation and effector function of CD8+ T cell. In vivo, ICOS+ Tregs were treated with anti-IL-2 neutralizing antibody followed by co-injection with CD8+ T cells in GC mouse model, which showed an increased CD8+ T cell infiltration and effector molecules production, meanwhile tumor growth and progression were inhibited. Besides, reduction in GC patient survival was associated with tumor-derived ICOS+ Tregs. CONCLUSION Our results highlight a crosstalk between GC-infiltrating mast cells and ICOS+ Tregs and provide a novel mechanism describing ICOS+ Treg expansion and induction by an IL-33/mast cell/IL-2 signaling axis in GC, and also provide functional evidence that the modulation of this immunosuppressive pathway can attenuate GC-mediated immune tolerance.
Collapse
Affiliation(s)
- Yipin Lv
- Department of Digestive Diseases, The General Hospital of Western Theater Command, Chengdu, Sichuan, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Wenqing Tian
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Teng
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Pan Wang
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Yongliang Zhao
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhengyan Li
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shanhong Tang
- Department of Digestive Diseases, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Rui Xie
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Muhan Lü
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Yuan Zhuang
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China; Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
5
|
Wu Z, Li G, Wang W, Zhang K, Fan M, Jin Y, Lin R. Immune checkpoints signature-based risk stratification for prognosis of patients with gastric cancer. Cell Signal 2024; 113:110976. [PMID: 37981068 DOI: 10.1016/j.cellsig.2023.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Until now, few researches have comprehensive explored the role of immune checkpoints (ICIs) and tumor microenvironment (TME) in gastric cancer (GC) patients based on the genomic data. RNA-sequence data and clinical information were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) database, GSE84437 and GSE84433. Univariate Cox analysis identified 60 ICIs with prognostic values, and these genes were then subjected to NMF cluster analysis and the GC samples (n = 804) were classified into two distinct subtypes (Cluster 1: n = 583; Cluster 2: n = 221). The Kaplan-Meier curves for OS analysis indicated that C1 predicted a poorer prognosis. The C2 subtype illustrated a relatively better prognosis and characteristics of "hot tumors," including high immune score, overexpression of immune checkpoint molecules, and enriched tumor-infiltrated immune cells, indicating that the NMF clustering in GC was robust and stable. Regarding the patient's heterogeneity, an ICI-score was constructed to quantify the ICI patterns in individual patients. Moreover, the study found that the low ICI-score group contained mostly MSI-low events, and the high ICI-score group contained predominantly MSI-high events. In addition, the ICI-score groups had good responsiveness to CTLA4 and PD-1 based on The Cancer Immunome Atlas (TCIA) database. Our research firstly constructed ICIs signature, as well as identified some hub genes in GC patients.
Collapse
Affiliation(s)
- Zenghong Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Fan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Zhao X, Wang Y, Jiang X, Mo B, Wang C, Tang M, Rong Y, Zhang G, Hu M, Cai H. Comprehensive analysis of the role of ICOS ( CD278 ) in pan-cancer prognosis and immunotherapy. BMC Cancer 2023; 23:194. [PMID: 36855091 PMCID: PMC9971684 DOI: 10.1186/s12885-023-10564-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The immunological checkpoint known as Inducible T Cell Costimulatory Factor (ICOS, Cluster of Differentiation, CD278) is activated and expressed on T cells. Both somatic cells and antigen-presenting cells expressed its ligand, ICOSL (including tumor cells in the tumor microenvironment).It is important for immunosuppression. Uncertainty surrounds the function of ICOS in tumor immunity. METHODS Several bioinformatics techniques were employed by us to thoroughly examine the expression and prognostic value of ICOS in 33 cancers based on data collected from TCGA and GTEx. In addition, ICOS was explored with pathological stage, tumor-infiltrating cells, immune checkpoint genes, mismatch repair (MMR) genes, DNA methyltransferases (DNMTs), microsatellite instability (MSI),and tumor mutation burden (TMB).In addition,To ascertain the level of ICOS expression in various cells, qRT-PCR was employed. RESULTS The findings revealed that ICOS expression was up regulation in most cancer types. The high expression of ICOS in tumor samples was related to the poor prognosis of UVM and LGG; The positive prognosis was boosted by the strong expression of ICOS in OV, SARC, SKCM, THYM, UCEC, and HNSC. The result is that the expression of malignancy was revealed by the immune cells' invasion.profile of ICOS in different types of cancer. Different ways that ICOS expression is connected to immune cell infiltration account for variations in patient survival. Additionally, the TMB, MSI, MMR, and DNMT genes as well as ICOS expression are linked in many cancer types.The results of PCR showed that it is highly expressed in gastric, breast, liver and renal cell carcinoma cell lines compared with normal cells. CONCLUSION This study suggests that ICOS may be a potential tumor immunotherapy target and prognostic marker.
Collapse
Affiliation(s)
- Xiashuang Zhao
- grid.417234.70000 0004 1808 3203The First Clinical Medical College of Gansu, University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 730000 Gansu, China ,grid.417234.70000 0004 1808 3203NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 730000 Lanzhou, China
| | - Yongfeng Wang
- grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 730000 Gansu, China ,grid.417234.70000 0004 1808 3203NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 730000 Lanzhou, China ,grid.412643.60000 0004 1757 2902The First Clinical Medical College of Lanzhou University, 204 Donggang West Road, 730000 Lanzhou, Gansu China
| | - Xianglai Jiang
- grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China ,Graduate School, Ning Xia Medical University, 750004 Yinchuan, Ningxia China
| | - Bangqian Mo
- grid.417234.70000 0004 1808 3203The First Clinical Medical College of Gansu, University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China
| | - Chenyu Wang
- Graduate School, Ning Xia Medical University, 750004 Yinchuan, Ningxia China
| | - Mingzheng Tang
- grid.417234.70000 0004 1808 3203The First Clinical Medical College of Gansu, University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China
| | - Yao Rong
- grid.417234.70000 0004 1808 3203The First Clinical Medical College of Gansu, University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China
| | - Guiqian Zhang
- grid.417234.70000 0004 1808 3203The First Clinical Medical College of Gansu, University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China
| | - Ming Hu
- Gansu Provincial Hospital, 730000, Lanzhou, Gansu, China.
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000, Lanzhou, Gansu, China. .,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 730000, Gansu, China. .,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 730000, Lanzhou, China. .,The First Clinical Medical College of Lanzhou University, 204 Donggang West Road, 730000, Lanzhou, Gansu, China. .,Gansu Provincial Hospital, 730000, Lanzhou, Gansu, China.
| |
Collapse
|
7
|
Zhang Y, Wang XL, Liu JJ, Qian ZY, Pan ZY, Song NP, Chen HY, Zhang W, Zhang X. ICOS/ICOSLG and PD-1 Co-Expression is Associated with the Progression of Colorectal Precancerous- Carcinoma Immune Microenvironment. J Inflamm Res 2023; 16:977-992. [PMID: 36915615 PMCID: PMC10008008 DOI: 10.2147/jir.s401123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/25/2023] [Indexed: 03/09/2023] Open
Abstract
Purpose This study aimed to investigate the expression of inducible T-cell co-stimulator (ICOS) and its ligand (ICOSLG), along with their association with clinicopathological features and influence on the immune profile in colorectal cancer (CRC). Patients and Methods The Cancer Genome Atlas Colorectal Adenocarcinoma cohorts were used. We also analyzed 131 clinical samples of colon lesions, including precancerous lesions (hyperplastic polyps, low-grade dysplasia, and high-grade dysplasia) and CRC tissues. We conducted immunohistochemical (IHC) assays and multiple IHC (mIHC) of CD4+, Foxp3+ tumor-infiltrating lymphocytes (TILs), and PD-1/PD-L1 immune checkpoints in precancerous lesions and CRC samples from our patient subsets to determine changes and correlations in ICOS and ICOSLG expression during progression through the adenoma-carcinoma pathway. Results High expression of ICOS and ICOSLG was a significant factor in CRC in multiple analyses and was positively correlated with CD4+/Foxp3+ TIL density and PD-1/PD-L1 expression, which increased with the sequential progression of lesions from precancerous tissues to carcinoma. Multivariable logistic regression analysis suggested that the location and expression level of ICOS/ICOSLG may be involved in precancerous-carcinoma progression. The co-expression status of PD-1 and ICOS/ ICOSLG could stratify patients with colorectal lesions into three groups of low, moderate, and high risk of progression. According to this classification and mIHC assays, we found a strong correlation between increased PD-1+ICOS+ or PD-1+ICOSLG+ co-expression and CRC, which might be deemed an independent factor in carcinogenesis. Conclusion Increased ICOS/ICOSLG expression may be associated with the progressive formation of Foxp3+ TILs in the immune microenvironment and may further promote the development of the abnormal cytology of colorectal lesions from precancerous neoplasia to CRC. Our findings support the interpretation that enhanced co-expression of PD-1+ICOS+ or PD-1+ICOSLG+ contributes to the immune-active microenvironment of the colorectal adenoma-carcinoma sequence.
Collapse
Affiliation(s)
- Yu Zhang
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China
| | - Xue-Li Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Jing-Jing Liu
- Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Zhen-Yuan Qian
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China
| | - Zheng-Yang Pan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Ni-Ping Song
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Hui-Yan Chen
- Clinical Laboratory, Tongxiang First People's Hospital, Tongxiang, Zhejiang, People's Republic of China
| | - Wei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Zhang
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
8
|
Geng H, Dong Z, Zhang L, Yang C, Li T, Lin Y, Ke S, Xia X, Zhang Z, Zhao G, Zhu C. An Immune Signature for Risk Stratification and Therapeutic Prediction in Helicobacter pylori-Infected Gastric Cancer. Cancers (Basel) 2022; 14:3276. [PMID: 35805047 PMCID: PMC9265823 DOI: 10.3390/cancers14133276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori (HP) infection is the greatest risk factor for gastric cancer (GC). Increasing evidence has clarified that tumor immune microenvironment (TIME) is closely related to the prognosis and therapeutic efficacy of HP-positive (HP+) GC patients. In this study, we aimed to construct a novel immune-related signature for predicting the prognosis and immunotherapy efficacy of HP+ GC patients. A total of 153 HP+ GC from three different cohorts were included in this study. An Immune-Related prognostic Signature for HP+ GC patients (IRSHG) was established using Univariate Cox regression, the LASSO algorithm, and Multivariate Cox regression. Univariate and Multivariate analyses proved IRSHG was an independent prognostic predictor for HP+ GC patients, and an IRSHG-integrated nomogram was established to quantitatively assessthe prognostic risk. The low-IRSHG group exhibited higher copy number load and distinct mutation profiles compared with the high-IRSHG group. In addition, the difference of hallmark pathways and immune cells infiltration between the two groups was investigated. Notably, tumor immune dysfunction and exclusion (TIDE) analysis indicated that the low-IRSHG group had a higher sensitivity to anti-PD-1 immunotherapy, which was validated by an external pabolizumab treatment cohort. Moreover, 98 chemotherapeutic drugs and corresponding potential biomarkers were identified for two groups, and several drugs with potential ability to reverse IRSHG score were identified using CMap analysis. Collectively, IRSHG may serve as a promising biomarker for survival outcome as well as immunotherapy efficacy. Furthermore, it can also help to prioritize potential therapeutics for HP+ GC patients, providing new insight for the personalized treatment of HP-infected GC.
Collapse
Affiliation(s)
- Haigang Geng
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (H.G.); (Z.D.); (Y.L.); (S.K.); (X.X.); (Z.Z.)
| | - Zhongyi Dong
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (H.G.); (Z.D.); (Y.L.); (S.K.); (X.X.); (Z.Z.)
| | - Linmeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (L.Z.); (C.Y.)
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (L.Z.); (C.Y.)
| | - Tingting Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai 200437, China;
| | - Yuxuan Lin
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (H.G.); (Z.D.); (Y.L.); (S.K.); (X.X.); (Z.Z.)
| | - Shouyu Ke
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (H.G.); (Z.D.); (Y.L.); (S.K.); (X.X.); (Z.Z.)
| | - Xiang Xia
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (H.G.); (Z.D.); (Y.L.); (S.K.); (X.X.); (Z.Z.)
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (H.G.); (Z.D.); (Y.L.); (S.K.); (X.X.); (Z.Z.)
| | - Gang Zhao
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (H.G.); (Z.D.); (Y.L.); (S.K.); (X.X.); (Z.Z.)
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China; (H.G.); (Z.D.); (Y.L.); (S.K.); (X.X.); (Z.Z.)
| |
Collapse
|
9
|
Jingushi K, Kawashima A, Saito T, Kanazawa T, Motooka D, Kimura T, Mita M, Yamamoto A, Uemura T, Yamamichi G, Okada K, Tomiyama E, Koh Y, Matsushita M, Kato T, Hatano K, Uemura M, Tsujikawa K, Wada H, Nonomura N. Circulating extracellular vesicles carrying Firmicutes reflective of the local immune status may predict clinical response to pembrolizumab in urothelial carcinoma patients. Cancer Immunol Immunother 2022; 71:2999-3011. [DOI: 10.1007/s00262-022-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
10
|
Zhang N, Liu Y, Yang H, Liang M, Wang X, Wang M, Kong J, Yuan X, Zhou F. Clinical Significance of Fusobacterium nucleatum Infection and Regulatory T Cell Enrichment in Esophageal Squamous Cell Carcinoma. Pathol Oncol Res 2021; 27:1609846. [PMID: 34305476 PMCID: PMC8300010 DOI: 10.3389/pore.2021.1609846] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022]
Abstract
A variety of pathogenic microorganisms promote tumor occurrence and development through long-term colonization in the body. Fusobacterium nucleatum (F. nucleatum) is abundant in precancerous esophageal lesions and is closely related to the malignant progression of esophageal squamous cell carcinoma (ESCC). The invasion of exogenous microorganisms can reshape the immune microenvironment, make the immune system incapacitated, and assist tumor cells in immune escape. A variety of pathogenic microorganisms induce the recruitment of regulatory T cell (Tregs) to allow tumor cells to escape immune surveillance and provide favorable conditions for their own long-term colonization. Tregs are one of the major obstacles to tumor immunotherapy and have a significant positive correlation with the occurrence and development of many kinds of tumors. Because F. nucleatum can instantly enter cells and colonize for a long time, we speculated that F. nucleatum infection could facilitate the immune escape of tumor cells through enrichment of Tregs and promote the malignant progression of ESCC. In this study, we found a significant concordance between F. nucleatum infection and Tregs infiltration. Therefore, we propose the view that chronic infection of F. nucleatum may provide favorable conditions for long-term colonization of itself by recruiting Tregs and suppressing the immune response. At the same time, the massive enrichment of Treg may also weaken the immune response and assist in the long-term colonization of F. nucleatum. We analyzed the correlation between F. nucleatum infection with the clinicopathological characteristics and survival prognosis of the patients. F. nucleatum infection was found to be closely related to sex, smoking, drinking, degree of differentiation, depth of invasion, lymph node metastasis, and clinical stage. The degree of differentiation, depth of infiltration, lymph node metastasis, clinical stage, and F. nucleatum infection are independent risk factors affecting ESCC prognosis. Additionally, the survival rate and median survival time were significantly shortened in the F. nucleatum infection positive group. Therefore, we propose that long-term smoking and alcohol consumption cause poor oral and esophageal environments, thereby significantly increasing the risk of F. nucleatum infection. In turn, F. nucleatum infection and colonization may weaken the antitumor immune response through Treg enrichment and further assist in self-colonization, promoting the malignant progression of ESCC.
Collapse
Affiliation(s)
- Ning Zhang
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| | - Yiwen Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Hong Yang
- School of PE, Henan University of Science and Technology, Luoyang, China
| | - Mengxia Liang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaopeng Wang
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| | - Min Wang
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| | - Jinyu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Fuyou Zhou
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| |
Collapse
|