1
|
Wang X, Qu Y, Sun Y, Yang T, Wang W, Dou X, Jia Y. ATP6V0B promotes the tumorigenesis of bladder cancer by activating PAQR4/PI3K/AKT signaling. BMC Cancer 2025; 25:789. [PMID: 40295930 PMCID: PMC12036214 DOI: 10.1186/s12885-025-14183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND ATPase H+ transporting V0 subunit b (ATP6V0B) is an essential component of the vacuolar ATP multi-protein complex (V-ATPase) associated with energy metabolism. However, information on its role and mechanism of action in bladder cancer (BCa) and other tumors is not clear. METHODS In this study, we evaluated the expression of ATP6V0B in BCa and its correlation with patient survival outcomes by performing public database analysis, as well as, RT-qPCR and Western blotting assays. We also investigated the effect of altering the level of expression of ATP6V0B on the malignant behavior of BCa cells at the cellular level by conducting the CCK-8 assay and Transwell assay. In vivo experiments involved subcutaneous injection of stable ATP6V0B-knockdown BCa cells into nude mice to assess the influence of ATP6V0B on tumorigenesis. Additionally, bioinformatics analysis was combined with other methods to predict that ATP6V0B may modulate signaling pathways. RESULTS The findings showed that the expression of ATP6V0B increased in BCa tissues, and patients exhibiting high levels of this protein had a poorer prognosis. Additionally, our results showed that ATP6V0B functions as an oncogene and stimulates the proliferation, invasion, and migration of BCa cells in vitro. In vivo animal studies showed that downregulating ATP6V0B hindered the growth of BCa. Regarding the mechanism of action of ATVP60VB, we found that ATVP60VB can activate the PI3K/AKT signaling pathway through Progestin and AdipoQ Receptor Family Member 4 (PAQR4) -mediated upregulation. CONCLUSION To summarize, the results of this study indicated that an increase in the level of expression of ATP6V0B in BCa tissues and cells is associated with unfavorable patient prognosis due to its tumor-promoting effects via upregulation of the PAQR4/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xinsheng Wang
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300211, China
| | - Yanqing Qu
- Surgical Clinic, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, 266071, China
| | - Yanbo Sun
- Department of Urology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong, 266000, China
| | - Tong Yang
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300211, China
| | - Wei Wang
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300211, China
| | - Xinmeng Dou
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300211, China
| | - Yong Jia
- Department of Urology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), No. 1 Jiaozhou Road, Qingdao, Shandong, 266071, China.
| |
Collapse
|
2
|
Zhou H, Zheng Z, Fan C, Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin Cancer Biol 2025; 109:44-66. [PMID: 39793777 DOI: 10.1016/j.semcancer.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Non-small cell lung cancer (NSCLC), the most prevalent form of lung cancer, remains a leading cause of cancer-related mortality worldwide, particularly among elderly individuals. The phenomenon of immunosenescence, characterized by the progressive decline in immune cell functionality with aging, plays a pivotal role in NSCLC progression and contributes to the diminished efficacy of therapeutic interventions in older patients. Immunosenescence manifests through impaired immune surveillance, reduced cytotoxic responses, and increased chronic inflammation, collectively fostering a pro-tumorigenic microenvironment. This review provides a comprehensive analysis of the molecular, cellular, and genetic mechanisms of immunosenescence and its impact on immune surveillance and the tumor microenvironment (TME) in NSCLC. We explore how aging affects various immune cells, including T cells, B cells, NK cells, and macrophages, and how these changes compromise the immune system's ability to detect and eliminate tumor cells. Furthermore, we address the challenges posed by immunosenescence to current therapeutic strategies, particularly immunotherapy, which faces significant hurdles in elderly patients due to immune dysfunction. The review highlights emerging technologies, such as single-cell sequencing and CRISPR-Cas9, which offer new insights into immunosenescence and its potential as a therapeutic target. Finally, we outline future research directions, including strategies for rejuvenating the aging immune system and optimizing immunotherapy for older NSCLC patients, with the goal of improving treatment efficacy and survival outcomes. These efforts hold promise for the development of more effective, personalized therapies for elderly patients with NSCLC.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| |
Collapse
|
3
|
Mo S, Liu T, Zhou H, Huang J, Zhao L, Lu F, Kuang Y. ATP6V1B1 regulates ovarian cancer progression and cisplatin sensitivity through the mTOR/autophagy pathway. Mol Cell Biochem 2025; 480:1013-1026. [PMID: 38735913 PMCID: PMC11835902 DOI: 10.1007/s11010-024-05025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Early detection and effective chemotherapy for ovarian cancer, a serious gynecological malignancy, require further progress. This study aimed to investigate the molecular mechanism of ATPase H+-Transporting V1 Subunit B1 (ATP6V1B1) in ovarian cancer development and chemoresistance. Our data show that ATP6V1B1 is upregulated in ovarian cancer and correlated with decreased progression-free survival. Gain- and loss-of-function experiments demonstrated that ATP6V1B1 promotes the proliferation, migration, and invasion of ovarian cancer cells in vitro, while ATP6V1B1 knockout inhibits tumor growth in vivo. In addition, knocking down ATP6V1B1 increases the sensitivity of ovarian cancer cells to cisplatin. Mechanistic studies showed that ATP6V1B1 regulates the activation of the mTOR/autophagy pathway. Overall, our study confirmed the oncogenic role of ATP6V1B1 in ovarian cancer and revealed that ATP6V1B1 promotes ovarian cancer progression via the mTOR/autophagy axis.
Collapse
Affiliation(s)
- Shien Mo
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Tingji Liu
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haiqin Zhou
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Junning Huang
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Zhao
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fangfang Lu
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Kuang
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China.
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Li C, Mao Y, Liu Y, Hu J, Su C, Tan H, Hou X, Ou M. Machine learning-based integration develops a multiple programmed cell death signature for predicting the clinical outcome and drug sensitivity in colorectal cancer. Anticancer Drugs 2025; 36:1-18. [PMID: 39132895 DOI: 10.1097/cad.0000000000001654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Tumorigenesis and treatment are closely associated with various programmed cell death (PCD) patterns. However, the coregulatory role of multiple PCD patterns in colorectal cancer (CRC) remains unknown. In this study, we developed a multiple PCD index (MPCDI) based on 19 PCD patterns using two machine learning algorithms for risk stratification, prognostic prediction, construction of nomograms, immune cell infiltration analysis, and chemotherapeutic drug sensitivity analysis. As a result, in the TCGA-COAD, GSE17536, and GSE29621 cohorts, the MPCDI can effectively distinguished survival outcomes in CRC patients and served as an independent factor for CRC patients. We then explored the immune infiltration landscape in two groups using the nine algorithms and found more overall immune infiltration in the high-MPCDI group. TIDE scores suggested that the increased immune evasion potential and immune checkpoint inhibition therapy may be less effective in the high-MPCDI group. Immunophenoscores indicated that anti-PD1, anti-cytotoxic T-lymphocyte associated antigen 4 (anti-CTLA4), and anti-PD1-CTLA4 combination therapies are less effective in the high-MPCDI group. In addition, the high-MPCDI group was more sensitive to AZD1332, Foretinib, and IGF1R_3801, and insensitive to AZD3759, AZD5438, AZD6482, Erlotinib, GSK591, IAP_5620, and Picolinici-acid, which suggests that the MPCDI can guide drug selection for CRC patients. As a new clinical classifier, the MPCDI can more accurately distinguish CRC patients who benefit from immunotherapy and develop personalized treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Chunhong Li
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University
| | - Yuhua Mao
- Department of Obstetrics, The Second Affiliated Hospital of Guilin Medical University
| | - Yi Liu
- Department of Obstetrics, The Second Affiliated Hospital of Guilin Medical University
| | - Jiahua Hu
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University
| | - Chunchun Su
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University
| | - Haiyin Tan
- School of Medical Laboratory Medicine, Guilin Medical University, Guilin, China
| | - Xianliang Hou
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University
| | - Minglin Ou
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University
| |
Collapse
|
5
|
Chen T, Lin X, Lu S, Li B. V-ATPase in cancer: mechanistic insights and therapeutic potentials. Cell Commun Signal 2024; 22:613. [PMID: 39707503 DOI: 10.1186/s12964-024-01998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Vacuolar-type H+-ATPase (V-ATPase) is a crucial proton pump that plays an essential role in maintaining intracellular pH homeostasis and a variety of physiological processes. This review provides an in-depth exploration of the structural components, functional mechanisms, and regulatory modes of V-ATPase in cancer cells. Comprising two main domains, V1 and V0, V-ATPase drives the proton pump through ATP hydrolysis, sustaining the pH balance within the cell and organelles. In cancer cells, the enhanced activity of V-ATPase is closely associated with the proliferation and metastasis of tumor cells, and it promotes the growth and invasion of tumor cells by regulating pH values in the tumor microenvironment. Moreover, the interaction between V-ATPase and key metabolic regulatory factors, the mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK), impacts the metabolic state of cancer cells. The role of V-ATPase in tumor drug resistance and its regulatory mechanism in non-canonical autophagy offer new perspectives and potential targets for cancer therapy. Future research directions will focus on the specific mechanisms of action of V-ATPase in the tumor microenvironment and how to translate its inhibitors into clinical applications, providing significant scientific evidence for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, China.
| | - Xiaotan Lin
- Department of Family Planning, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Shuo Lu
- School of Basic Medicine, Guangdong Medical University, DongGuan, China
| | - Bo Li
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
6
|
Li Y, Yang Y, Yu B, Gao R, Wang X. Transcriptome and Metabolome Analyses Reveal High-Altitude Adaptation Mechanism of Epididymis Sperm Maturation in Tibetan Sheep. Animals (Basel) 2024; 14:3117. [PMID: 39518841 PMCID: PMC11544902 DOI: 10.3390/ani14213117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, the epididymal histology, caepididymal sperm physiological parameters, serum reproductive hormones, and antioxidant enzyme SOD levels of Tibetan sheep at a 2500 m and 3500 m altitude were compared by using a combination of transcriptome and metabolomics methods. This was conducted to investigate the effects of a high-altitude environment on spermatogenesis and the maturation of Tibetan sheep. The results showed that compared to the low-altitude group, the high-altitude group had a smaller epididymal lumen, thicker epididymal wall, significantly decreased sperm survival rate, and significantly increased sperm deformation rate, but no difference in sperm motility and sperm respiratory intensity. With increasing altitude, Tibetan sheep showed a decreasing trend in serum reproductive hormones (FSH and T), while the antioxidant enzyme SOD activity was significantly reduced. Transcriptomic analysis revealed 139 differentially expressed genes in the Tibetan sheep epididymis under high-altitude conditions. The SYCP2 gene is involved in multiple biological processes related to reproduction and plays an important role in the regulation of epididymal function and sperm quality in Tibetan sheep. Genes like ADCYAP1R1, CABP2, CALN1, and ATP6V1B1 can help maintain sperm viability and maturation by regulating the cAMP signaling pathway, calcium ion homeostasis, and cellular signaling. Metabolomic analysis found that the high-altitude group had increased adenosine content and decreased prostaglandin I2 content in the epididymis. These metabolites are involved in spermatogenesis, motility, fertilization, and early embryonic development. The integrated omics analysis suggests that Tibetan sheep adapt to the high-altitude hypoxic environment by regulating cAMP signaling pathway genes like ADCY and PRKACA, as well as metabolites like adenosine and prostaglandin I2, to maintain epididymal function and sperm motility. These genes and metabolites play an important role in maintaining normal epididymal function and sperm motility at high altitudes.
Collapse
Affiliation(s)
| | | | | | | | - Xinrong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (Y.Y.); (R.G.)
| |
Collapse
|
7
|
Liu B, Peng Y, Su Y, Diao C, Qian J, Zhan X, Cheng R. Transcriptome and metabolome sequencing identifies glutamate and LPAR1 as potential factors of anlotinib resistance in thyroid cancer. Anticancer Drugs 2024; 35:741-751. [PMID: 38820067 DOI: 10.1097/cad.0000000000001626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
OBJECTIVE To explore the mechanism of anlotinib resistance in thyroid carcinoma. METHODS We constructed an anlotinib-resistant thyroid carcinoma cell line and observed the effect of drug resistance on the functional activity of these cell lines. Transcriptome sequencing and metabolomic sequencing combined with biosynthesis analysis were used to explore and screen possible drug resistance regulatory pathways. RESULTS Through transcriptomic sequencing analysis of drug-resistant cell lines, it was found that the differentially expressed genes of drug-resistant strains were enriched mainly in the interleukin 17, transforming growth factor-β, calcium, peroxisome proliferator activated receptor, and other key signaling pathways. A total of 354 differentially expressed metabolic ions were screened using liquid chromatography-mass spectrometry/mass spectrometry to determine the number of metabolic ions in the drug-resistant strains. The results of the Venn diagram correlation analysis showed that glutamate is closely related to multiple pathways and may be an important regulatory factor of anlotinib resistance in thyroid carcinoma. In addition, eight common differentially expressed genes were screened by comparing the gene expression profiling interactive analysis database and sequencing results. Further quantitative real time polymerase chain reaction verification, combined with reports in the literature, showed that LPAR1 may be an important potential target. CONCLUSION This is the first study in which the drug resistance of thyroid cancer to anlotinib was preliminarily discussed. We confirmed that anlotinib resistance in thyroid cancer promotes the progression of malignant biological behavior. We conclude that glutamate may be a potential factor for anlotinib resistance in thyroid cancer and that LPAR1 is also a potentially important target.
Collapse
Affiliation(s)
- Bin Liu
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
- Kunming Medical University, the First Clinical Medical School of Kunming Medical University, Yunnan, China
| | - Ying Peng
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Yanjun Su
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Chang Diao
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Jun Qian
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Xiangxiang Zhan
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| | - Ruochuan Cheng
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University
| |
Collapse
|
8
|
Liu L, Wu J. Identifying key pathogenic mechanisms and potential intervention targets for recurrence after laryngeal cancer treatment through bioinformatics screening. Transl Cancer Res 2024; 13:3826-3841. [PMID: 39145096 PMCID: PMC11319988 DOI: 10.21037/tcr-24-1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Background Laryngeal cancer (LC), a prevalent malignant tumor of the head and neck, is characterized by a high rate of postoperative recurrence and significant treatment challenges upon recurrence, severely impacting patients' quality of life. There is a pressing need for effective biomarkers in clinical practice to predict the risk of LC recurrence and guide the development of personalized treatment plans. This study uses bioinformatics methods to explore potential biomarkers for LC recurrence, focusing on key genes and exploring their functions and mechanisms of action in LC recurrence. The aim is to provide new perspectives and evidence for clinical diagnosis, prognostic evaluation, and targeted treatment of LC. Methods Gene expression profiles from the GSE25727 data set in the Gene Expression Omnibus database were analyzed to detect the differentially expressed genes (DEGs) between the tumor tissues of postoperative recurrent and non-recurrent early stage LC patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were also conducted. A protein-protein interaction (PPI) network and transcription factor (TF)-DEG-microRNA (miRNA) network were developed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, with key genes selected using the Molecular Complex Detection (MCODE) plugin. A Gene Set Enrichment Analysis (GSEA) was carried out to investigate the possible mechanisms of the key genes. A retrospective analysis was conducted using the clinical data of 83 LC patients. Immunohistochemical staining was used to examine the transcription level of the key genes in the LC tumor tissues and the factors affecting postoperative recurrence. Results A total of 248 upregulated and 34 downregulated DEGs were identified in the GSE25727 data set. The PPI network analysis identified a significant module and five candidate genes (i.e., RRAGA, SLC38A9, WDR24, ATP6V1B1, and LAMTOR3). The construction of the TF-DEG-miRNA network indicated that ATP6V1B1 might be regulated by one TF and interact with 17 miRNAs. The KEGG and GSEA analyses suggested that ATP6V1B1 may influence LC recurrence through the involvement of pro-inflammatory and pro-fibrotic mediators, glutathione metabolism, matrix metalloproteinases, immune regulation, and lymphocyte interactions. The recurrence rate of the 83 LC patients included in the study was 19.3% (16/83). The immunohistochemistry results indicated that ATP6V1B1 was highly expressed in patients with recurrent LC. The univariate and multivariate logistic regression analyses revealed that tumor stage T3 (P=0.04), tumor stage T4 (P=0.01), and a high expression of ATP6V1B1 (P=0.02) were risk factors for recurrence after surgical treatment in LC patients. Conclusions The key genes and signaling pathways identified through the bioinformatics screening provide insights into the potential mechanisms of the pathogenesis of LC. ATP6V1B1 may promote the recurrence of LC by weakening the immune phenotype. Our findings provide a theoretical basis for further research into clinical diagnostics and treatment strategies for LC.
Collapse
Affiliation(s)
- Laiyan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jiebin Wu
- Department of Hepatobiliary Surgery, The Second People’s Hospital of Wuhu, Wuhu, China
| |
Collapse
|
9
|
Lei J, Fu J, Wang T, Guo Y, Gong M, Xia T, Shang S, Xu Y, Cheng L, Lin B. Molecular subtype identification and prognosis stratification by a immunogenic cell death-related gene expression signature in colorectal cancer. Expert Rev Anticancer Ther 2024; 24:635-647. [PMID: 38407877 DOI: 10.1080/14737140.2024.2320187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
OBJECTIVES This study intended to develop a new immunogenic cell death (ICD)-related prognostic signature for colorectal cancer (CRC) patients. RESEARCH DESIGN AND METHODS The Non-Negative Matrix Factorization (NMF) algorithm was adopted to cluster tumor samples based on ICD gene expression to obtain ICD-related subtypes. Survival analysis and immune microenvironment analysis were conducted among different subtypes. Regression analysis was used to construct the model. Based on riskscore median, cancer patients were classified into high and low risk groups, and independent prognostic ability of the model was analyzed. The CIBERSORT algorithm was adopted to determine the immune infiltration level of both groups. RESULTS We analyzed the differential genes between cluster 4 and cluster 1-3 and obtained 12 genes with the best prognostic features finally (NLGN1, SLC30A3, C3orf20, ADAD2, ATOH1, ATP6V1B1, KCNQ2, MUCL3, RGCC, CLEC17A, COL6A5, and INSL4). In addition, patients with lower risk had higher levels of infiltration of most immune cells, lower Tumor Immune Dysfunction and Exclusion (TIDE) level and higher immunophenscore (IPS) level than those with higher risk. CONCLUSIONS This study constructed and validated the ICD feature signature predicting CRC prognosis and provide a reference criteria for guiding the prognosis and immunotherapy of CRC cancer patients.
Collapse
Affiliation(s)
- Junping Lei
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Jia Fu
- Department of Pulmonary and Critical Care Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Tianyang Wang
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Yu Guo
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Mingmin Gong
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Tian Xia
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Song Shang
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Yan Xu
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Ling Cheng
- Zhejiang Luoxi Medical Technology Co. Ltd, Hangzhou, P.R, China
| | - Binghu Lin
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| |
Collapse
|
10
|
Zahavi DJ, Erbe R, Zhang YW, Guo T, Malchiodi ZX, Maynard R, Lekan A, Gallagher R, Wulfkuhle J, Petricoin E, Jablonski SA, Fertig EJ, Weiner LM. Antibody dependent cell-mediated cytotoxicity selection pressure induces diverse mechanisms of resistance. Cancer Biol Ther 2023; 24:2269637. [PMID: 37878417 PMCID: PMC10601508 DOI: 10.1080/15384047.2023.2269637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Targeted monoclonal antibody therapy has emerged as a powerful therapeutic strategy for cancer. However, only a minority of patients have durable responses and the development of resistance remains a major clinical obstacle. Antibody-dependent cell-mediated cytotoxicity (ADCC) represents a crucial therapeutic mechanism of action; however, few studies have explored ADCC resistance. Using multiple in vitro models of ADCC selection pressure, we have uncovered both shared and distinct resistance mechanisms. Persistent ADCC selection pressure yielded ADCC-resistant cells that are characterized by a loss of NK cell conjugation and this shared resistance phenotype is associated with cell-line dependent modulation of cell surface proteins that contribute to immune synapse formation and NK cell function. We employed single-cell RNA sequencing and proteomic screens to interrogate molecular mechanisms of resistance. We demonstrate that ADCC resistance involves upregulation of interferon/STAT1 and DNA damage response signaling as well as activation of the immunoproteasome. Here, we identify pathways that modulate ADCC sensitivity and report strategies to enhance ADCC-mediated elimination of cancer cells. ADCC resistance could not be reversed with combinatorial treatment approaches. Hence, our findings indicate that tumor cells utilize multiple strategies to inhibit NK cell mediated-ADCC. Future research and development of NK cell-based immunotherapies must incorporate plans to address or potentially prevent the induction of resistance.
Collapse
Affiliation(s)
- David J. Zahavi
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rossin Erbe
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yong-Wei Zhang
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Theresa Guo
- Department of Oncology, UC San Diego School of Medicine, San Diego, USA
| | - Zoe X. Malchiodi
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rachael Maynard
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Alexander Lekan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rosa Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Sandra A. Jablonski
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Elana J. Fertig
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Louis M. Weiner
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| |
Collapse
|
11
|
Li W, Kawaguchi K, Tanaka S, He C, Maeshima Y, Suzuki E, Toi M. Cellular senescence triggers intracellular acidification and lysosomal pH alkalinized via ATP6AP2 attenuation in breast cancer cells. Commun Biol 2023; 6:1147. [PMID: 37993606 PMCID: PMC10665353 DOI: 10.1038/s42003-023-05433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023] Open
Abstract
Several chemotherapeutic drugs induce senescence in cancer cells; however, the mechanisms underlying intracellular pH dysregulation in senescent cells remain unclear. Adenosine triphosphatase H+ transporting accessory protein 2 (ATP6AP2) plays a critical role in maintaining pH homeostasis in cellular compartments. Herein, we report the regulatory role of ATP6AP2 in senescent breast cancer cells treated with doxorubicin (Doxo) and abemaciclib (Abe). A decline in ATP6AP2 triggers aberrant pH levels that impair lysosomal function and cause immune profile changes in senescent breast cancer cells. Doxo and Abe elicited a stable senescent phenotype and altered the expression of senescence-related genes. Additionally, senescent cells show altered inflammatory and immune transcriptional profiles due to reprogramming of the senescence-associated secretory phenotype. These findings elucidate ATP6AP2-mediated cellular pH regulation and suggest a potential link in immune profile alteration during therapy-induced senescence in breast cancer cells, providing insights into the mechanisms involved in the senescence response to anticancer therapy.
Collapse
Affiliation(s)
- Wei Li
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Sunao Tanaka
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Chenfeng He
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yurina Maeshima
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiji Suzuki
- Kobe City Medical Center General Hospital, 2-1-1 Minatojimaminami-cho, Chuo-ku, Kobe, 650-0047, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
12
|
Mao G, Yang D, Liu B, Zhang Y, Ma S, Dai S, Wang G, Tang W, Lu H, Cai S, Zhu J, Yang H. Deciphering a cell death-associated signature for predicting prognosis and response to immunotherapy in lung squamous cell carcinoma. Respir Res 2023; 24:176. [PMID: 37415224 DOI: 10.1186/s12931-023-02402-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/18/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell carcinoma, accounting for about 30% of all lung cancers. Yet, the evaluation of prognostic outcome and therapy response of patients with LUSC remains to be resolved. This study aimed to explore the prognostic value of cell death pathways and develop a cell death-associated signature for predicting prognosis and guiding treatment in LUSC. METHODS Transcriptome profiles and corresponding clinical information of LUSC patients were gathered from The Cancer Genome Atlas (TCGA-LUSC, n = 493) and Gene Expression Omnibus database (GSE74777, n = 107). The cell death-related genes including autophagy (n = 348), apoptosis (n = 163), and necrosis (n = 166) were retrieved from the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. In the training cohort (TCGA-LUSC), LASSO Cox regression was used to construct four prognostic signatures of respective autophagy, apoptosis, and necrosis pathway and genes of three pathways. After comparing the four signatures, the cell death index (CDI), the signature of combined genes, was further validated in the GSE74777 dataset. We also investigated the clinical significance of the CDI signature in predicting the immunotherapeutic response of LUSC patients. RESULTS The CDI signature was significantly associated with the overall survival of LUSC patients in the training cohort (HR, 2.13; 95% CI, 1.62‒2.82; P < 0.001) and in the validation cohort (HR, 1.94; 95% CI, 1.01‒3.72; P = 0.04). The differentially expressed genes between the high- and low-risk groups contained cell death-associated cytokines and were enriched in immune-associated pathways. We also found a higher infiltration of naive CD4+ T cells, monocytes, activated dendritic cells, neutrophils, and lower infiltration of plasma cells and resting memory CD4+ T cells in the high-risk group. Tumor stemness indices, mRNAsi and mDNAsi, were both negatively correlated with the risk score of the CDI. Moreover, LUSC patients in the low-risk group are more likely to respond to immunotherapy than those in the high-risk group (P = 0.002). CONCLUSIONS This study revealed a reliable cell death-associated signature (CDI) that closely correlated with prognosis and the tumor microenvironment in LUSC, which may assist in predicting the prognosis and response to immunotherapy for patients with LUSC.
Collapse
Affiliation(s)
- Guangxian Mao
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Dongyong Yang
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Guangzhou, 362000, China
| | - Bin Liu
- First Division, Department of Respiratory and Critical Care Medicine, Affiliated to Xiangya School of Medicine, Zhuzhou Hospital, Central South University, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Yu Zhang
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Sijia Ma
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Shang Dai
- Burning Rock Biotech, Guangzhou, 510300, China
| | | | - Wenxiang Tang
- Department of General Practice, the Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Huafei Lu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Jialiang Zhu
- Department of Cardiothoracic Surgery, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, China.
| | - Huaping Yang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
13
|
X-Box Binding Protein 1 (XBP1): A Potential Role in Chemotherapy Response, Clinical Pathologic Features, Non-Inflamed Tumour Microenvironment for Breast Cancer. Biosci Rep 2022; 42:231292. [PMID: 35543228 PMCID: PMC9202509 DOI: 10.1042/bsr20220225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/09/2022] Open
Abstract
X-box binding protein 1 (XBP1) is mainly expressed in breast cancer (BC) in human cancers. Its tumorigenesis and favourable prognosis are contradictory, and its essential role in chemotherapeutic response and immunosuppression is unknown in BC. The study firstly identified XBP1 who received neoadjuvant chemotherapy (NAC) from GSE25055 and GSE24460. Associations between XBP1 expression and clinicopathological characteristics was investigated using Oncomine, TCGA, UALCAN and bc-GenExMiner. The prognostic value of XBP1 was assessed using the Kaplan–Meier Plotter, bc-GenExMiner, GSE25055, and GSE25056. Furthermore, we systematically correlated XBP1 and immunological characteristics in the BC tumour microenvironment (TME) using TISIDB, TIMER, GSE25055, GSE25056 and TCGA dataset. Finally, an essential role of XBP1 in chemotherapy response was evaluated based on GSE25055, GSE25065, GSE24460, GSE5846, ROC Plotter and CELL databases. Furthermore, XBP1 mRNA expression levels were obviously highest in BC among human cancers and were significantly related to a good prognosis. In addition, XBP1 mRNA and protein levels were higher in the luminal subtype than in normal tissues and basal-like subtype, which might be attributed to membrane transport-related processes. Apart from BC, negative immunological correlations of XBP1 were not observed in other malignancies. XBP1 might shape the non-inflamed TME in BC. Finally, XBP1 expression was higher in chemo-resistive than chemo-sensitive cases, it had a predictive value and could independently predict chemotherapy response in BC patients receiving NAC. Our study suggests that the essential role of XBP1 in clinical pathologic features, non-inflamed TME, chemotherapy response in BC.
Collapse
|
14
|
Chen F, Kang R, Liu J, Tang D. The V-ATPases in cancer and cell death. Cancer Gene Ther 2022; 29:1529-1541. [PMID: 35504950 PMCID: PMC9063253 DOI: 10.1038/s41417-022-00477-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane ATPases are membrane-bound enzyme complexes and ion transporters that can be divided into F-, V-, and A-ATPases according to their structure. The V-ATPases, also known as H+-ATPases, are large multi-subunit protein complexes composed of a peripheral domain (V1) responsible for the hydrolysis of ATP and a membrane-integrated domain (V0) that transports protons across plasma membrane or organelle membrane. V-ATPases play a fundamental role in maintaining pH homeostasis through lysosomal acidification and are involved in modulating various physiological and pathological processes, such as macropinocytosis, autophagy, cell invasion, and cell death (e.g., apoptosis, anoikis, alkaliptosis, ferroptosis, and lysosome-dependent cell death). In addition to participating in embryonic development, V-ATPase pathways, when dysfunctional, are implicated in human diseases, such as neurodegenerative diseases, osteopetrosis, distal renal tubular acidosis, and cancer. In this review, we summarize the structure and regulation of isoforms of V-ATPase subunits and discuss their context-dependent roles in cancer biology and cell death. Updated knowledge about V-ATPases may enable us to design new anticancer drugs or strategies.
Collapse
Affiliation(s)
- Fangquan Chen
- grid.417009.b0000 0004 1758 4591DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 China
| | - Rui Kang
- grid.267313.20000 0000 9482 7121Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jiao Liu
- grid.417009.b0000 0004 1758 4591DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 China
| | - Daolin Tang
- grid.267313.20000 0000 9482 7121Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
15
|
Zhou R, Feng Y, Ye J, Han Z, Liang Y, Chen Q, Xu X, Huang Y, Jia Z, Zhong W. Prediction of Biochemical Recurrence-Free Survival of Prostate Cancer Patients Leveraging Multiple Gene Expression Profiles in Tumor Microenvironment. Front Oncol 2021; 11:632571. [PMID: 34631510 PMCID: PMC8495167 DOI: 10.3389/fonc.2021.632571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor-adjacent normal (TAN) tissues, which constitute tumor microenvironment and are different from healthy tissues, provide critical information at molecular levels that can be used to differentiate aggressive tumors from indolent tumors. In this study, we analyzed 52 TAN samples from the Cancer Genome Atlas (TCGA) prostate cancer patients and developed a 10-gene prognostic model that can accurately predict biochemical recurrence-free survival based on the profiles of these genes in TAN tissues. The predictive ability was validated using TAN samples from an independent cohort. These 10 prognostic genes in tumor microenvironment are different from the prognostic genes detected in tumor tissues, indicating distinct progression-related mechanisms in two tissue types. Bioinformatics analysis showed that the prognostic genes in tumor microenvironment were significantly enriched by p53 signaling pathway, which may represent the crosstalk tunnels between tumor and its microenvironment and pathways involving cell-to-cell contact and paracrine/endocrine signaling. The insight acquired by this study has advanced our knowledge of the potential role of tumor microenvironment in prostate cancer progression.
Collapse
Affiliation(s)
- Rui Zhou
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuanfa Feng
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhaodong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuxiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qingbiao Chen
- Affiliated Foshan Hospital of Southern Medical University, Southern Medical University, Foshan, China
| | - Xiaoming Xu
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yuhan Huang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Weide Zhong
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|