1
|
He C, He J. Metabolic reprogramming and signaling adaptations in anoikis resistance: mechanisms and therapeutic targets. Mol Cell Biochem 2025; 480:3315-3342. [PMID: 39821582 DOI: 10.1007/s11010-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Anoikis, a form of programmed cell death triggered by detachment from the extracellular matrix (ECM), maintains tissue homeostasis by removing mislocalized or detached cells. Cancer cells, however, have evolved multiple mechanisms to evade anoikis under conditions of ECM detachment, enabling survival and distant metastasis. Studies have identified differentially expressed proteins between suspended and adherent cancer cells, revealing that key metabolic and signaling pathways undergo significant alterations during the acquisition of anoikis resistance. This review explores the regulatory roles of epithelial-mesenchymal transition, cancer stem cell characteristics, metabolic reprogramming, and various signaling pathway alterations in promoting anoikis resistance. And the corresponding reagents and non-coding RNAs that target the aforementioned pathways are reviewed. By discussing the regulatory mechanisms that facilitate anoikis resistance in cancer cells, this review aims to shed light on potential strategies for inhibiting tumor progression and preventing metastasis.
Collapse
Affiliation(s)
- Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie He
- Department of Nursing, Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Dong W, Gu X, Li J, Zhuang Z. Characterization of immune landscape and prognostic value of IL-17-related signature in invasive breast cancer. Transl Cancer Res 2025; 14:907-929. [PMID: 40104742 PMCID: PMC11912043 DOI: 10.21037/tcr-24-1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/03/2025] [Indexed: 03/20/2025]
Abstract
Background Recently, interleukin 17 (IL-17) has been found to play a critical role in the development of breast cancer. However, its prognostic significance in invasive breast cancer (IBC) remains unclear. This study aims to determine the role of IL-17-related signatures in IBC to identify novel therapeutic options. Methods IBC data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were used to identify IL-17-related prognostic genes. A predictive model was developed using TCGA data and validated using METABRIC data. The relationship between IL-17 scores and immune landscape, chemotherapy drug sensitivity [half maximal inhibitory concentration (IC50)], and immune checkpoint gene expression was analyzed. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to validate key gene expression in breast tumor and normal tissue samples. Results The predictive model identified core IL-17-related prognostic genes and successfully estimated the prognosis of IBC patients. The model's validity was confirmed using METABRIC data. Patients with high IL-17 scores had worse overall survival (OS) compared to those with low IL-17 scores. Low IL-17 scores were associated with higher immune checkpoint gene expression and predicted enhanced responses to cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and programmed cell death protein 1 (PD-1) therapies. Patients with low IL-17 scores exhibited a higher abundance of immune microenvironment components. Furthermore, qRT-PCR confirmed the lower expression of OR51E1, NDRG2, RGS2, and TSPAN7 in breast tumors compared to normal tissue. Conclusions IL-17-related signatures are promising biomarkers for predicting the prognosis of IBC patients. These findings suggest that IL-17-related markers could be used to guide individualized therapeutic strategies, potentially improving outcomes for IBC patients.
Collapse
Affiliation(s)
- Wenge Dong
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaojie Gu
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiejing Li
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhigang Zhuang
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Liu Q, Yang R, Wang D, Liu Q. Role of low-density cholesterol and Interleukin-17 interaction in breast cancer pathogenesis and treatment. Cell Biol Int 2025; 49:139-153. [PMID: 39318044 DOI: 10.1002/cbin.12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Breast cancer (BC) has become the most prevalent cancer worldwide, and further research is being conducted to deepen our understanding of its pathogenesis and treatment. Lipid metabolism disorder is a significant alteration in cancer cells, and the investigation into the role of Interleukin-17 (IL-17) in malignant tumors has emerged as a research focus in recent years. Thus, exploring changes in lipid metabolism and inflammatory factors in BC cells is crucial in identifying potential therapeutic targets. This article summarizes the progress made in the research on the main low-density cholesterol (LDL) transporter and IL-17 in lipid metabolism, and their potential involvement in the development of BC. The article aims to establish a theoretical foundation for the development of BC-related therapies.
Collapse
Affiliation(s)
- Qingqing Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| | - Rongyuan Yang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| | - Dawei Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
- The 1st Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, 510405, China
| | - Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| |
Collapse
|
4
|
Zhang X, Li B, Lan T, Chiari C, Ye X, Wang K, Chen J. The role of interleukin-17 in inflammation-related cancers. Front Immunol 2025; 15:1479505. [PMID: 39906741 PMCID: PMC11790576 DOI: 10.3389/fimmu.2024.1479505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Emerging evidence indicates a correlation between inflammation and the development and progression of cancer. Among the various inflammatory signals, interleukin-17 (IL-17) family cytokines serve as a critical link between inflammation and cancer. IL-17 is a highly versatile pro-inflammatory cytokine that plays a pivotal role in host defense, tissue repair, the pathogenesis of inflammatory diseases, and cancer progression. During the early stages of tumorigenesis, IL-17 signaling directly promotes the proliferation of tumor cells. Conversely, IL-17 has been shown to exhibit antitumor immunity in several models of grafted subcutaneous tumors. Additionally, dynamic changes in the microbiome can influence the secretion of IL-17, thereby affecting tumor development. The specific role of IL-17 is contingent upon its functional classification, spatiotemporal characteristics, and the stage of tumor development. In this review, we introduce the fundamental biology of IL-17 and the expression profile of its receptors in cancer, while also reviewing and discussing recent advancements regarding the pleiotropic effects and mechanisms of IL-17 in inflammation-related cancers. Furthermore, we supplement our discussion with insights into the mechanisms by which IL-17 impacts cancer progression through interactions with the microbiota, and we explore the implications of IL-17 in cancer therapy. This comprehensive analysis aims to enhance our understanding of IL-17 and its potential role in cancer treatment.
Collapse
Affiliation(s)
- Xingru Zhang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Bangjie Li
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Tian Lan
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Conner Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- College of Engineering, Northeastern University, Seattle, WA, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
5
|
Kolanska K, Roche M, Carrière C, Le Gac M, Ferrand N, Zaoui M, Le Gall M, Selleret L, Gligorov J, Sabbah M, Aractingi S, Chabbert-Buffet N. Impact of Fetal Umbilical Cord Blood CD34+ Cells on Breast Cancer Cell Lines: A Mechanism of Fetal Microchimerism. Cells Tissues Organs 2024:1-16. [PMID: 39462491 DOI: 10.1159/000542242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
INTRODUCTION Fetal microchimerism could be involved in the regulation of breast cancer oncogenesis. CD34+ cells could be of a particular interest as up to 12% of the CD34+ population in maternal blood are of fetal origin. The aim of this research was to analyze the impact of umbilical cord blood (UCB) CD34+ on MCF-7 and MDA-MB-231 breast cancer cell lines, in order to uncover novel biological mechanisms and suggest novel treatment options for breast cancer. METHODS UCB CD34+ cells were obtained from healthy women at full-term delivery. Direct cultures were grown with MCF-7 and MDA-MB-231 cells. Proliferation, migration, invasion, and transcriptomic analysis of breast cancer cell lines were compared between cultures exposed and nonexposed to UCB CD34+ cells. Interactions between UCB CD34+ and breast cancer cells were analyzed under fluorescent microscopy. Functional analyses were generated with QIAGEN's Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA). RESULTS Direct contact between UCB CD34+ and breast cancer cell lines induced a reduction in the proliferative capacities of MCF-7 and MDA-MB-231 and diminished the migration abilities of MDA-MB-231 cells. In 3D coculture, UCB CD34+ cells were attracted by tumor spheroids and incorporated into tumor cells. These cell-to-cell interactions were responsible for transcriptome modifications coherent with observed functional modifications. Among the cytokines secreted by UCB CD34+, IFN-γ was identified as a potential upstream regulator responsible for the molecular modifications observed in transcriptomic analysis of MCF-7 breast cancer cells exposed to UCB CD34+ cells, as was IL-17A in MDA-MB-231 cells. CONCLUSION Direct cell-to-cell contact induced functional modifications in breast cancer cells. Interactions between UCB CD34+ and breast cancer cells could induce cell fusion and signal transmission via cytokines. Further analysis of direct cell-to-cell interactions should be performed at a molecular level to further understand the potential role of fetal CD34+ cells in breast cancer.
Collapse
Affiliation(s)
- Kamila Kolanska
- Service de gynécologie obstétrique et médecine de la reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Merwane Roche
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Camille Carrière
- Service de gynécologie obstétrique et médecine de la reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Marjolaine Le Gac
- Service de gynécologie obstétrique et médecine de la reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Nathalie Ferrand
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Maurice Zaoui
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Morgane Le Gall
- Plateforme Proteom'IC, Institut Cochin, INSERM, CNRS, Université de Paris Cité, Paris, France
| | - Lise Selleret
- Service de gynécologie obstétrique et médecine de la reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
| | - Joseph Gligorov
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
- Assistance-Publique Hôpitaux de Paris-Tenon, Institut Universitaire de Cancerologie Université Pierre et Marie Curie, Sorbonne Université, Paris, France
| | - Michèle Sabbah
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Selim Aractingi
- Institut Cochin, Inserm, UMRS1016, Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Nathalie Chabbert-Buffet
- Service de gynécologie obstétrique et médecine de la reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| |
Collapse
|
6
|
Liu MM, Zhu HH, Bai J, Tian ZY, Zhao YJ, Boekhout T, Wang QM. Breast cancer colonization by Malassezia globosa accelerates tumor growth. mBio 2024; 15:e0199324. [PMID: 39235230 PMCID: PMC11481877 DOI: 10.1128/mbio.01993-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 09/06/2024] Open
Abstract
Malassezia globosa is a lipophilic basidiomycetous yeast that occurs abundantly in breast tumors and that may contribute to a shortened overall survival of breast cancer (BRAC) patients, suggesting that the yeast may participate in the carcinogenesis of BRAC. However, the mechanisms involved in the M. globosa-based acceleration of BRAC are unknown. Here, we show that M. globosa can colonize mammary tissue in 7,12-dimethylbenz[a] anthracene-induced mice. The abundance of M. globosa shortened the overall survival and increased the tumor incidence. Transcriptome data illustrated that IL-17A plays a key role in tumor growth due to M. globosa colonization, and tumor-associated macrophage infiltration was elevated during M. globosa colonization which triggers M2 polarization of macrophages via toll-like receptors 4/nuclear factor kappa-B (Nf-κB) signaling. Our results show that the expression of sphingosine kinase 1 (Sphk1) is increased in breast tumors after inoculation with M. globosa. Moreover, we discovered that Sphk1-specific small interfering RNA blocked the formation of lipid droplets, which can effectively alleviate the expression of the signal transducer and activator of the transcription 3 (STAT3)/Nf-κB pathway. Taken together, our results demonstrate that M. globosa could be a possible factor for the progression of BRAC. The mechanisms by which M. globosa promotes BRAC development involve the IL-17A/macrophage axis. Meanwhile, Sphk1 overexpression was induced by M. globosa infection, which also promoted the proliferation of MCF-7 cells.IMPORTANCELiterature has suggested that Malassezia globosa is associated with breast tumors; however, this association has not been confirmed. Here, we found that M. globosa colonizes in breast fat pads leading to tumor growth. As a lipophilic yeast, the expression of sphingosine kinase 1 (Sphk1) was upregulated to promote tumor growth after M. globosa colonization. Moreover, the IL-17A/macrophages axis plays a key role in mechanisms involved in the M. globosa-induced breast cancer acceleration from the tumor immune microenvironment perspective.
Collapse
Affiliation(s)
- Miao-Miao Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Hui-Hui Zhu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Jie Bai
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Zi-Ye Tian
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Yu-Jing Zhao
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Teun Boekhout
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qi-Ming Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong’an New Area) of MOE, Xiong’an, China
| |
Collapse
|
7
|
Wang D, Xie D, Meng S, Mi J, Wang H, Li L, Zhang Y, Cui Y. Role and molecular mechanisms of HuangQiSiJunZi decoction for treating triple-negative breast cancer as explored via network pharmacology and bioinformatics analyses. BMC Cancer 2024; 24:1217. [PMID: 39350059 PMCID: PMC11443913 DOI: 10.1186/s12885-024-12957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE In this study, we evaluated the molecular mechanisms of HuangQiSiJunZi Decoction (HQSJZD) for treating triple-negative breast cancer (TNBC) using network pharmacology and bioinformatics analyses. METHODS Effective chemical components together with action targets of HQSJZD were selected based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Meanwhile, differentially expressed genes (DEGs) were extracted from TNBC sample data in The Cancer Genome Atlas (TCGA) database. Additionally, we built a protein-protein interaction (PPI) network and acquired hub genes. Gene Expression Omnibus(GEO) datasets were utilized to verify the accuracy of hub gene expression. Additionally, enrichment analyses were conducted on key genes. Furthermore, TNBC severity-related high-risk factors were screened through univariate together with multivariate Cox regressions; next, the logistic regression prediction model was built. Moreover, differential levels of 22 immune cell types in TNBC tissues compared with normal tissues were analyzed. The hub gene levels within pan-cancer and the human body were subsequently visualized and analyzed. Finally, quantitative PCR (RT-qPCR) was used to validate the correlation of the hub genes in TNBC cells. RESULTS The study predicted 256 targets of active ingredients and 1791 DEGs in TNBC, and obtained 16 hub genes against TNBC. The prognostic signature based on FOS, MMP9, and PGR was independent in predicting survival. A total of seven types of immune cells, such as CD4 + memory T cells, showed a significant difference in infiltration (p < 0.05), and immune cells were related to the hub genes. The HPA database was adopted for hub gene analyses, and as determined, FOS was highly expressed in most human organs. The results of RT-qPCR validation for the FOS hub gene were consistent with those of bioinformatic analyses. CONCLUSION HQSJZD might regulate the interleukin-17 and aging pathways via FOS genes to increase immune cell infiltration in TNBC tissues, and thus, may treat TNBC and improve the prognosis. The FOS genes are likely to be a new marker for TNBC.
Collapse
Affiliation(s)
- Decai Wang
- Aerospace Center Hospital, Beijing, 100049, China
| | - Dongqing Xie
- Ultrasound Diagnosis Department, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Shuai Meng
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jiwei Mi
- Department of Neurology, The Central People's Hospital, Zhanjiang, Guangdong, 524037, China
| | - Haiming Wang
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Lingsheng Li
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yin Zhang
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Yixin Cui
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
8
|
Zhang T, Chen S, Qu S, Wang L. Anoikis-Related Genes Impact Prognosis and Tumor Microenvironment in Bladder Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01255-x. [PMID: 39172330 DOI: 10.1007/s12033-024-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024]
Abstract
Anoikis tolerance is an important biological process of tumor colonization and metastasis outside the primary tumor. Recent research has progressively elucidated the function and underlying mechanisms of anoikis in the metastasis of various solid tumors. Nevertheless, the specific mechanisms of anoikis in bladder cancer and its consequent effects on the tumor immune microenvironment remain ambiguous. In this study, we developed an anoikis score based on five genes (ETV7, NGF, SCD, LAMC1, and CASP6) and categorized subjects into high and low-risk groups using the median score from the TCGA database. Our findings indicate that SCD enhances the proliferation of bladder cancer cells in vitro. Furthermore, integrating the anoikis score with clinicopathological features to construct a prognostic nomogram demonstrated precision in assessing patient outcomes. Immune cell analysis revealed elevated infiltration levels of Treg cells and M2 macrophages in the high anoikis score group, whereas CD8+ T cell levels were reduced. This study highlights the importance of anoikis score in predicting patient prognosis, immune cell infiltration, and drug response, which may provide a treatment modality worth exploring in depth for the study of bladder cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shaojun Chen
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shanna Qu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Longsheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
9
|
Wang Y, Cheng S, Fleishman JS, Chen J, Tang H, Chen ZS, Chen W, Ding M. Targeting anoikis resistance as a strategy for cancer therapy. Drug Resist Updat 2024; 75:101099. [PMID: 38850692 DOI: 10.1016/j.drup.2024.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. Uncovering the mechanisms of anoikis resistance will provide details about cancer metastasis, and potential strategies against cancer cell dissemination and metastasis. Here, we summarize the principal elements and core molecular mechanisms of anoikis and anoikis resistance. We discuss the latest progress of how anoikis and anoikis resistance are regulated in cancers. Furthermore, we summarize emerging data on selective compounds and nanomedicines, explaining how inhibiting anoikis resistance can serve as a meaningful treatment modality against cancers. Finally, we discuss the key limitations of this therapeutic paradigm and possible strategies to overcome them. In this review, we suggest that pharmacological modulation of anoikis and anoikis resistance by bioactive compounds could surmount anoikis resistance, highlighting a promising therapeutic regimen that could be used to overcome anoikis resistance in cancers.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Wenkuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
10
|
Wang D, Deng Q, Peng Y, Tong Z, Li Z, Huang L, Zeng J, Li J, Miao J, Chen S. Prognositic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:758-774. [PMID: 39174890 PMCID: PMC11341232 DOI: 10.11817/j.issn.1672-7347.2024.230519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents, with a poor prognosis. Anchorage-dependent cell death (anoikis) has been proven to be indispensable in tumor metastasis, regulating the migration and adhesion of tumor cells at the primary site. However, as a type of programmed cell death, anoikis is rarely studied in osteosarcoma, especially in the tumor immune microenvironment. This study aims to clarify prognostic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma. METHODS Anoikis-related genes (ANRGs) were obtained from GeneCards. Clinical information and ANRGs expression profiles of osteosarcoma patients were sourced from the therapeutically applicable research to generate effective therapies and Gene Expression Omnibus (GEO) databases. ANRGs highly associated with tumor immune microenvironment were identified by the estimate package and the weighted gene coexpression network analysis (WGCNA) algorithm. Machine learning algorithms were performed to construct long-term survival predictive strategy, each sample was divided into high-risk and low-risk subgroups, which was further verified in the GEO cohort. Finally, based on single-cell RNA-seq from the GEO database, analysis was done on the function of signature genes in the osteosarcoma tumor microenvironment. RESULTS A total of 51 hub ANRGs closely associated with the tumor microenvironment were identified, from which 3 genes (MERTK, BNIP3, S100A8) were selected to construct the prognostic model. Significant differences in immune cell activation and immune-related signaling pathways were observed between the high-risk and low-risk groups based on tumor microenvironment analysis (all P<0.05). Additionally, characteristic genes within the osteosarcoma microenvironment were identified in regulation of intercellular crosstalk through the GAS6-MERTK signaling pathway. CONCLUSIONS The prognostic model based on ANRGs and tumor microenvironment demonstrate good predictive power and provide more personalized treatment options for patients with osteosarcoma.
Collapse
Affiliation(s)
- Dong Wang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Qing Deng
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Yi Peng
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Zhaochen Tong
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Zixin Li
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Liping Huang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Jin Zeng
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Jinsong Li
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Jinglei Miao
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Shijie Chen
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha 410013.
- Shanghai Key Laboratory of Regulatory Biology; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
11
|
Liu J, Wu H, Wang Q, Jin S, Hou S, Shen Z, Zhao L, Xu S, Pang D. Identification of Novel Anoikis-Related Gene Signatures to Predict the Prognosis, Immune Microenvironment, and Drug Sensitivity of Breast Cancer Patients. Cancer Control 2024; 31:10732748241288118. [PMID: 39340434 PMCID: PMC11459525 DOI: 10.1177/10732748241288118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/22/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Breast cancer is one of the most prevalent types of cancer and a leading cause of cancer-related death among females worldwide. Anoikis, a specific type of apoptosis that is triggered by the loss of anchoring between cells and the native extracellular matrix, plays a vital role in cancer invasion and metastasis. However, studies that focus on the prognostic values of anoikis-related genes (ARGs) in breast cancer are scarce. METHODS Gene expression data were obtained from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases. Five anoikis-related signatures (ARS) were selected from ARGs through univariate Cox regression analysis, LASSO regression analysis, and multivariate Cox regression analysis. Subsequently, an ARGs risk score model was established, and breast cancer patients were divided into high and low risk groups. The correlation between risk groups and overall survival (OS), tumor mutation burden (TMB), tumor microenvironment (TME), stemness, and drug sensitivity were analyzed. Moreover, RT-qPCR was performed to verify the gene expression levels of the five ARS in breast cancer tissues. Furthermore, a nomogram model was constructed based on ARGs risk score and clinicopathological factors. RESULTS A novel ARGs risk score model was constructed based on five ARS (CEMIP, LAMB3, CD24, PTK6, and PLK1), and breast cancer patients were divided into high and low risk groups. Correlation analysis showed that the high and low risk groups had different OS, TMB, TME, stemness, and drug sensitivity. Both the ARGs risk score model and the nomogram showed promising prognosis predictive value in breast cancer. CONCLUSION ARS could be used as promising biomarkers for breast cancer prognosis predication and treatment options selection.
Collapse
Affiliation(s)
- Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hao Wu
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Qin Wang
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Shengye Jin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Siyu Hou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zibo Shen
- Department of Biomedical and Life Science Faculty, King’s College London, London, UK
| | - Liuying Zhao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
12
|
Song M, Liang J, Wang L, Li W, Jiang S, Xu S, Tang L, Du Q, Liu G, Meng H, Zhai D, Shi S, Yang Y, Zhang L, Zhang B. IL-17A functions and the therapeutic use of IL-17A and IL-17RA targeted antibodies for cancer treatment. Int Immunopharmacol 2023; 123:110757. [PMID: 37579542 DOI: 10.1016/j.intimp.2023.110757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Interleukin 17A (IL-17A) is a major member of the IL-17 cytokine family and is produced mainly by T helper 17 (Th17) cells. Other cells such as CD8+ T cells, γδ T cells, natural killer T cells and innate lymphoid-like cells can also produce IL-17A. In healthy individuals, IL-17A has a host-protective capacity, but excessive elevation of IL-17A is associated with the development of autoimmune diseases and cancer. Monoclonal antibodies (mAbs) targeting IL-17A (e.g., ixekizumab and secukinumab) or IL-17A receptor (IL-17RA) (e.g., brodalumab) would be investigated as potential treatments for these diseases. Currently, the application of IL-17A-targeted drugs in autoimmune diseases will provide new ideas for the treatment of tumors, and its combined application with immune checkpoint inhibitors has become a research hotspot. This article reviews the mechanism of action of IL-17A and the application of anti-IL-17A antibodies, focusing on the research progress on the mechanism of action and therapeutic blockade of IL-17A in various tumors such as colorectal cancer (CRC), lung cancer, gastric cancer and breast cancer. Moreover, we also include the results of therapeutic blockade in the field of cancer as well as recent advances in the regulation of IL-17A signaling.
Collapse
Affiliation(s)
- Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shangheng Shi
- Department of Liver Transplantation, School of Clinical Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
13
|
Khalid F, Takagi K, Sato A, Yamaguchi M, Guestini F, Miki Y, Miyashita M, Hirakawa H, Ohi Y, Rai Y, Sagara Y, Sasano H, Suzuki T. Interleukin (IL)-17A in triple-negative breast cancer: a potent prognostic factor associated with intratumoral neutrophil infiltration. Breast Cancer 2023; 30:748-757. [PMID: 37178415 DOI: 10.1007/s12282-023-01467-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized as highly immunogenic and lacks specific targeted therapies. Interleukin 17A (IL-17A) is a controversial cytokine and is known to have anti-tumor and pro-tumor roles depending on the tumor microenvironment. In addition, IL-17A has been recently implicated in the recruitments of neutrophil into tumor tissues. Although IL-17A is considered tumor-promoting in breast cancer, its significance in the possible regulation of neutrophil infiltration in TNBC is not clearly defined. MATERIALS AND METHODS We immunolocalized IL-17A, CD66b (neutrophil marker), and chemokine (C-X-C motif) ligand 1 (CXCL1, neutrophil chemoattractant) in 108 TNBC specimens and assessed their correlation among each other. The correlation between these markers and clinicopathological parameters was also assessed. We subsequently performed in vitro study to address the possible regulation of CXCL1 by IL-17A using TNBC cell lines, MDA-MB-231 and HCC-38. RESULTS It was revealed that IL-17A correlated significantly with CXCL1 and CD66b, also CD66b with CXCL1. Furthermore, IL-17A was significantly associated with shorter disease-free and overall survival, especially in a high density CD66b group of patients. In vitro results revealed that IL-17A upregulated CXCL1 mRNA expression in a dose and time dependent manner, and this induction was significantly suppressed by an Akt inhibitor. CONCLUSION IL-17A was considered to contribute to neutrophil infiltration by inducing CXCL1 in TNBC tissues and educating neutrophils to promote tumor progression. IL-17A might therefore serve as a potent prognostic factor in TNBC.
Collapse
Affiliation(s)
- Freeha Khalid
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mio Yamaguchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Fouzia Guestini
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yasuhiro Miki
- Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, 6-45-1 Kunimi, Aoba-ku, Sendai, Miyagi, 981-8551, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hisashi Hirakawa
- Department of Surgery, Japan Community Health Care Organization Sendai Hospital, 2-1-1 Murasakiyama, Izumi-ku, Sendai, 981-3281, Japan
- Department of Surgery, Tohoku Kosai Hospital, 2-3-11 Kokubun-cho, Aoba-ku, Sendai, Miyagi, 980-0803, Japan
| | - Yasuyo Ohi
- Department of Pathology, Hakuaikai Sagara Hospital, 3-31 Matsubara-machi, Kagoshima, 892-0833, Japan
| | - Yoshiaki Rai
- Department of Breast Surgical Oncology, Hakuaikai Sagara Hospital, 3-31 Matsubara-machi, Kagoshima, 892-0833, Japan
| | - Yasuaki Sagara
- Department of Breast Surgical Oncology, Hakuaikai Sagara Hospital, 3-31 Matsubara-machi, Kagoshima, 892-0833, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
14
|
Muraro E, Brisotto G. Circulating tumor cells and host immunity: A tricky liaison. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:131-157. [PMID: 37739482 DOI: 10.1016/bs.ircmb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
During their dissemination, circulating tumor cells (CTCs) steadily face the immune system, which is a key player in the whole metastatic cascade, from intravasation to the CTC colonization of distant sites. In this chapter, we will go through the description of immune cells involved in this controversial dialogue encompassing both the anti-tumor activity and the tumor-promoting and immunosuppressive function mediated by several circulating immune effectors as natural killer (NK) cells, CD4+ and CD8+ T lymphocytes, T helper 17, regulatory T cells, neutrophils, monocytes, macrophages, myeloid-derived suppressor cells, dendritic cells, and platelets. Then, we will report on the same interaction from the CTCs point of view, depicting the direct and indirect mechanisms of crosstalk with the above mentioned immune cells. Finally, we will report the recent literature evidence on the potential prognostic role of the integrated CTCs and immune cells monitoring in cancer patients management.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy.
| |
Collapse
|
15
|
Hu J, Song F, Kang W, Xia F, Song Z, Wang Y, Li J, Zhao Q. Integrative analysis of multi-omics data for discovery of ferroptosis-related gene signature predicting immune activity in neuroblastoma. Front Pharmacol 2023; 14:1162563. [PMID: 37521469 PMCID: PMC10373597 DOI: 10.3389/fphar.2023.1162563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/02/2023] [Indexed: 08/01/2023] Open
Abstract
Immunotherapy for neuroblastoma remains unsatisfactory due to heterogeneity and weak immunogenicity. Exploring powerful signatures for the evaluation of immunotherapy outcomes remain the primary purpose. We constructed a ferroptosis-related gene (FRG) signature by least absolute shrinkage and selection operator and Cox regression, identified 10 independent prognostic FRGs in a training cohort (GSE62564), and then verified them in an external validation cohort (TCGA). Associated with clinical factors, the signature accurately predicts overall survival of 3, 5, and 10 years. An independent prognostic nomogram, which included FRG risk, age, stage of the International Neuroblastoma Staging System, and an MYCN status, was constructed. The area under the curves showed satisfactory prognostic predicting performance. Through bulk RNA-seq and proteomics data, we revealed the relationship between hub genes and the key onco-promoter MYCN gene and then validated the results in MYCN-amplified and MYCN-non-amplified cell lines with qRT-PCR. The FRG signature significantly divided patients into high- and low-risk groups, and the differentially expressed genes between the two groups were enriched in immune actions, autophagy, and carcinogenesis behaviors. The low-risk group embodied higher positive immune component infiltration and a higher expression of immune checkpoints with a more favorable immune cytolytic activity (CYT). We verified the predictive power of this signature with data from melanoma patients undergoing immunotherapy, and the predictive power was satisfactory. Gene mutations were closely related to the signature and prognosis. AURKA and PRKAA2 were revealed to be nodal hub FRGs in the signature, and both were shown to have significantly different expressions between the INSS stage IV and other stages after immunohistochemical validation. With single-cell RNA-seq analysis, we found that genes related to T cells were enriched in TNFA signaling and interferon-γ hallmark. In conclusion, we constructed a ferroptosis-related gene signature that can predict the outcomes and work in evaluating the effects of immunotherapy.
Collapse
Affiliation(s)
- Jiajian Hu
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengju Song
- Key Laboratory of Molecular Cancer Epidemiology, Department of Epidemiology and Biostatistics, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenjuan Kang
- Key Laboratory of Molecular Cancer Epidemiology, Department of Epidemiology and Biostatistics, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fantong Xia
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zi’an Song
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yangyang Wang
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jie Li
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Zhao
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
16
|
Lu X, Yuan Q, Zhang C, Wang S, Wei W. Predicting the immune microenvironment and prognosis with a anoikis - related signature in breast cancer. Front Oncol 2023; 13:1149193. [PMID: 37469408 PMCID: PMC10353543 DOI: 10.3389/fonc.2023.1149193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Background Tumor heterogeneity is widely recognized as a crucial factor impacting the prognosis of breast cancer (BC) patients. However, there remains an insufficient understanding of the underlying impact of anoikis on the prognosis of BC patients. Methods The researchers utilized the TCGA-BRCA dataset to screen and analyze the differentially expressed genes of anoikis-related genes (ARGs) in BC and normal breast tissue. Prognostic gene signatures were established through univariate, LASSO, and multivariate Cox regression analyses. These signatures were evaluated using Kaplan-Meier curve and receiver operating characteristic (ROC) analyses, resulting in the development of an anoikis-related index (ACI). The training dataset was TCGA-BRCA, while METABRIC and GSE96058 were used for external validation. Additionally, nomograms were developed by combining risk scores and clinical parameters, enabling gene set enrichment analysis (GSEA) and tumor immunoassay. Furthermore, an exploration of small molecule compounds was conducted to identify potential therapeutic benefits. Results A six-gene anoikis-related signature was constructed, which divided BC patients into high- and low-ACI groups based on median ACI scores. The ACI accurately predicted prognosis and acted as an independent prognostic factor for BC patients. Patients in the high-ACI group exhibited poorer overall survival (OS) across all cohorts and showed more severe clinical manifestations compared to the low-ACI group. The study also explored the potential impacts of anoikis on immune cells infiltrating tumors, immune checkpoints, growth factors, and cytokine levels. Additionally, the potential implications of anoikis in BC immunotherapy were discussed, along with highlighting small molecule compounds that could offer therapeutic benefits. Conclusions Anoikis was found to hold significant prognostic value in breast cancer, providing a novel approach for managing patients with different prognoses and implementing more precise immunotherapy strategies.
Collapse
Affiliation(s)
- Xiuqing Lu
- Department of Breast Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qi Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chao Zhang
- Department of Breast Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sifen Wang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weidong Wei
- Department of Breast Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
17
|
Popović M, Dedić Plavetić N, Vrbanec D, Marušić Z, Mijatović D, Kulić A. Interleukin 17 in early invasive breast cancer. Front Oncol 2023; 13:1171254. [PMID: 37427128 PMCID: PMC10328740 DOI: 10.3389/fonc.2023.1171254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Interleukin 17 (IL-17) has a key role in inflammatory responses. Increased serum concentrations of IL-17 have been reported in patients with different types of cancer. Some studies suggest antitumor activity of IL-17 while others speak in favor of its association with poorer prognosis. The lack of data on IL-17 behavior in vivo hinders the efforts to clarify the exact role of IL-17 in breast cancer patients and precludes the usage of IL-17 as potential therapeutic target. Methods The study included 118 patients with early invasive breast cancer. The serum concentration of IL-17A was measured before surgery and during adjuvant treatment and compared with healthy controls. The correlation of serum IL-17A concentration and different clinical and pathological parameters, including IL-17A expression in the corresponding tumor tissue samples, was analyzed. Results Significantly higher serum concentrations of IL-17A were found in women with early breast cancer before surgery, but also during adjuvant treatment in comparison to healthy controls. No significant correlation to tumor tissue IL-17A expression was observed. There was a significant postoperative decrease of serum IL-17A concentrations even in patients with relatively lower preoperative values. A significant negative correlation was found between serum IL-17A concentrations and the tumor estrogen receptor expression. Conclusion The results suggest that the immune response in early breast cancer is mediated by IL-17A, particularly in triple-negative breast cancer. IL-17A-mediated inflammatory response subsides postoperatively, but IL-17A concentrations remain elevated compared to the values in healthy controls, even after the removal of the tumor.
Collapse
Affiliation(s)
- Marina Popović
- Department of Oncology, University Hospital Center Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Natalija Dedić Plavetić
- Department of Oncology, University Hospital Center Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Damir Vrbanec
- School of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| | - Zlatko Marušić
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Davor Mijatović
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, Division of Plastic, Reconstructive and Breast Surgery, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ana Kulić
- Department of Oncology, Division of Experimental Oncology and Pathophysiology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Tian J, Cao ZJ, Zhang Y, Zhou JK, Yang L. Identification of anoikis-related subtypes and development of risk stratification system in skin cutaneous melanoma. Heliyon 2023; 9:e16153. [PMID: 37215879 PMCID: PMC10196614 DOI: 10.1016/j.heliyon.2023.e16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Anoikis, a form of apoptosis induced by cell detachment, plays a key role in cancer metastasis. However, the potential roles of anoikis-related genes (ARGs) in assessing the prognosis of skin cutaneous melanoma (SKCM) and the tumor microenvironment (TME) remain unclear. Methods The data from TCGA corresponding to transcriptomic expression patterns for patients with SKCM were downloaded and utilized to screen distinct molecular subtypes by a non-negative matrix factorization algorithm. The prognostic signature was constructed by least absolute shrinkage and selection operator (LASSO) Cox regression and was validated in SKCM patients from the GEO cohort. Moreover, the relationship of the ARG_score with prognosis, tumor-infiltrating immune cells, gene mutation, microsatellite instability (MSI), and immunotherapy efficacy. Results We screened 100 anoikis-related differentially expressed genes between SKCM tissues and normal skin tissues, which could divide all patients into three different subtypes with significantly distinct prognosis and immune cell infiltration. Then, an anoikis-related signature was developed based on subtype-related DEGs, which could classify all SKCM patients into low and high ARG_score groups with differing overall survival (OS) rates. ARG_score was confirmed to be a strong independent prognostic indicator for SKCM patients. By combining ARG_score with clinicopathological features, a nomogram was constructed, which could accurately predict the individual OS of patients with SKCM. Moreover, low ARG_score patients presented with higher levels of immune cell infiltration, TME score, higher tumor mutation burden, and better immunotherapy responses. Conclusions Our comprehensive analysis of ARGs in SKCM provides important insights into the immunological microenvironment within the tumor of SKCM patients and helps to forecast prognosis and the response to immunotherapy in SKCM patients, thereby making it easier to tailor more effective treatment strategies to individual patients.
Collapse
Affiliation(s)
- Jun Tian
- Department of Dermatology, Shaanxi Provincial People’s Hospital, Xi’an, 710068, China
| | - Zi-jian Cao
- Department of Dermatology, The 63600 Hospital of PLA, Lanzhou, 732750, China
| | - Yuan Zhang
- Department of Oncology, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Jin-ke Zhou
- Department of Dermatology, The 63600 Hospital of PLA, Lanzhou, 732750, China
| | - Li Yang
- Department of Dermatology, Shaanxi Provincial People’s Hospital, Xi’an, 710068, China
| |
Collapse
|
19
|
Zhou Y, Wang C, Chen Y, Zhang W, Fu Z, Li J, Zheng J, Xie M. A novel risk model based on anoikis: Predicting prognosis and immune infiltration in cutaneous melanoma. Front Pharmacol 2023; 13:1090857. [PMID: 36726781 PMCID: PMC9884695 DOI: 10.3389/fphar.2022.1090857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Cutaneous melanoma (CM) is a highly aggressive malignancy with a dimal prognosis and limited treatment options. Anoikis is believed to involve in the regeneration, migration, and metastasis of tumor. The exact role of anoikis-related genes (ARGs) in the development and progression of cutaneous melanoma, however, remains elusive. Four ARGs (SNAI2, TFDP1, IKBKG, and MCL1) with significant differential expression were selected through Cox regression and LASSO analyses. Data for internal and external cohorts validated the accuracy and clinical utility of the prognostic risk model based on ARGs. The Kaplan-Meier curve indicated a much better overall survival rate of low-risk patients. Notably, we also found that the action of ARGs in the CM was mediated by immune-related signaling pathways. Consensus clustering and TIME landscape analysis also indicated that the low-risk score patients have excellent immune status. Moreover, the results of immunotherapy response and drug sensitivity also confirmed the potential implications of informing individualized immune therapeutic strategies for CM. Collectively, the predictive risk model constructed based on ARGs provides an excellent and accurate prediction tool for CM patients. This present research provides a rationale for the joint application of targeted therapy and immunotherapy in CM treatment. The approach could have great therapeutic value and make a contribution to personalized medicine therapy.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Chen Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yifang Chen
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Zailin Fu
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Jianbo Li
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Jie Zheng
- School of Medicine, Chongqing University, Chongqing, China,*Correspondence: Jie Zheng, ; Minghua Xie,
| | - Minghua Xie
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China,*Correspondence: Jie Zheng, ; Minghua Xie,
| |
Collapse
|
20
|
Liu X, Tao M. SSX2IP as a novel prognosis biomarker plays an important role in the development of breast cancer. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Hum NR, Sebastian A, Martin KA, Rios-Arce ND, Gilmore SF, Gravano DM, Wheeler EK, Coleman MA, Loots GG. IL-17A Increases Doxorubicin Efficacy in Triple Negative Breast Cancer. Front Oncol 2022; 12:928474. [PMID: 35924165 PMCID: PMC9340269 DOI: 10.3389/fonc.2022.928474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Due to lack of targetable receptors and intertumoral heterogeneity, triple negative breast cancer (TNBC) remains particularly difficult to treat. Doxorubicin (DOX) is typically used as nonselective neoadjuvant chemotherapy, but the diversity of treatment efficacy remains unclear. Comparable to variability in clinical response, an experimental model of TNBC using a 4T1 syngeneic mouse model was found to elicit a differential response to a seven-day treatment regimen of DOX. Single-cell RNA sequencing identified an increase in T cells in tumors that responded to DOX treatment compared to tumors that continued to grow uninhibited. Additionally, compared to resistant tumors, DOX sensitive tumors contained significantly more CD4 T helper cells (339%), γδ T cells (727%), Naïve T cells (278%), and activated CD8 T cells (130%). Furthermore, transcriptional profiles of tumor infiltrated T cells in DOX responsive tumors revealed decreased exhaustion, increased chemokine/cytokine expression, and increased activation and cytotoxic activity. γδ T cell derived IL-17A was identified to be highly abundant in the sensitive tumor microenvironment. IL-17A was also found to directly increase sensitivity of TNBC cells in combination with DOX treatment. In TNBC tumors sensitive to DOX, increased IL-17A levels lead to a direct effect on cancer cell responsiveness and chronic stimulation of tumor infiltrated T cells leading to improved chemotherapeutic efficacy. IL-17A’s role as a chemosensitive cytokine in TNBC may offer new opportunities for treating chemoresistant breast tumors and other cancer types.
Collapse
Affiliation(s)
- Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Stem Cell Instrumentation Foundry, University of California Merced, Merced, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Naiomy D. Rios-Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sean F. Gilmore
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - David M. Gravano
- Stem Cell Instrumentation Foundry, University of California Merced, Merced, CA, United States
| | - Elizabeth K. Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, United States
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Stem Cell Instrumentation Foundry, University of California Merced, Merced, CA, United States
- *Correspondence: Gabriela G. Loots,
| |
Collapse
|
22
|
Overexpression of multiple epidermal growth factor like domains 11 rescues anoikis survival through tumor cells-platelet interaction in triple negative breast Cancer cells. Life Sci 2022; 299:120541. [DOI: 10.1016/j.lfs.2022.120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022]
|
23
|
Kok VC, Wang CCN, Liao SH, Chen DL. Cross-Platform in-silico Analyses Exploring Tumor Immune Microenvironment with Prognostic Value in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:85-99. [PMID: 35437353 PMCID: PMC9013259 DOI: 10.2147/bctt.s359346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Only a proportion of triple-negative breast cancer (TNBC) is immunotherapy-responsive. We hypothesized that the tumor microenvironment (TME) influences the outcomes of TNBC and investigated the relevant signaling pathways. MATERIALS AND METHODS Immune score (IS) and stromal score (SS) were calculated using the ESTIMATE and correlated with the overall survival (OS) in TNBC. RNA-seq data from 115 TNBC samples and 112 normal adjacent tissues were retrieved. Validations in the methylation levels in 10 TNBC and five non-TNBC cell lines were obtained. Cox model overall survival (OS) validated the derived transcription factor (TF) genes in cBioPortal breast cancer patients. RESULTS SS-low predicts a higher OS compared with SS-high patients (P = 0.0081 IS-high/SS-low patients had better OS (P = 0.045) than IS-low/SS-high patients. More macrophages were polarized to the M2 state in patients with IS-low/SS-high patients (P < 0.001). Moreover, CIBERSORTx showed more CD8+ cytotoxic T-cells in IS-high/SS-low patients (p = 0.0286) and more resting NK cells in the IS-low/SS-high TME (P = 0.0108). KEGG pathway analysis revealed that overexpressed genes were enriched in the IL-17 and cytokine-cytokine receptor interaction pathways. The lncRNA DRAIC, a tumor suppressor, was consistently deactivated in the 10 TNBC cell lines. On the cBioPortal platform, we validated that 13% of ER-negative, HER2-unamplified BC harbored IL17RA deep deletion and 25% harbored TRAF3IP2 amplification. On cBioPortal datasets, the nine altered TF genes derived from the X2K analysis showed significantly worse relapse-free survival in 2377 patients and OS in 4819 invasive BC patients than in the unaltered cohort. CONCLUSION Of note, the results of this integrated in silico study can only be generalized to approximately 17% of patients with TNBC, in which infiltrating stromal cells and immune cells play a determinant prognostic role.
Collapse
Affiliation(s)
- Victor C Kok
- Division of Medical Oncology, Kuang Tien General Hospital Cancer Center, Taichung, 43303, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| | - Charles C N Wang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
- Center for Artificial Intelligence and Precision Medicine Research, Asia University, Taichung, 41354, Taiwan
| | - Szu-Han Liao
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| | - De-Lun Chen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
24
|
Kok VC, Wang CCN, Liao SH, Chen DL. Cross-Platform in-silico Analyses Exploring Tumor Immune Microenvironment with Prognostic Value in Triple-Negative Breast Cancer. BREAST CANCER: TARGETS AND THERAPY 2022. [DOI: https://doi.org/10.2147/bctt.s359346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
CXCL1: Gene, Promoter, Regulation of Expression, mRNA Stability, Regulation of Activity in the Intercellular Space. Int J Mol Sci 2022; 23:ijms23020792. [PMID: 35054978 PMCID: PMC8776070 DOI: 10.3390/ijms23020792] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
CXCL1 is one of the most important chemokines, part of a group of chemotactic cytokines involved in the development of many inflammatory diseases. It activates CXCR2 and, at high levels, CXCR1. The expression of CXCL1 is elevated in inflammatory reactions and also has important functions in physiology, including the induction of angiogenesis and recruitment of neutrophils. Due to a lack of reviews that precisely describe the regulation of CXCL1 expression and function, in this paper, we present the mechanisms of CXCL1 expression regulation with a special focus on cancer. We concentrate on the regulation of CXCL1 expression through the regulation of CXCL1 transcription and mRNA stability, including the involvement of NF-κB, p53, the effect of miRNAs and cytokines such as IFN-γ, IL-1β, IL-17, TGF-β and TNF-α. We also describe the mechanisms regulating CXCL1 activity in the extracellular space, including proteolytic processing, CXCL1 dimerization and the influence of the ACKR1/DARC receptor on CXCL1 localization. Finally, we explain the role of CXCL1 in cancer and possible therapeutic approaches directed against this chemokine.
Collapse
|