1
|
Zhang L, Wang K, Li F, Zhang L, Wu L, Tie R, Litifu K, Fu Y, Liu S, Ni J, Chang P, Xu J, Zhao H, Liu L. Ribosomal protein S3A (RPS3A), as a transcription regulator of colony-stimulating factor 1 (CSF1), promotes glioma progression through regulating the recruitment and autophagy-mediated M2 polarization of tumor-associated macrophages. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5437-5452. [PMID: 39560749 DOI: 10.1007/s00210-024-03601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Dysregulated expression of ribosomal protein S3A (RPS3A) is associated with the tissue infiltration of immune-related cells in a variety of cancers. However, the role of RPS3A in immune cell infiltration in glioma remains unclear. This study aimed to explore the role of RPS3A in the glioma immune microenvironment. RPS3A expression was detected in tumor tissues from patients with glioma. U251 cells were transfected with RPS3A shRNA (sh-RPS3A) and overexpression vector (pcDNA-RPS3A) and then co-cultured with PMA-induced THP-1 cells. Cell viability, invasion, and apoptosis were detected by Edu staining, Transwell, and flow cytometry, respectively. The expression of tumor-associated macrophage (TAM) M1 and M2 markers was detected with RT-qPCR. Next, the interaction between RPS3A and E4 transcription factor 1 (E4F1) was verified by Co-IP analysis, and the binding of E4F1 to colony-stimulating factor 1 (CSF1) promoter was verified by ChIP analysis. Overexpression vectors of CSF1 and E4F1 were used to treat sh-RPS3A-transfected U251 cells for reversal experiments. Finally, U251 cells transfected with sh-RPS3A adenovirus vectors were subcutaneously injected into nude mice to construct a xenograft tumor model, and the growth and metastasis of glioma in vivo were monitored. RPS3A was significantly upregulated in glioma tissues. Overexpression of RPS3A promoted glioma cell proliferation and invasion and inhibited apoptosis. Moreover, overexpression of RPS3A promoted TAM proliferation, invasion, and M2 polarization. Silencing RPS3A had the opposite effect. Silencing RPS3A inhibited autophagy in U251 cells, whereas rapamycin, an activator of autophagy, reversed the inhibitory effect of RPS3A silencing on TAM M2 polarization. Meanwhile, RPS3A promoted its expression by interacting with E4F1, and E4F1 promoted CSF1 transcriptional activation. Overexpression of CSF1 promoted the proliferation and invasion of U251 cells and reversed the inhibitory effect of RPS3A silencing on TAM proliferation and invasion, but had no effect on TAM M2 polarization. The results of in vivo experiments showed that knockdown of RPS3A significantly inhibited glioma tumor growth and metastasis in vivo. This study revealed that RPS3A recruited TAMs by upregulating E4F1-mediated transcription activation of CSF1, and promoted the M2 polarization of TAMs through autophagy, promoting glioma cell malignant growth and tumor progression.
Collapse
Affiliation(s)
- Liang Zhang
- Northwest University, Guodu Education and Technology Industrial Zone, No. 1 Xuefu Street, Chang'an District, Xi'an, 710127, China
- Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an, 710016, China
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Kun Wang
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Fei Li
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Lingxue Zhang
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Lin Wu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Ru Tie
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Kamulan Litifu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Yujie Fu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Simeng Liu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Jiaxin Ni
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Pan Chang
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Jun Xu
- Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an, 710016, China
| | - Haikang Zhao
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China.
| | - Lingtong Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, China.
| |
Collapse
|
2
|
Shaw P, Dey Bhowmik A, Gopinatha Pillai MS, Robbins N, Dwivedi SKD, Rao G. Anoikis resistance in Cancer: Mechanisms, therapeutic strategies, potential targets, and models for enhanced understanding. Cancer Lett 2025; 624:217750. [PMID: 40294841 DOI: 10.1016/j.canlet.2025.217750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
Anoikis, defined as programmed cell death triggered by the loss of cell-extracellular matrix (ECM) and cell-cell interactions, is crucial for maintaining tissue homeostasis and preventing aberrant cell migration. Cancer cells, however, display anoikis resistance (AR) which in turn enables cancer metastasis. AR results from alterations in apoptotic signaling, metabolic reprogramming, autophagy modulation, and epigenetic changes, allowing cancer cells to survive in detached conditions. In this review we describe the mechanisms underlying both anoikis and AR, focusing on intrinsic and extrinsic pathways, disrupted cell-ECM interactions, and autophagy in cancer. Recent findings (i.e., between 2014 and 2024) on epigenetic regulation of AR and its role in metastasis are discussed. Therapeutic strategies targeting AR, including chemical inhibitors, are highlighted alongside a network analysis of 122 proteins reported to be associated with AR which identifies 53 hub proteins as potential targets. We also evaluate in vitro and in vivo models for studying AR, emphasizing their role in advancing metastasis research. Our overall goal is to guide future studies and therapeutic developments to counter cancer metastasis.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Nathan Robbins
- James E. Hurley School of Science and Mathematics, Oklahoma Baptist University, Shawnee, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
3
|
Nair R, Somasundaram V, Kuriakose A, Krishn SR, Raben D, Salazar R, Nair P. Deciphering T-cell exhaustion in the tumor microenvironment: paving the way for innovative solid tumor therapies. Front Immunol 2025; 16:1548234. [PMID: 40236693 PMCID: PMC11996672 DOI: 10.3389/fimmu.2025.1548234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
In solid tumors, the tumor microenvironment (TME) is a complex mix of tumor, immune, stromal cells, fibroblasts, and the extracellular matrix. Cytotoxic T lymphocytes (CTLs) constitute a fraction of immune cells that may infiltrate into the TME. The primary function of these T-cells is to detect and eliminate tumor cells. However, due to the immunosuppressive factors present in the TME primarily mediated by Myeloid-Derived Suppressor Cells (MDSCs), Tumor associated macrophages (TAMs), Cancer Associated Fibroblasts (CAFs) as well as the tumor cells themselves, T-cells fail to differentiate into effector cells or become dysfunctional and are unable to eliminate the tumor. In addition, chronic antigen stimulation within the TME also leads to a phenomenon, first identified in chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, where the T-cells become exhausted and lose their effector functions. Exhausted T-cells (Tex) are characterized by the presence of remarkably conserved inhibitory receptors, transcription and signaling factors and the downregulation of key effector molecules. Tex cells have been identified in various malignancies, including melanoma, colorectal and hepatocellular cancers. Recent studies have indicated novel strategies to reverse T-cell exhaustion. These include checkpoint inhibitor blockade targeting programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin-domain containing-3 (Tim-3), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), or combinations of different immune checkpoint therapies (ICTs) or combination of ICTs with cytokine co-stimulation. In this review, we discuss aspects of T-cell dysfunction within the TME with a focus on T-cell exhaustion. We believe that gaining insight into the mechanisms of T-cell exhaustion within the TME of human solid tumors will pave the way for developing therapeutic strategies to target and potentially re-invigorate exhausted T-cells in cancer.
Collapse
Affiliation(s)
- Reshmi Nair
- Syngene International Limited, Bengaluru, India
| | | | | | | | - David Raben
- Bicara Therapeutics, Boston, MA, United States
| | | | - Pradip Nair
- Syngene International Limited, Bengaluru, India
| |
Collapse
|
4
|
Wang H, Ji S, Zhang J, Li C, Meng X, Sun Y, Wang L, Luan H, Li F, Hui L, Li F, Wei S, Yu H, Li Z. LILRB4 specific overexpression in myeloid cells promotes tumor progression and immunosuppression in mouse models. Biochem Biophys Res Commun 2025; 755:151536. [PMID: 40048761 DOI: 10.1016/j.bbrc.2025.151536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Leukocyte immunoglobulin like receptor B4 (LILRB4) was considered to promote tumor progression and immunosuppression in various malignancies. As a murine homolog of LILRB4, gp49B has been employed in numerous mouse models to investigate the immunosuppressive properties of LILRB4. However, gp49B differs significantly from LILRB4 in its amino acid sequence and intracellular domains. In this study, we developed a conditional mouse model that overexpresses LILRB4 specifically in myeloid cells to investigate its effects on solid tumors and hematological malignancies. Our results showed that the physiological structure and overall immune system of LILRB4L/L; Cre mice were normal. LL2 tumors in LILRB4L/L; Cre mice exhibited increased size and weight, with elevated levels of immunosuppressive markers programmed cell death protein 1 (PD-1) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) on infiltrating CD3+ T cells, alongside a shift in tumor-associated macrophages (TAMs) from M1-type to M2-type. In the C1498 model, LILRB4 overexpression promoted tumor progression and metastasis, evidenced by increased bioluminescence and enhanced infiltration of monocytic myeloid-derived suppressor cells (M-MDSCs). Real-time PCR analysis showed upregulation of immunosuppressive mRNAs, including colony-stimulating factor 1 (CSF1), arginase1 (Arg1), macrophage galactose N-acetyl-galactosamine specific lectin 2 (Mgl2) and interleukin-1β (IL-1β) while downregulating pro-inflammatory markers like nitric oxide synthase 2 (Nos2). These findings indicate that LILRB4 fosters an immunosuppressive microenvironment that supports tumor progression. LILRB4L/L; Cre mice may serve as a promising tool for studying targeted LILRB4 tumor immunotherapy.
Collapse
Affiliation(s)
- Hongying Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Shuhao Ji
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Jiashen Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Chunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Xianhui Meng
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Yuxiao Sun
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Huiwen Luan
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Fangmin Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Lijun Hui
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Fang Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Shuping Wei
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Zunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
5
|
Zhu R, Huang J, Qian F. The role of tumor-associated macrophages in lung cancer. Front Immunol 2025; 16:1556209. [PMID: 40079009 PMCID: PMC11897577 DOI: 10.3389/fimmu.2025.1556209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Lung cancer remains a leading cause of cancer-related deaths worldwide, necessitating innovative treatments. Tumor-associated macrophages (TAMs) are primary immunosuppressive effectors that foster tumor proliferation, angiogenesis, metastasis, and resistance to therapy. They are broadly categorized into proinflammatory M1 and tumor-promoting M2 phenotypes, with elevated M2 infiltration correlating with poor prognosis. Strategies aimed at inhibiting TAM recruitment, depleting TAMs, or reprogramming M2 to M1 are therefore highly promising. Key signaling pathways, such as CSF-1/CSF-1R, IL-4/IL-13-STAT6, TLRs, and CD47-SIRPα, regulate TAM polarization. Additionally, macrophage-based drug delivery systems permit targeted agent transport to hypoxic regions, enhancing therapy. Preclinical studies combining TAM-targeted therapies with chemotherapy or immune checkpoint inhibitors have yielded improved responses and prolonged survival. Several clinical trials have also reported benefits in previously unresponsive patients. Future work should clarify the roles of macrophage-derived exosomes, cytokines, and additional mediators in shaping the immunosuppressive tumor microenvironment. These insights will inform the design of next-generation drug carriers and optimize combination immunotherapies within precision medicine frameworks. Elucidating TAM phenotypes and their regulatory molecules remains central to developing novel strategies that curb tumor progression and ultimately improve outcomes in lung cancer. Importantly, macrophage-based immunomodulation may offer expanded treatment avenues.
Collapse
Affiliation(s)
| | | | - Fenhong Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Garg S, Rai G, Singh S, Gauba P, Ali J, Dang S. An insight into the role of innate immune cells in breast tumor microenvironment. Breast Cancer 2025; 32:79-100. [PMID: 39460874 DOI: 10.1007/s12282-024-01645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The immune background of breast cancer is highly heterogeneous and the immune system of the human body plays a dual role by both promoting and suppressing its progression. Innate immune cells are the first line of defense in the immune system and impart protection by identifying and interacting with foreign pathogens and cancer cells. Different innate immune cells like natural killer cells, macrophages, dendritic cells, and myeloid suppressor cells take part in hosting the cancer cells. Autophagy is another key component inside the tumor microenvironment and is linked to the disintegration and recycling of cellular components. Within the tumor microenvironment autophagy is involved with Pattern Recognition Receptors and inflammation. Various clinical studies have shown prominent results where innate immune cells and autophagy in combination are used for pathogen as well as cancer cell clearance. However, it is necessary to comprehend the complex tumor microenvironment so that different therapeutic approaches can be developed to enhance the suppressive actions of the cells toward breast cancer cells. In this review article, the complex interaction between immune cells and breast cancer cells and their role in developing effective immunotherapies to improve patient outcomes are discussed in detail.
Collapse
Affiliation(s)
- Sandini Garg
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Garima Rai
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Sakshi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
7
|
Erickson SM, Manning BM, Kumar A, Patel MR. Engineered Cellular Therapies for the Treatment of Thoracic Cancers. Cancers (Basel) 2024; 17:35. [PMID: 39796666 PMCID: PMC11718842 DOI: 10.3390/cancers17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses. In this review, we discuss the prospect of chimeric antigen receptor-T (CAR-T) cells, natural killer (NK) cells, T cell receptor-engineered (TCR-T) cells, and tumor-infiltrating lymphocytes (TILs) as treatments for thoracic malignancies. CAR-T cells and TILs have proven successful in several hematologic cancers and advanced melanoma, respectively, but outside of melanoma, results have thus far been unsuccessful in most other solid tumors. NK cells and TCR-T cells are additional cell therapy platforms with their own unique advantages and challenges. Obstacles that must be overcome to develop effective cell therapy for these malignancies include selecting an appropriate target antigen, combating immunosuppressive cells and signaling molecules present in the tumor microenvironment, persistence, and delivering a sufficient quantity of antitumor immune cells to the tumor. Induced pluripotent stem cells (iPSCs) offer great promise as a source for both NK and T cell-based therapies due to their unlimited expansion potential. Here, we review clinical trial data, as well as recent basic scientific advances that offer insight into how we may overcome these obstacles, and provide an overview of ongoing trials testing novel strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Spencer M. Erickson
- Internal Medicine Residency Program, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Benjamin M. Manning
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Akhilesh Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Manish R. Patel
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| |
Collapse
|
8
|
Chan HW, Kuo DY, Shueng PW, Chuang HY. Visualizing the Tumor Microenvironment: Molecular Imaging Probes Target Extracellular Matrix, Vascular Networks, and Immunosuppressive Cells. Pharmaceuticals (Basel) 2024; 17:1663. [PMID: 39770505 PMCID: PMC11676442 DOI: 10.3390/ph17121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor microenvironment (TME) is a critical factor in cancer progression, driving tumor growth, immune evasion, therapeutic resistance, and metastasis. Understanding the dynamic interactions within the TME is essential for advancing cancer management. Molecular imaging provides a non-invasive, real-time, and longitudinal approach to studying the TME, with techniques such as positron emission tomography (PET), magnetic resonance imaging (MRI), and fluorescence imaging offering complementary strengths, including high sensitivity, spatial resolution, and intraoperative precision. Recent advances in imaging probe development have enhanced the ability to target and monitor specific components of the TME, facilitating early cancer diagnosis, therapeutic monitoring, and deeper insights into tumor biology. By integrating these innovations, molecular imaging offers transformative potential for precision oncology, improving diagnostic accuracy and treatment outcomes through a comprehensive assessment of TME dynamics.
Collapse
Affiliation(s)
- Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan;
| | - Deng-Yu Kuo
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan;
| |
Collapse
|
9
|
Wang X, Woo HH, Wei M, Gibson S, Miranda M, Rush D, Cragun J, Zheng W, Yao G, Chambers SK. miR-449, identified through antiandrogen exposure, mitigates functional biomarkers associated with ovarian cancer risk. Sci Rep 2024; 14:29937. [PMID: 39622842 PMCID: PMC11611913 DOI: 10.1038/s41598-024-80173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
The involvement of the androgen receptor (AR) pathway in developing epithelial ovarian cancer is increasingly acknowledged. However, the specific mechanisms by which anti-androgen agents, such as flutamide, may prevent ovarian cancer and their efficacy remain unknown. This study was initiated by investigating the impact of flutamide on miRNA expression in women at high risk (HR) for ovarian cancer. Ovarian and tubal tissues, free from ovarian, tubal, peritoneal cancers, and serous tubal intraepithelial carcinoma (STIC), were collected from untreated and flutamide-treated HR women as well as low-risk (LR) women controls. We performed miRNA sequencing on these 3 sample cohorts and observed that flutamide normalized miRNA levels in HR tissues, notably upregulating the miR-449 family to levels seen in LR tissues. In subsequent tests in primary ovarian epithelial cells and ovarian cancer cell lines (SKOV3 and Hey), flutamide also increased miR-449a and miR-449b-5p levels. Introducing mimics of these miRNAs reduced the mRNA and protein levels of AR and colony-stimulating factor 1 receptor (CSF1R, also known as c-fms), both of which are known contributors to ovarian cancer progression, with emerging evidence also supporting their roles in ovarian cancer initiation. Ovarian cancer cell migration was inhibited upon introducing miR-449a and miR-449b-5p mimics. Together, our study suggests a novel dual-inhibitory mechanism of flutamide on the AR pathway (AR expression suppression in addition to direct androgen antagonism) and supports its chemopreventive potential in ovarian cancer, especially for HR patients with low miR-449 expression.
Collapse
Affiliation(s)
- Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Ho-Hyung Woo
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Michelle Wei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Steven Gibson
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Mitzi Miranda
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Demaretta Rush
- Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Janiel Cragun
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, Tucson, AZ, USA.
| | - Setsuko K Chambers
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
10
|
Tomassetti C, Insinga G, Gimigliano F, Morrione A, Giordano A, Giurisato E. Insights into CSF-1R Expression in the Tumor Microenvironment. Biomedicines 2024; 12:2381. [PMID: 39457693 PMCID: PMC11504891 DOI: 10.3390/biomedicines12102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The colony-stimulating factor 1 receptor (CSF-1R) plays a pivotal role in orchestrating cellular interactions within the tumor microenvironment (TME). Although the CSF-1R has been extensively studied in myeloid cells, the expression of this receptor and its emerging role in other cell types in the TME need to be further analyzed. This review explores the multifaceted functions of the CSF-1R across various TME cellular populations, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), cancer-associated fibroblasts (CAFs), endothelial cells (ECs), and cancer stem cells (CSCs). The activation of the CSF-1R by its ligands, colony-stimulating factor 1 (CSF-1) and Interleukin-34 (IL-34), regulates TAM polarization towards an immunosuppressive M2 phenotype, promoting tumor progression and immune evasion. Similarly, CSF-1R signaling influences MDSCs to exert immunosuppressive functions, hindering anti-tumor immunity. In DCs, the CSF-1R alters antigen-presenting capabilities, compromising immune surveillance against cancer cells. CSF-1R expression in CAFs and ECs regulates immune modulation, angiogenesis, and immune cell trafficking within the TME, fostering a pro-tumorigenic milieu. Notably, the CSF-1R in CSCs contributes to tumor aggressiveness and therapeutic resistance through interactions with TAMs and the modulation of stemness features. Understanding the diverse roles of the CSF-1R in the TME underscores its potential as a therapeutic target for cancer treatment, aiming at disrupting pro-tumorigenic cellular crosstalk and enhancing anti-tumor immune responses.
Collapse
Affiliation(s)
- Caterina Tomassetti
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Gaia Insinga
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
11
|
Wang Q, Wang J, Xu K, Luo Z. Targeting the CSF1/CSF1R signaling pathway: an innovative strategy for ultrasound combined with macrophage exhaustion in pancreatic cancer therapy. Front Immunol 2024; 15:1481247. [PMID: 39416792 PMCID: PMC11479911 DOI: 10.3389/fimmu.2024.1481247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive and lethal malignancy characterized by a complex tumor microenvironment (TME) and immunosuppressive features that limit the efficacy of existing treatments. This paper reviews the potential of combining ultrasound with macrophage exhaustion in the treatment of pancreatic cancer. Macrophages, particularly tumor-associated macrophages (TAMs), are crucial in pancreatic cancer progression and immune escape. Prolonged exposure to the immunosuppressive TME leads to macrophage exhaustion, reducing their anti-tumor ability and instead promoting tumor growth. The CSF1/CSF1R signaling pathway is key in macrophage recruitment and functional regulation, making it an effective target for combating macrophage exhaustion. Ultrasound technology not only plays a significant role in diagnosis and staging but also enhances therapeutic efficacy by guiding radiofrequency ablation (RFA) and percutaneous alcohol injection (PEI) in combination with immunomodulators. Additionally, ultrasound imaging can monitor the number and functional status of TAMs in real-time, providing a basis for optimizing treatment strategies. Future studies should further investigate the combined use of ultrasound and immunomodulators to refine treatment regimens, address challenges such as individual variability and long-term effects, and offer new hope for pancreatic cancer patients.
Collapse
Affiliation(s)
- Qian Wang
- Department of Ultrasound, Xichong People’s Hospital, Nanchong, China
| | - Jianhong Wang
- Department of Internal Medicine, Guang’an Vocational & Technical College, Guang’an, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Zhibin Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
12
|
Schlom J, Donahue RN, Palena C, Gameiro SR, Hodge JW, Hamilton DH, Gulley JL. Hypothesis: the generation of T cells directed against neoepitopes employing immune-mediating agents other than neoepitope vaccines. J Immunother Cancer 2024; 12:e009595. [PMID: 38977329 PMCID: PMC11256020 DOI: 10.1136/jitc-2024-009595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
The development of vaccines, especially RNA-based, directed against patient-specific tumor neoepitopes is an active and productive area of cancer immunotherapy. Promising clinical results in melanoma and other solid tumor types are emerging. As with all cancer therapy modalities, neoepitope vaccine development and delivery also has some drawbacks, including the level of effort to develop a patient-specific product, accuracy of algorithms to predict neoepitopes, and with the exception of melanoma and some other tumor types, biopsies of metastatic lesions of solid tumors are often not available. We hypothesize that in some circumstances the use of rationally designed combinations of "off-the-shelf" agents may prove an additional path to enable the patient to produce his/her own "neoepitope vaccine" in situ. These combination therapies may consist of agents to activate a tumor-associated T-cell response, potentiate that response, reduce or eliminate immunosuppressive entities in the tumor microenvironment, and/or alter the phenotype of tumor cells to render them more susceptible to immune-mediated lysis. Examples are provided in both preclinical and clinical studies in which combinations of "off-the-shelf" agents lead to the generation of T cells directed against tumor-derived neoepitopes with consequent antitumor activity.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Claudia Palena
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sofia R Gameiro
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - James W Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Duane H Hamilton
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Huang CY, Zhao LP, Rao XN, Zheng RR, Liu ZS, Cai H, Zhang W, Chen AL, Xu L, Li S. Chlorin e6 and BLZ945 Based Self-Assembly for Photodynamic Immunotherapy Through Immunogenic Tumor Induction and Tumor-Associated Macrophage Depletion. Adv Healthc Mater 2024; 13:e2304576. [PMID: 38689517 DOI: 10.1002/adhm.202304576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/28/2024] [Indexed: 05/02/2024]
Abstract
Immunotherapeutic effect is restricted by the nonimmunogenic tumor phenotype and immunosuppression behaviors of tumor-associated macrophages (TAMs). In this work, a drug self-assembly (designated as CeBLZ) is fabricated based on chlorin e6 (Ce6) and BLZ945 to activate photodynamic immunotherapy through tumor immunogenic induction and tumor-associated macrophage depletion. It is found that Ce6 tends to assemble with BLZ945 without any drug excipients, which can enhance the cellular uptake, tumor penetration, and blood circulation behaviors. The robust photodynamic therapy effect of CeBLZ efficiently suppresses the primary tumor growth and also triggers immunogenic cell death to reverse the nonimmunogenic tumor phenotype. Moreover, CeBLZ can deplete TAMs in tumor tissues to reverse the immunosuppression microenvironment, activating abscopal effect for distant tumor inhibition. In vitro and in vivo results confirm the superior antitumor effect of CeBLZ with negligible side effect, which might promote the development of sophisticated drug combinations for systematic tumor management.
Collapse
Affiliation(s)
- Chu-Yu Huang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Lin-Ping Zhao
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xiao-Na Rao
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Rong-Rong Zheng
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Zhi-Shan Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Hua Cai
- Department of Geriatric Cardiology, General Hospital of the Southern Theatre Command, People's Liberation Army (PLA) and Guangdong Pharmaceutical University, Guangzhou, 510016, P. R. China
| | - Wei Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - A-Li Chen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lin Xu
- Department of Geriatric Cardiology, General Hospital of the Southern Theatre Command, People's Liberation Army (PLA) and Guangdong Pharmaceutical University, Guangzhou, 510016, P. R. China
| | - Shiying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
14
|
ZHOU Y, REN D, BI H, YI B, ZHANG C, WANG H, SUN J. [Tumor-associated Macrophage:
Emerging Targets for Modulating the Tumor Microenvironment]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:231-240. [PMID: 38590197 PMCID: PMC11002190 DOI: 10.3779/j.issn.1009-3419.2024.102.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 04/10/2024]
Abstract
Tumor-associated macrophage (TAM) play a crucial role in the immune microenvironment of lung cancer. Through changes in their phenotype and phagocytic functions, TAM contribute to the initiation and progression of lung cancer. By promoting the formation of an immune-suppressive microenvironment and accelerating the growth of abnormal tumor vasculature, TAM facilitate the invasion and metastasis of lung cancer. Macrophages can polarize into different subtypes with distinct functions and characteristics in response to various stimuli, categorized as anti-tumor M1 and pro-tumor M2 types. In tumor tissues, TAM typically polarize into the alternatively activated M2 phenotype, exhibiting inhibitory effects on tumor immunity. This article reviews the role of anti-angiogenic drugs in modulating TAM phenotypes, highlighting their potential to reprogram M2-type TAM into an anti-tumor M1 phenotype. Additionally, the functional alterations of TAM play a significant role in anti-angiogenic therapy and immunotherapy strategies. In summary, the regulation of TAM polarization and function opens up new avenues for lung cancer treatment and may serve as a novel target for modulating the immune microenvironment of tumors.
.
Collapse
|