1
|
Huang Y, Peng M, Yu W, Li H. Activation of Wnt/β-catenin signaling promotes immune evasion via the β-catenin/IKZF1/CCL5 axis in hepatocellular carcinoma. Int Immunopharmacol 2024; 138:112534. [PMID: 38941667 DOI: 10.1016/j.intimp.2024.112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Immune checkpoint therapy (ICT) has been shown to produce durable responses in various cancer patients. However, its efficacy is notably limited in hepatocellular carcinoma (HCC), with only a small percentage of patients responding positively to treatment. The mechanism underlying resistance to ICT in HCC remains poorly understood. Here, we showed that combination treatment of ICG-001, an inhibitor of the Wnt/β-catenin signaling pathway, with anti-PD-1 antibody effectively suppresses tumor growth and promotes the infiltration of immune cells such as DCs and CD8+ T cells in the tumor microenvironment (TME). By inhibiting the activity of β-catenin and blocking its binding to the transcription factor IKAROS family zinc finger 1 (IKZF1), ICG-001 upregulated the expression of CCL5. Moreover, IKZF1 regulated the activity of the CCL5 promoter and its endogenous expression. Through inhibition of the WNT/β-catenin signaling pathway, upregulation of the expression of CCL5 was achieved, which subsequently recruited more DCs into the TME via C-C motif chemokine receptor 5 (CCR5). This, in turn, resulted in an increase in the infiltration of CD8+ T cells in the TME, thereby enhancing the antitumor immune response. Analysis of a tissue microarray derived from HCC patient samples revealed a positive correlation between survival rate and prognosis and the expression levels of CCL5/CD8. In conclusion, our findings suggest that combined application of ICG-001 and anti-PD-1 antibody exhibits significantly enhanced antitumor efficacy. Hence, combining a WNT/β-catenin signaling pathway inhibitor with anti-PD-1 therapy may be a promising treatment strategy for patients with HCC.
Collapse
Affiliation(s)
- Yamei Huang
- Department of Pathology and Pathophysiology, Medical School of Southeast University, China
| | - Min Peng
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, China
| | - Weiping Yu
- Department of Pathology and Pathophysiology, Medical School of Southeast University, China.
| | - Hui Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China.
| |
Collapse
|
2
|
Lei C, Kong X, Li Y, Yang H, Zhang K, Wang Z, Chang H, Xuan L. PD-1/PD-L1 Inhibitor - Related Adverse Events and Their Management in Breast Cancer. J Cancer 2024; 15:2770-2787. [PMID: 38577606 PMCID: PMC10988294 DOI: 10.7150/jca.85433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
As the positive results of multiple clinical trials were released, the Programmed cell death 1 (PD-1) and Programmed cell death ligand 1 (PD-L1) inhibitors emerge as the focus of integrative breast cancer treatment. PD-1/PD-L1 inhibitors are often used as a sequential agent to be combined with other agents such as chemotherapeutic agents, targeted agents, and radiation therapy. As multiple therapies are administered simultaneously or in sequence, they are prone to a variety of adverse effects on patients while achieving efficacy. It is a challenge for clinicians to maintaining the balance between immune-related adverse effects(irAEs) and treatment efficacy. Previous literatures have paid lots of attention on the adverse effects caused by immunosuppressive agents themselves, while there is a dearth of the research on the management of adverse immune effects during the combination of immunotherapy with other treatments. In this review, we discuss the overall incidence of irAEs caused by PD-1/PD-L1 inhibitors in combination with various types of treatments in breast cancer, including chemotherapy, CTLA-4 inhibitors, targeted therapy, and radiotherapy, and systematically summarizes the clinical management to each organ-related adverse immune reaction. It is important to emphasize that in the event of irAEs such as neurological, hematologic, and cardiac toxicity, there is no alternative treatment but to terminate immunotherapy. Thus, seeking more effective strategy of irAEs' management is imminent and clinicians are urged to raise the awareness of the management of adverse immune reactions.
Collapse
Affiliation(s)
- Chuqi Lei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaiyu Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hu Chang
- Administration Office, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|