1
|
Chen L, Chao Y, Li W, Wu Z, Wang Q. Soluble immune checkpoint molecules in cancer risk, outcomes prediction, and therapeutic applications. Biomark Res 2024; 12:95. [PMID: 39218939 PMCID: PMC11368031 DOI: 10.1186/s40364-024-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
Immunotherapy has emerged as a pivotal modality in cancer treatment, with immune checkpoint inhibitors effectively combating malignancies by impeding crucial pathways within the immune system and stimulating patients' immune responses. Soluble forms of immune checkpoints exhibit a remarkable diversity and can be readily tracked in circulation, holding immense potential as biomarkers for cancer treatment. An increasing number of studies focused on soluble immune checkpoints in cancer have emerged thanks to technological advancements. In this systematic review, we comprehensively summarized the recent studies on soluble immune checkpoints in human cancer risk prediction, outcome prediction, therapeutic applications, and potential molecular mechanisms, which demonstrated the promising future of soluble immune checkpoints in clinical applications. The clinical relevance of soluble immune checkpoints has been recognized in multiple cancers, yet the therapeutic applications and mechanisms remain obscure. Interpreting the impacts and mechanisms of soluble immune checkpoints could shed a light on the novel strategies of cancer screening, treatments, and outcome prediction.
Collapse
Affiliation(s)
- Lin Chen
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuqing Chao
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjing Li
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhixia Wu
- Department of Service and Purchase, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China.
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Andrzejczak A, Małkiewicz B, Tupikowski K, Ptaszkowski K, Szydełko T, Karabon L. Effect of HVEM/CD160 Variations on the Clear Cell Renal Carcinoma Risk and Overall Survival. Int J Mol Sci 2024; 25:6860. [PMID: 38999968 PMCID: PMC11241222 DOI: 10.3390/ijms25136860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Renal cell carcinoma (RCC) accounts for approximately 90-95% of all kidney cancers in adults, with clear cell RCC (ccRCC) being the most frequently identified subtype. RCC is known for its responsiveness to immunotherapy, making it an area of significant research interest. Immune checkpoint (IC) molecules, which regulate immune surveillance, are established therapeutic targets in RCC. The aim of this study was to analyze the influence of HVEM and CD160 gene polymorphisms on ccRCC susceptibility and patient overall survival (OS) over a ten-year period of observation. We genotyped three HVEM single nucleotide polymorphisms (SNPs): rs1886730, rs2234167, and rs8725, as well as two CD160 SNPs: rs744877 and rs2231375, in 238 ccRCC patients and 521 controls. Our findings indicated that heterozygosity within rs2231375 and/or rs2234167 increases ccRCC risk. Furthermore, in women, heterozygosity within HVEM SNPs rs8725 and rs1886730 is also associated with an increased ccRCC risk. The presence of a minor allele for rs1886730, rs2234167, rs8725, and rs2231375 was also correlated with certain clinical features of ccRCC. Moreover, rs1886730 was found to be associated with OS. In conclusion, our study highlights an association between HVEM and CD160 polymorphisms and the risk of developing ccRCC as well as OS.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetic and Epigenetic of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Bartosz Małkiewicz
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.M.); (T.S.)
| | - Krzysztof Tupikowski
- Subdivision of Urology, Lower Silesian Center for Oncology, Pulmonology and Hematology, 53-413 Wroclaw, Poland;
| | - Kuba Ptaszkowski
- Department of Clinical Biomechanics and Physiotherapy in Motor System Disorders, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Tomasz Szydełko
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.M.); (T.S.)
| | - Lidia Karabon
- Laboratory of Genetic and Epigenetic of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| |
Collapse
|
3
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
4
|
Scheffges C, Devy J, Giustiniani J, Francois S, Cartier L, Merrouche Y, Foussat A, Potteaux S, Bensussan A, Marie-Cardine A. Identification of CD160-TM as a tumor target on triple negative breast cancers: possible therapeutic applications. Breast Cancer Res 2024; 26:28. [PMID: 38360636 PMCID: PMC10870674 DOI: 10.1186/s13058-024-01785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Despite major therapeutic advances, triple-negative breast cancer (TNBC) still presents a worth prognosis than hormone receptors-positive breast cancers. One major issue relies in the molecular and mutational heterogeneity of TNBC subtypes that is reinforced by the absence of reliable tumor-antigen that could serve as a specific target to further promote efficient tumor cell recognition and depletion. CD160 is a receptor mainly expressed by NK lymphocytes and presenting two isoforms, namely the GPI-anchored form (CD160-GPI) and the transmembrane isoform (CD160-TM). While CD160-GPI is constitutively expressed on resting cells and involved in the generation of NK cells' cytotoxic activity, CD160-TM is neo-synthesized upon activation and promotes the amplification of NK cells' killing ability. METHODS CD160 expression was assessed by immunohistochemistry (IHC) and flow cytometry on TNBC patient biopsies or cell lines, respectively. Antibody (Ab)-mediated tumor depletion was tested in vitro by performing antibody-dependent cell cytotoxicity (ADCC) and phagocytosis (ADCP) assays, and in vivo on a TNBC mouse model. RESULTS Preliminary data obtained by IHC on TNBC patients' tumor biopsies revealed an unconventional expression of CD160 by TNBC tumor cells. By using a specific but conformation-dependent anti-CD160-TM Ab, we established that CD160-TM, but not CD160-GPI, was expressed by TNBC tumor cells. A conformation-independent anti-CD160-TM mAb (22B12; muIgG2a isotype) was generated and selected according to pre-defined specificity and functional criterions. In vitro functional assays demonstrated that ADCC and ADCP could be induced in the presence of 22B12, resulting in TNBC cell line apoptosis. The ability of 22B12 to exert an in vivo anti-tumor activity was also demonstrated on a TNBC murine model. CONCLUSIONS Our data identify CD160-TM as a tumor marker for TNBC and provide a rational for the use of anti-CD160-TM antibodies as therapeutic tools in this tumor context.
Collapse
Affiliation(s)
- Claire Scheffges
- INSERM U976, HIPI, Team 1, 75010, Paris, France
- Université Paris Cité, IRSL, 75010, Paris, France
- Alderaan Biotechnology, 75005, Paris, France
| | - Jérôme Devy
- UMR CNRS/URCA 7369, MEDyC, Université de Reims-Champagne-Ardennes, 51100, Reims, France
| | | | | | - Lucille Cartier
- Département de Recherche, Institut Godinot, 51100, Reims, France
- UR7509, IRMAIC, Université de Reims-Champagne-Ardennes, 51097, Reims, France
| | - Yacine Merrouche
- Département de Recherche, Institut Godinot, 51100, Reims, France
- UR7509, IRMAIC, Université de Reims-Champagne-Ardennes, 51097, Reims, France
| | | | - Stéphane Potteaux
- UR7509, IRMAIC, Université de Reims-Champagne-Ardennes, 51097, Reims, France
| | - Armand Bensussan
- INSERM U976, HIPI, Team 1, 75010, Paris, France
- Université Paris Cité, IRSL, 75010, Paris, France
| | - Anne Marie-Cardine
- INSERM U976, HIPI, Team 1, 75010, Paris, France.
- Université Paris Cité, IRSL, 75010, Paris, France.
| |
Collapse
|
5
|
Ziogas DC, Theocharopoulos C, Lialios PP, Foteinou D, Koumprentziotis IA, Xynos G, Gogas H. Beyond CTLA-4 and PD-1 Inhibition: Novel Immune Checkpoint Molecules for Melanoma Treatment. Cancers (Basel) 2023; 15:2718. [PMID: 37345056 PMCID: PMC10216291 DOI: 10.3390/cancers15102718] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
More than ten years after the approval of ipilimumab, immune checkpoint inhibitors (ICIs) against PD-1 and CTLA-4 have been established as the most effective treatment for locally advanced or metastatic melanoma, achieving durable responses either as monotherapies or in combinatorial regimens. However, a considerable proportion of patients do not respond or experience early relapse, due to multiple parameters that contribute to melanoma resistance. The expression of other immune checkpoints beyond the PD-1 and CTLA-4 molecules remains a major mechanism of immune evasion. The recent approval of anti-LAG-3 ICI, relatlimab, in combination with nivolumab for metastatic disease, has capitalized on the extensive research in the field and has highlighted the potential for further improvement of melanoma prognosis by synergistically blocking additional immune targets with new ICI-doublets, antibody-drug conjugates, or other novel modalities. Herein, we provide a comprehensive overview of presently published immune checkpoint molecules, including LAG-3, TIGIT, TIM-3, VISTA, IDO1/IDO2/TDO, CD27/CD70, CD39/73, HVEM/BTLA/CD160 and B7-H3. Beginning from their immunomodulatory properties as co-inhibitory or co-stimulatory receptors, we present all therapeutic modalities targeting these molecules that have been tested in melanoma treatment either in preclinical or clinical settings. Better understanding of the checkpoint-mediated crosstalk between melanoma and immune effector cells is essential for generating more effective strategies with augmented immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.T.); (P.-P.L.); (D.F.); (I.-A.K.); (G.X.)
| |
Collapse
|
6
|
Tímár J, Honn KV, Hendrix MJC, Marko-Varga G, Jalkanen S. Newly identified form of phenotypic plasticity of cancer: immunogenic mimicry. Cancer Metastasis Rev 2023; 42:323-334. [PMID: 36754910 PMCID: PMC10014767 DOI: 10.1007/s10555-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Cancer plasticity is now a recognized new hallmark of cancer which is due to disturbances of cell differentiation programs. It is manifested not only in various forms like the best-known epithelial-mesenchymal transition (EMT) but also in vasculogenic and megakaryocytic mimicries regulated by EMT-specific or less-specific transcription factors such as HIF1a or STAT1/2. Studies in the past decades provided ample data that cancer plasticity can be manifested also in the expression of a vast array of immune cell genes; best-known examples are PDL1/CD274, CD47, or IDO, and we termed it immunogenic mimicry (IGM). However, unlike other types of plasticities which are epigenetically regulated, expression of IGM genes are frequently due to gene amplifications. It is important that the majority of the IGM genes are regulated by interferons (IFNs) suggesting that their protein expressions are regulated by the immune microenvironment. Most of the IGM genes have been shown to be involved in immune escape of cancers broadening the repertoire of these mechanisms and offering novel targets for immunotherapeutics.
Collapse
Affiliation(s)
- József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| | - Kenneth V Honn
- Departments of Pathology, Oncology and Chemistry, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Mary J C Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
| | - György Marko-Varga
- Clinical Protein Science and Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Sirpa Jalkanen
- Medicity Research Laboratories, Turku, Finland.,InFLAMES Flagship, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Oumeslakht L, Aziz AI, Bensussan A, Ben Mkaddem S. CD160 receptor in CLL: Current state and future avenues. Front Immunol 2022; 13:1028013. [PMID: 36420268 PMCID: PMC9676924 DOI: 10.3389/fimmu.2022.1028013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/19/2022] [Indexed: 08/01/2023] Open
Abstract
CD160 is a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein expressed on cytotoxic natural killer (NK) cells and T-cell subsets. It plays a crucial role in the activation of NK-cell cytotoxicity and cytokine production. It also modulates the immune system and is involved in some pathologies, such as cancer. CD160 is abnormally expressed in B-cell chronic lymphocytic leukemia (CLL) but not expressed in normal B lymphocytes. Its expression in CLL enhances tumor cell proliferation and resistance to apoptosis. CD160 is also a potential prognostic marker for the detection of minimal residual disease (MRD) in CLL, which is important for the clinical management of CLL, the prevention of disease relapse, and the achievement of complete remission. In this review, we present an overview of CD160 and its involvement in the pathophysiology of CLL. We also discuss its use as a prognostic marker for the assessment of MRD in CLL.
Collapse
Affiliation(s)
- Loubna Oumeslakht
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Abdel-ilah Aziz
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Armand Bensussan
- INSERM U976, Université de Paris, Hôpital Saint Louis, Paris, France
- Institut Jean Godinot, Centre de Lutte Contre le Cancer, Reims, France
| | - Sanae Ben Mkaddem
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
8
|
López-Cade I, García-Barberán V, Cabañas Morafraile E, Díaz-Tejeiro C, Saiz-Ladera C, Sanvicente A, Pérez Segura P, Pandiella A, Győrffy B, Ocaña A. Genomic mapping of copy number variations influencing immune response in breast cancer. Front Oncol 2022; 12:975437. [PMID: 36119512 PMCID: PMC9476651 DOI: 10.3389/fonc.2022.975437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Identification of genomic alterations that influence the immune response within the tumor microenvironment is mandatory in order to identify druggable vulnerabilities. In this article, by interrogating public genomic datasets we describe copy number variations (CNV) present in breast cancer (BC) tumors and corresponding subtypes, associated with different immune populations. We identified regulatory T-cells associated with the Basal-like subtype, and type 2 T-helper cells with HER2 positive and the luminal subtype. Using gene set enrichment analysis (GSEA) for the Type 2 T-helper cells, the most relevant processes included the ERBB2 signaling pathway and the Fibroblast Growth Factor Receptor (FGFR) signaling pathway, and for CD8+ T-cells, cellular response to growth hormone stimulus or the JAK-STAT signaling pathway. Amplification of ERBB2, GRB2, GRB7, and FGF receptor genes strongly correlated with the presence of type 2 T helper cells. Finally, only 8 genes were highly upregulated and present in the cellular membrane: MILR1, ACE, DCSTAMP, SLAMF8, CD160, IL2RA, ICAM2, and SLAMF6. In summary, we described immune populations associated with genomic alterations with different BC subtypes. We observed a clear presence of inhibitory cells, like Tregs or Th2 when specific chromosomic regions were amplified in basal-like or HER2 and luminal groups. Our data support further evaluation of specific therapeutic strategies in specific BC subtypes, like those targeting Tregs in the basal-like subtype.
Collapse
Affiliation(s)
- Igor López-Cade
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Vanesa García-Barberán
- Molecular Oncology Laboratory, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esther Cabañas Morafraile
- Center for Biological Research, Margarita Salas Centro de Investigaciones Biologicas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Spanish National Research Council, Madrid, Spain
| | - Cristina Díaz-Tejeiro
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Cristina Saiz-Ladera
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Adrián Sanvicente
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Pedro Pérez Segura
- Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer [IBMCC-Centro de Investigacion del Cancer (CIC)], Instituto de Investigación Biomédica de Salamanca (IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- 2Department of Pediatrics, Semmelweis University, Budapest, Hungary
- Termeszettudomanyi Kutatokozpont (TTK) Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
- Translational Oncology Laboratory, Translational Research Unit, Albacete University Hospital, Albacete, Spain
- Centro Regional de Investigaciones Biomédicas, Castilla-La Mancha University (CRIB-UCLM), Albacete, Spain
- *Correspondence: Alberto Ocaña,
| |
Collapse
|