1
|
Añé-Kourí AL, Palomino JL, Lorenzo-Luaces P, Sanchez L, Ledon N, Pereira K, Hernandez JDLC, Suárez GM, García B, González A, Saavedra D, Lage A. Multivariate analysis of immunosenescence data in healthy humans and diverse diseases. FRONTIERS IN AGING 2025; 6:1568034. [PMID: 40308557 PMCID: PMC12040824 DOI: 10.3389/fragi.2025.1568034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025]
Abstract
Introduction Immunosenescence is a dynamic process, where both genetic and environmental factors account for the substantial inter-individual variability. This paper integrates all the data on immunosenescence markers generated in our laboratory and describes the differences and/or similarities between individuals based on their biological conditions (immunosenescence markers) and their associations with chronological age and health status. Materials and Methods The dataset consisted of immunological data from healthy donors, centenarians, patients diagnosed with chronic kidney disease, COVID-19 and non-small cell lung cancer (NSCLC), treatment-naïve or treated with platinum-based chemotherapy. To determine whether there are groups of immunologically different individuals despite their age or clinical condition, cluster analysis was performed. Canonical discriminant analysis was performed to determine which variables characterize each cluster. Results There are differences in the expression of immunosenescence markers between healthy subjects and patients diagnosed with different pathological conditions, regardless of their age. Meanwhile, the distribution of the clusters indicates the presence of two separate groups of healthy participants, one of them characterized by a high frequency of naïve lymphocytes, and the other with high expression of terminally differentiated lymphocyte subsets. Advanced NSCLC treatment-naïve patients were in the same cluster as a group of healthy subjects. Additionally, centenarians belong to a different cluster than healthy subjects, suggesting they might have a unique immune signature. Conclusion The distribution of clusters appears to be more appropriate than univariate associations of single markers for health and disease research. The present work reveals which immune markers are relevant in different physiological and pathological contexts and indicates the need for deeper studies on the biological age of the immune system.
Collapse
Affiliation(s)
- Ana Laura Añé-Kourí
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
- Biomedical Sciences Institute, Hasselt University, Hasselt, Belgium
| | | | | | - Lizet Sanchez
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Nuris Ledon
- Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Karla Pereira
- Research Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Gisela María Suárez
- Laboratory of Immunology, Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Beatriz García
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Amnely González
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Danay Saavedra
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
- Diabetes Research Institute, University of Miami, Miami, FL, United States
| | - Agustin Lage
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
2
|
Yan H, Feng J, Jin X, Zhang Y, Bao C, Zhu C, Feng G. Causal association of plasma lipidome with lung carcinoma and mediating role of inflammatory proteins: evidence from Mendelian randomization analysis. J Cancer 2024; 15:5643-5654. [PMID: 39308668 PMCID: PMC11414616 DOI: 10.7150/jca.99990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
The evidence from clinical studies suggests that lung carcinoma (LC) patients exhibit dysregulation in lipid metabolism. However, the causal relationship between plasma lipidome and LC, and whether inflammatory proteins mediate, remains to be determined. Genetic data for 179 plasma lipids and 91 inflammatory proteins were obtained from the latest published genome-wide association studies. Genetic data on LC and subtypes were from the largest available meta-analysis. The causal relationship between plasma lipidome and LC was determined by the two-sample Mendelian randomization (MR) method. Mediation MR analysis was employed to ascertain whether inflammatory proteins mediate the impact of plasma lipidome on LC. We identified 39 causal relationships between genetically predicted plasma lipidome and LC and subtypes. These relationships involve the influence of phosphatidylcholines, phosphatidylethanolamines, diacylglycerols, triacylglycerols, sphingomyelins, and Sterol esters. Additionally, the mediating role of 5 inflammatory proteins in the causal relationship between plasma lipidome and LC and subtypes was determined. Our results highlight the complex network of plasma lipidome and inflammatory proteins regulating LC. Integrating plasma lipidome and inflammatory proteins into clinical practice may open new avenues for the prevention and treatment of LC.
Collapse
Affiliation(s)
- Haihao Yan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Jiao Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xiao Jin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yuanyuan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Cui Bao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Chenghua Zhu
- Department of Respiratory Medicine, Nanjing Pukou Hospital of TCM, Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, Nanjing 210000, China
| | - Ganzhu Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
3
|
Suárez GM, Catalá M, Peña Y, Portela S, Añé-Kourí AL, González A, Lorenzo-Luaces P, Díaz M, Molina MDLA, Pereira K, Hernández JDLC, Reyes MC, Ledón N, Mazorra Z, Crombet T, Lage A, Bencomo-Hernandez A, Saavedra D. Assessment of non-classical lymphocyte populations in patients with advanced lung cancer treated with Biomodulina T following platinum-based chemotherapy. EXPLORATION OF IMMUNOLOGY 2024; 4:433-445. [DOI: 10.37349/ei.2024.00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/30/2024] [Indexed: 01/03/2025]
Abstract
Aim: Currently, malignant diseases represent a health issue worldwide. Among these, lung cancer is of growing importance, due to its high incidence and mortality. Chemotherapy, one of the most frequently used treatments, has shown its ability to induce accelerated immunosenescence in classic and as well non-classic lymphocyte compartments, being less described in the latter. The immune restoration strategies have demonstrated their ability to reverse immunosenescence and exhaustion markers in conventional lymphocyte subpopulations after chemotherapy. However, the possible immunorestorative effect on non-classical lymphocytes has not been widely reported. The aim of this study was to evaluate the effect of chemotherapy and the administration of a thymic polypeptide factor on non-classical lymphocyte populations in patients with advanced lung cancer.
Methods: Eighteen patients with advanced lung cancer, were evaluated at baseline before and after platinum-based chemotherapy (4–6 cycles). All patients could complete treatment with a thymic polypeptide factor [Biomodulina T (BT)] at the end of chemotherapy. Blood from patients was collected by venipuncture in heparinized tubes before and after chemotherapy and at the end of BT treatment to analyze the frequencies of non-classical immune subpopulations by flow cytometry.
Results: Natural killer (NK), natural killer T cells (NKT), and double-positive T lymphocyte (DPT) proportions reached normal values in patients diagnosed with advanced lung cancer before receiving cytotoxic treatment. Chemotherapy did not induce modifications in the total percent of NK, NKT, and DPT populations in these patients. However, the administration of BT decreased DPTs and NK cells expressing the cluster of differentiation (CD)57 molecule, which is considered a marker of immunosenescence.
Conclusions: These results suggest a lower influence of platinum-based chemotherapy on non-classical lymphocytes and the potential to generate a reconstitution of lymphocyte subpopulations in patients with advanced lung cancer by using the thymic factor BT, which reveals a new possibility for improving the response to cancer immunotherapies [Cuban Public Registry of Clinical Trial (RPCEC, https://rpcec.sld.cu/en/trials/RPCEC00000358-En) identifier: RPCEC00000358].
Collapse
Affiliation(s)
- Gisela María Suárez
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba; Laboratory of Immunology, Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Mauricio Catalá
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana 11300, Cuba
| | - Yadira Peña
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana 11300, Cuba
| | - Susana Portela
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana 11300, Cuba
| | - Ana Laura Añé-Kourí
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | - Amnely González
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | | | - Manuel Díaz
- Benéfico-Jurídico Pneumological Hospital, Havana 10600, Cuba
| | | | - Karla Pereira
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | | | - Mary Carmen Reyes
- Clinical Direction, National Center for Biopreparations, Bejucal, Mayabeque 32600, Cuba
| | - Nuris Ledón
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | - Zaima Mazorra
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba; Laboratory of Immunology, Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Tania Crombet
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | - Agustin Lage
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| | | | - Danay Saavedra
- Clinical Immunology Department, Center of Molecular Immunology, Havana 11600, Cuba
| |
Collapse
|
4
|
Guo H, Wang M, Shang Y, Zhang B, Zhang S, Liu X, Cao P, Fan Y, Tan K. Apoptosis-related prognostic biomarkers and potential targets for acute kidney injury based on machine learning algorithm and in vivo experiments. Apoptosis 2024; 29:303-320. [PMID: 37789227 DOI: 10.1007/s10495-023-01896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Acute kidney injury (AKI) is a common critical illness in hospitalized patients, characterized by a rapid decline in kidney function over a short period, which can seriously endanger the patient's life. Currently, there is a lack of precise and universal AKI diagnostic biomarkers in clinical practice. In this study, weighted gene coexpression network analysis (WGCNA), differential expression analysis, univariate and multivariate logistic regression analyses, receiver operating characteristic (ROC) curves, and immune cell infiltration were performed to identify apoptosis-related biomarkers that can be used for AKI diagnosis. Three core apoptosis-related genes (ARGs), CBFB, EGF and COL1A1, were identified as AKI biomarkers. More importantly, an apoptosis-related signature containing three hub ARGs was validated as a diagnostic model. The hub genes exhibited good correlations with glomerular filtration rate (GFR) and serum creatinine (SCr) in the Nephroseq kidney disease database. Additionally, CIBERSORT immune infiltration analysis indicated that these core ARGs may affect immune cell recruitment and infiltration in AKI patients. Subsequently, we investigated the alteration of the expression levels of three core ARGs in AKI samples using single-cell RNA sequencing analysis and analyzed the cell types that mainly expressed these ARGs. More importantly, the expression of core ARGs was validated in folic acid- and cisplatin-induced AKI mouse models. In summary, our study identified three diagnostic biomarkers for AKI, explored the roles of ARGs in AKI progression and provided new ideas for the clinical diagnosis and treatment of AKI.
Collapse
Affiliation(s)
- Hanyao Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Meixia Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yanan Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Bo Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Sidi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Xiaoyu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
5
|
Kang P, Yu H, Li Y, Wen X, Ye H, Luo Y, Yang Y, Yuan Q, Lin S. Tracking Peripheral Memory T Cell Subsets in Advanced Nonsmall Cell Lung Cancer Treated with Hypofractionated Radiotherapy and PD-1 Blockade. JOURNAL OF ONCOLOGY 2023; 2023:3221510. [PMID: 39282224 PMCID: PMC11401694 DOI: 10.1155/2023/3221510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/02/2022] [Accepted: 11/24/2022] [Indexed: 09/18/2024]
Abstract
Hypofractionated radiotherapy (HFRT) or chemotherapy combined with programmed death-1 (PD-1) blockade has achieved good clinical control in advanced nonsmall cell lung cancer (NSCLC). However, the relative influence of HFRT + PD-1 blockade and chemo-immunotherapy on peripheral memory T cell subsets in NSCLC responders has not been evaluated in clinical practice. Thirty-nine patients with advanced NSCLC were enrolled. The frequencies of naive (Tn; CD45RA+CCR7+), central memory (Tcm; CD45RA-CCR7+), effector memory (Tem; CD45RA-CCR7-), and effector memory RA (TemRA; CD45RA+CCR7-) T cell subsets and PD-1 expression were analyzed in CD4+ and CD8+ T cells using flow cytometry from peripheral blood samples. The correlations of memory T cell subsets and PD-1 expression with overall survival in HFRT + PD-1 blockade group were examined using the Kaplan-Meier method. Patients with partial response to HFRT + PD-1 blockade showed reduction in Tn and expansion in TemRA cell subpopulations among CD8+ T cells and reduced PD-1+CD4+ and PD-1+CD8+ T cells, all of which were significantly correlated with overall survival. The responders to chemo-immunotherapy showed expansion of the TemRA and decrease of Tcm in CD8+ T cell subpopulation. Our findings show that HFRT+PD-1 blockade and chemo-immunotherapy combination therapies induce differential memory T cell subset differentiation, offering predictive markers for treatment response. Clinical Trial Information: https://clinicaltrials.gov/ct2/show/ChiCTR-1900027768.
Collapse
Affiliation(s)
- Pengyuan Kang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hong Yu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yunfei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hua Ye
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yaqi Yang
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province; Institute of Neclear Medicine, Southwest Medical Universty, Luzhou 646000, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province; Institute of Neclear Medicine, Southwest Medical Universty, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Sichuan, Luzhou, China
| |
Collapse
|
6
|
Alexa-Stratulat T, Pavel-Tanasa M, Cianga VA, Antoniu S. Immune senescence in non-small cell lung cancer management: therapeutic relevance, biomarkers, and mitigating approaches. Expert Rev Anticancer Ther 2022; 22:1197-1210. [PMID: 36270650 DOI: 10.1080/14737140.2022.2139242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Lung cancer and mainly non-small cell lung cancer (NSCLC) still remain a prevalent malignancy worldwide despite sustained screening approaches. Furthermore, a significant proportion of the cases are diagnosed at advanced stages when conservative therapy is often unsuccessful. Cell senescence is an endogenous antitumor weapon but when it is upregulated exerts opposite activities favoring tumor metastasizing and poor response to therapy. However, little is known about this dangerous relationship between cell senescence and NSCLC outcome or on potential approaches to mitigate its unfavorable consequences. AREAS COVERED We discuss cell senescence focusing on immune senescence, its cell and humoral effectors (namely immune senescence associated secretory phenotype-iSASP), its impact on NSCLC outcome, and its biomarkers. Senotherapeutics as mitigating approaches are also considered based on the availability of experimental data pertinent to NSCLC. EXPERT OPINION Characterization of NSCLC subsets in which immune senescence is a risk factor for poor prognosis and poor therapeutic response might be very helpful in supporting the addition of senotherapeutics to conventional cancer therapy. This approach has the potential to improve disease outcome but more studies in this area are necessary.
Collapse
Affiliation(s)
- Teodora Alexa-Stratulat
- Department of Medicine III-Oncology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Mariana Pavel-Tanasa
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Vlad-Andrei Cianga
- Department of Hematology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Sabina Antoniu
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
7
|
Tu P, Li X, Cao L, Zhong M, Xie Z, Wu Z. Machine learning and BP neural network revealed abnormal B cell infiltration predicts the survival of lung cancer patients. Front Oncol 2022; 12:882018. [PMID: 36303835 PMCID: PMC9592816 DOI: 10.3389/fonc.2022.882018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
FAM83A gene is related to the invasion and metastasis of various tumors. However, the abnormal immune cell infiltration associated with the gene is poorly understood in the pathogenesis and prognosis of NSCLC. Based on the TCGA and GEO databases, we used COX regression and machine learning algorithms (CIBERSORT, random forest, and back propagation neural network) to study the prognostic value of FAM83A and immune infiltration characteristics in NSCLC. High FAM83A expression was significantly associated with poor prognosis of NSCLC patients (p = 0.00016), and had excellent prognostic independence. At the same time, the expression level of FAM83A is significantly related to the T, N, and Stage. Subsequently, based on machine learing strategies, we found that the infiltration level of naive B cells was negatively correlated with the expression of FAM83A. The low infiltration of naive B cells was significantly related to the poor overall survival rate of NSCLC (p = 0.0072). In addition, Cox regression confirmed that FAM83A and naive B cells are risk factors for the prognosis of NSCLC patients. The nomogram combining FAM83A and naive B cells (C-index = 0.748) has a more accurate prognostic ability than the Stage (C-index = 0.651) system. Our analysis shows that abnormal infiltration of naive B cells associated with FAM83A is a key factor in the prognostic prediction of NSCLC patients.
Collapse
Affiliation(s)
- Pinghua Tu
- *Correspondence: Pinghua Tu, ; Zhanling Wu,
| | | | | | | | | | | |
Collapse
|
8
|
Qu M, Han T, Chen X, Sun Q, Li Q, Zhao M. Exploring potential targets of Actinidia chinensis Planch root against hepatocellular carcinoma based on network pharmacology and molecular docking and development and verification of immune-associated prognosis features for hepatocellular carcinoma. J Gastrointest Oncol 2022; 13:1289-1307. [PMID: 35837167 DOI: 10.21037/jgo-22-398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the malignant tumors with the highest morbidity and mortality worldwide, and its prognosis remains a challenge. Actinidia chinensis Planch (ACP) root has good efficacy against HCC. This study aimed to explore the link between ACP and potential targets of HCC, and to develop a novel immune-based gene signature to predict HCC patient survival. Methods Transcriptome data and clinical information on HCC were obtained from The Cancer Genome Atlas (TCGA; HCC: 374, normal: 50) and International Cancer Genome Consortium (ICGC) database (HCC: 243, normal: 202). Combined with the 2,483 immune-related genes from the Immport database, we used the least absolute shrinkage and selection operator (LASSO) to construct a prognostic model. Patients were divided into high-risk and low-risk groups by the median of the risk scores of the TCGA cohort. Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves were used to estimate the predictability of the model in HCC prognosis, and carried out external validation based on ICGC cohort. We analyzed the correlation of this model with immune cells and immune checkpoint genes. Finally, molecular docking of these genes and the corresponding ACP components. Results We constructed a prognostic model composed of 3 immune-related genes [epidermal growth factor (EGF), baculoviral inhibitor of apoptosis repeat-containing protein 5 (BIRC5), and secreted phosphoprotein 1 (SPP1)]. And the high-risk group had a lower overall survival (OS) rate compared to the low-risk group (TCGA cohort: P=1.761e-05, ICGC cohort: P=8.716e-04). The outcomes of the AUC of ROC of prognostic risk model to predict for 1-, 2-, and 3-year OS: TCGA cohort: 0.749, 0.710, and 0.653 and ICGC cohort: 0.698, 0.736, and 0.753. Molecular docking results showed that quercetin had good binding activities with SPP1, BIRC5, and EGF, and ursolic acid (UA) and BIRC5 also had this feature. Conclusions Our study speculates that ACP root anti-HCC may be involved in the immune regulation of the body by targeting EGF, BIRC5 and SPP1, which possess great potential and value as early warning molecules for HCC. This model may provide a reference for individualized diagnosis and treatment for HCC patients.
Collapse
Affiliation(s)
- Meilin Qu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Tao Han
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoquan Chen
- Department of Integrated Traditional Chinese and Western Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Qingqing Sun
- Three Departments of Convalescence, Lintong Rehabilitation and Recuperation Center, Lintong, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingfang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Suárez GM, Catalá M, Peña Y, Portela S, Añé-Kourí AL, González A, Lorenzo-Luaces P, Díaz M, Molina MDLA, Pereira K, Hernández JDLC, Ramos R, Reyes MC, Ledón N, Mazorra Z, Crombet T, Lage A, Saavedra D. Thymic Polypeptide Fraction Biomodulina T Decreases Exhausted and Terminally Differentiated EMRA T Cells in Advanced Lung Cancer Patients Treated With Platinum-Based Chemotherapy. Front Oncol 2022; 12:823287. [PMID: 35155258 PMCID: PMC8828575 DOI: 10.3389/fonc.2022.823287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is the second cause of cancer related deaths worldwide. Chemotherapy and immunotherapy represent the current standard of care for advanced NSCLC. Platinum-based chemotherapy expands late-differentiated T cell populations. Therefore, immune restoration after chemotherapy to adjuvate the immunotherapeutic potential could be crucial. The aim of this study was to evaluate the effect of Biomodulina T (BT), a thymic polypeptide fraction, on peripheral lymphocytes subpopulations in the context of cancer disease. Additionally, whether these effects might induce a better response to CIMAvax-EGF, an epidermal growth factor (EGF) depleting immunotherapy. Eighteen advanced NSCLC patients were evaluated after being treated with platinum-based chemotherapy. We found that the frequency of terminally differentiated effector T cells re-expressing CD45RA (EMRA) CD4+ (p=0.0031) and CD8+ (p=0.0372) T cells decreased with the administration of BT, whereas CD4+ naive T cells increase in more than 70% of the patients. Remarkably, CD4+ and CD8+ T lymphocytes expressing programmed cell death receptor-1 (PD1) significantly decreased after BT administration (p=0.0005 and p<0.0001, respectively). We also found an enhancement of the anti-EGF antibody response with a large percentage of patients treated with CIMAvax-EGF reaching the good antibody response condition after four vaccine doses. Moreover, the median overall survival of patients treated with CIMAvax-EGF was 16.09 months. In conclusion, our results suggest that the immunorestoration generated by the administration of BT after first-line chemotherapy may induce a better immune response to CIMAvax-EGF that could translate into the clinical benefit of patients diagnosed with advanced NSCLC.
Collapse
Affiliation(s)
- Gisela María Suárez
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Mauricio Catalá
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | - Yadira Peña
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | - Susana Portela
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | - Ana Laura Añé-Kourí
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Amnely González
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | | | - Manuel Díaz
- Pulmonology Hospital "Benéfico Jurídico", Havana, Cuba
| | | | - Karla Pereira
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | | | - Raúl Ramos
- Immunology Department, Instituto de Ciencias Básicas y Preclínicas "Victoria de Girón", Havana, Cuba.,Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | | | - Nuris Ledón
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Zaima Mazorra
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Tania Crombet
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Agustin Lage
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Danay Saavedra
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
10
|
Xiong AW, Fang JM, Ren SX, Li W, Wang J, Zhao Y, Chen GY, Xu Q, Zhou CC. A Novel Combined Conjugate Therapeutic Cancer Vaccine, Recombinant EGF-CRM197, in Patients With Advanced Solid Tumors: A Phase I Clinical Study. Front Oncol 2021; 11:745699. [PMID: 34804932 PMCID: PMC8602890 DOI: 10.3389/fonc.2021.745699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction The therapeutic cancer vaccine recombinant Epidermal Growth Factor (EGF)-CRM197 is a novel combined conjugate EGF with CRM197 as a carrier protein. Immunization with the EGF-CRM197 vaccine can induce high levels of neutralizing anti-EGF antibodies that inhibit EGF/EGFR signaling and thereby suppress growth of tumors that rely on this signaling pathway. Herein, we characterize the humoral immune responses elicited by the recombinant EGF-CRM197 vaccine in patients with advanced solid tumors in a phase I clinical trial and assess the safety, tolerability, and immunogenicity of this vaccine (CTR20190473). Methods A total of 16 subjects were enrolled in this study. Under 6 + 3 design, patients in each dosing cohort were administrated subcutaneously at a dosage of 0.4 mg, 0.8 mg, and 1.6 mg, respectively. The patients received vaccinations for immune induction (once a week for 4 consecutive weeks) and booster vaccinations (once every 4 weeks). Safety evaluation was performed 1 week after the immune induction. Booster vaccination was given until the occurrence of disease progression, intolerance, withdrawal of informed consent by the patient, or negative result of anti-EGF test after two booster vaccinations. Results Vaccination with EGF-CRM197 is safe and well-tolerated in patients with advanced solid tumors. Adverse reactions at the injection site were the most common adverse events (AEs) in recipients. No severe adverse reactions post vaccination were observed in the present study. Vaccinated patients developed a robust neutralizing antibody response triggered by EGF-CRM197 that significantly reduced the levels of EGF in serum. For lung cancer patients who were super good antibody responders (sGAR) to EGF-CRM197, the median progress-free survival (PFS) was 4.83 months, significantly longer than that of the good antibody responder (GAR) patients with lung cancer whose median PFS was 2.10 months (P=0.0018). The median overall survival (OS) of GAR lung cancer patients was 10.67 months while the OS) for sGAR lung cancer patients was not reached until analysis was performed. The median follow-up of the sGAR lung cancer patients was 14.6 months. Conclusion Our study demonstrates that the recombinant EGF-CRM197 therapeutic cancer vaccine can induce a good immune response in patients with advanced solid tumors and is safe and well tolerated, which ensures further clinical development of the vaccine for extending the survival time of EGF-CRM197 sensitive patients with advanced solid tumors. Clinical Trial Registration http://www.chinadrugtrials.org.cn, identifier CTR20190473, EGF-CRM197.
Collapse
Affiliation(s)
- An-Wen Xiong
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jue-Min Fang
- Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Sheng-Xiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhao
- Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Guo-You Chen
- Shanghai Humantech Biotechnology Co., Ltd, Shanghai, China
| | - Qing Xu
- Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Cai-Cun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Sun H, Kang X, Chen X, Cai L, Li Y, Yu J, Wu C, Deng X. Immunosenescence evaluation of peripheral blood lymphocyte subsets in 957 healthy adults from 20 to 95 years old. Exp Gerontol 2021; 157:111615. [PMID: 34728337 DOI: 10.1016/j.exger.2021.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Immunosenescence is characterized by an age-related decline in immune system function. Major efforts have been made to identify changes in peripheral blood lymphocyte subsets accompanying immunosenescence in elderly adults. However, the change trends of some lymphocyte subsets with age are still controversial, and populations of advanced ages, such as people in their 80s or 90s, have not yet been thoroughly investigated. To provide further insight, we recruited 957 healthy donors without certain diseases with ages ranging from 20 to 95 years. Peripheral lymphocyte subsets, including T cells, CD4 T cells, CD8 T cells, B cells and NK cells, and the CD4/CD8 ratio were measured by flow cytometry. Additionally, regulatory CD4 T cells with inhibitory functions marked by CD3+CD4+CD25hi and the expression of the costimulatory molecule CD28 on CD8 T cells were evaluated. Sex was considered at the same time. The data indicated that in elderly people, peripheral T (p < 0.001), CD4 T (p < 0.001) and B (p < 0.001) lymphocyte subsets decreased, but the NK cell population (p < 0.001) increased. More regulatory CD4 T cells may imply stronger inhibition in the elderly population. The decreased CD28 expression with age in females verified CD28 to be an immunosenescence marker and the sharply decreased CD28 expression after 75 years in males indicated a rapid immunosenescence at the late life span of the male populations. In addition, our study established reference values for peripheral lymphocyte subsets at different age stages in males and females, which are urgently needed for the clinical management and treatment of geriatric diseases.
Collapse
Affiliation(s)
- Heqiang Sun
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Xia Kang
- Clinical Biobank Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Xingchi Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Lili Cai
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuru Li
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Jihong Yu
- Clinical Biobank Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| | - Xinli Deng
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|