1
|
Jaimes-Nino LM, Oettler J. The pace and shape of ant ageing. Biol Rev Camb Philos Soc 2025. [PMID: 40374312 DOI: 10.1111/brv.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Ants have been proposed as good models to study ageing and the effects of extrinsic mortality because of their long lifespans and plasticity of ageing within species. We discuss how age-dependent extrinsic mortality might influence queen lifespan, and how the effect of age-independent extrinsic mortality needs further study, accounting for different density-dependence scenarios. Based on a critical review of the available demographic data, we discuss the selective forces underlying ant ageing. We discuss differences and similarities between the life-history strategy of ants and the reproductive strategies iteroparity and semelparity. We consider how late-life fitness gains for the "superorganism" select for a delay of actuarial, and reproductive senescence, and we suggest future research directions.
Collapse
Affiliation(s)
- Luisa M Jaimes-Nino
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, Mainz, 55128, Germany
- Zoologie/Evolutionsbiologie, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany
| | - Jan Oettler
- Zoologie/Evolutionsbiologie, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany
| |
Collapse
|
2
|
Collins DH, Prince DC, Donelan JL, Chapman T, Bourke AFG. Costs of reproduction are present but latent in eusocial bumblebee queens. BMC Biol 2023; 21:153. [PMID: 37430246 DOI: 10.1186/s12915-023-01648-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The standard evolutionary theory of ageing proposes that ageing occurs because of a trade-off between reproduction and longevity. Eusocial insect queens exhibit positive fecundity-longevity associations and so have been suggested to be counter-examples through not expressing costs of reproduction and through remodelling conserved genetic and endocrine networks regulating ageing and reproduction. If so, eusocial evolution from solitary ancestors with negative fecundity-longevity associations must have involved a stage at which costs of reproduction were suppressed and fecundity and longevity became positively associated. Using the bumblebee (Bombus terrestris), we experimentally tested whether queens in annual eusocial insects at an intermediate level of eusocial complexity experience costs of reproduction, and, using mRNA-seq, the extent to which they exhibit a remodelling of relevant genetic and endocrine networks. Specifically, we tested whether costs of reproduction are present but latent, or whether a remodelling of relevant genetic and endocrine networks has already occurred allowing queens to reproduce without costs. RESULTS We experimentally increased queens' costs of reproduction by removing their eggs, which caused queens to increase their egg-laying rate. Treatment queens had significantly reduced longevity relative to control queens whose egg-laying rate was not increased. Reduced longevity in treatment queens was not caused by increased worker-to-queen aggression or by increased overall activity in queens. In addition, treatment and control queens differed in age-related gene expression based on mRNA-seq in both their overall expression profiles and the expression of ageing-related genes. Remarkably, these differences appeared to occur principally with respect to relative age, not chronological age. CONCLUSIONS This study represents the first simultaneously phenotypic and transcriptomic experimental test for a longevity cost of reproduction in eusocial insect queens. The results support the occurrence of costs of reproduction in annual eusocial insects of intermediate social complexity and suggest that reproductive costs are present but latent in queens of such species, i.e. that these queens exhibit condition-dependent positive fecundity-longevity associations. They also raise the possibility that a partial remodelling of genetic and endocrine networks underpinning ageing may have occurred in intermediately eusocial species such that, in unmanipulated conditions, age-related gene expression depends more on chronological than relative age.
Collapse
Affiliation(s)
- David H Collins
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - David C Prince
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jenny L Donelan
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
3
|
Helanterä H, Ozan M, Sundström L. Relatedness modulates reproductive competition among queens in ant societies with multiple queens. Behav Ecol 2023; 34:340-345. [PMID: 37192926 PMCID: PMC10183207 DOI: 10.1093/beheco/arad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/05/2022] [Accepted: 01/09/2023] [Indexed: 03/03/2023] Open
Abstract
Reproductive sharing in animal groups with multiple breeders, insects and vertebrates alike, contains elements of both conflict and cooperation, and depends on both relatedness between co-breeders, as well as their internal and external conditions. We studied how queens of the ant Formica fusca adjust their reproductive efforts in response to experimental manipulations of the kin competition regime in their nest. Queens respond to the presence of competitors by increasing their egg laying efforts, but only if the competitors are highly fecund and distantly related. Such a mechanism is likely to decrease harmful competition among close relatives. We demonstrate that queens of Formica fusca fine-tune their cooperative breeding behaviors in response to kinship and fecundity of others in a remarkably precise and flexible manner.
Collapse
Affiliation(s)
- Heikki Helanterä
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, P.O.BOX 65, FI 00014, Helsinki University, Finland
- Tvärminne Zoological station, J.A. Palménintie 260, FI 10900 Hanko, Finland
- Faculty of Science, Ecology and Genetics Research Unit, FI 90014, University of Oulu, Finland
| | - Martina Ozan
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, P.O.BOX 65, FI 00014, Helsinki University, Finland
- Tvärminne Zoological station, J.A. Palménintie 260, FI 10900 Hanko, Finland
| | - Liselotte Sundström
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, P.O.BOX 65, FI 00014, Helsinki University, Finland
- Tvärminne Zoological station, J.A. Palménintie 260, FI 10900 Hanko, Finland
| |
Collapse
|
4
|
Korb J, Heinze J. Ageing and sociality: why, when and how does sociality change ageing patterns? Philos Trans R Soc Lond B Biol Sci 2021; 376:20190727. [PMID: 33678019 PMCID: PMC7938171 DOI: 10.1098/rstb.2019.0727] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Individual lifespans vary tremendously between and also within species, but the proximate and ultimate causes of different ageing speeds are still not well understood. Sociality appears to be associated with the evolution of greater longevity and probably also with a larger plasticity of the shape and pace of ageing. For example, reproductives of several termites and ants reach lifespans that surpass those of their non-reproductive nestmates by one or two decades. In this issue, 15 papers explore the interrelations between sociality and individual longevity in both, group-living vertebrates and social insects. Here, we briefly give an overview of the contents of the various contributions, including theoretical and comparative studies, and we explore the similarities and dissimilarities in proximate mechanisms underlying ageing among taxa, with particular emphasis on nutrient-sensing pathways and, in insects, juvenile hormone. These studies point to an underestimated role of more downstream processes. We highlight the need for reliable transcriptomic markers of ageing and a comprehensive ageing theory of social animals, which includes the reproductive potential of workers, and considers the fact that social insect queens reach maturity only after a prolonged period of producing non-reproductive workers. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Judith Korb
- Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
| | - Jürgen Heinze
- Department of Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße, 93040 Regensburg, Germany
| |
Collapse
|
5
|
Heinze J, Giehr J. The plasticity of lifespan in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190734. [PMID: 33678025 PMCID: PMC7938164 DOI: 10.1098/rstb.2019.0734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/11/2023] Open
Abstract
One of the central questions of ageing research is why lifespans of organisms differ so tremendously among related taxa and, even more surprising, among members of the same species. Social insects provide a particularly pronounced example for this. Here, we review previously published information on lifespan plasticity in social insects and provide new data on worker lifespan in the ant Cardiocondyla obscurior, which because of its relatively short lifespan is a convenient model to study ageing. We show that individual lifespan may vary within species with several reproductive and social traits, such as egg-laying rate, queen number, task, colony size and colony composition. For example, in Cardiocondyla, highly fecund queens live longer than reproductively less active queens, and workers tend to live longer when transferred into a novel social environment or, as we show with new data, into small colonies. We hypothesize that this plasticity of lifespan serves to maximize the reproductive output of the colony as a whole and thus the inclusive fitness of all individuals. The underlying mechanisms that link the social environment or reproductive status with lifespan are currently unresolved. Several studies in honeybees and ants indicate an involvement of nutrient-sensing pathways, but the details appear to differ among species. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| | - Julia Giehr
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| |
Collapse
|
6
|
Kennedy A, Herman J, Rueppell O. Reproductive activation in honeybee ( Apis mellifera) workers protects against abiotic and biotic stress. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190737. [PMID: 33678021 DOI: 10.1098/rstb.2019.0737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Social insect reproductives exhibit exceptional longevity instead of the classic trade-off between somatic maintenance and reproduction. Even normally sterile workers experience a significant increase in life expectancy when they assume a reproductive role. The mechanisms that enable the positive relation between the antagonistic demands of reproduction and somatic maintenance are unclear. To isolate the effect of reproductive activation, honeybee workers were induced to activate their ovaries. These reproductively activated workers were compared to controls for survival and gene expression patterns after exposure to Israeli Acute Paralysis Virus or the oxidative stressor paraquat. Reproductive activation increased survival, indicating better immunity and oxidative stress resistance. After qPCR analysis confirmed our experimental treatments at the physiological level, whole transcriptome analysis revealed that paraquat treatment significantly changed the expression of 1277 genes in the control workers but only two genes in reproductively activated workers, indicating that reproductive activation preemptively protects against oxidative stress. Significant overlap between genes that were upregulated by reproductive activation and in response to paraquat included prominent members of signalling pathways and anti-oxidants known to affect ageing. Thus, while our results confirm a central role of vitellogenin, they also point to other mechanisms to explain the molecular basis of the lack of a cost of reproduction and the exceptional longevity of social insect reproductives. Thus, socially induced reproductive activation preemptively protects honeybee workers against stressors, explaining their longevity. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Anissa Kennedy
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| | - Jacob Herman
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| |
Collapse
|
7
|
Heinze J, Frohschammer S, Bernadou A. When invasive ants meet: effects of outbreeding on queen performance in the tramp ant Cardiocondyla itsukii. INSECT SCIENCE 2019; 26:333-340. [PMID: 28834236 DOI: 10.1111/1744-7917.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Most disturbed habitats in the tropics and subtropics harbor numerous species of invasive ants, and occasionally the same species has been introduced repeatedly from multiple geographical sources. We examined how experimental crossbreeding between sexuals from different populations affects the fitness of queens of the tramp ant Cardiocondyla itsukii, which is widely distributed in Asia and the Pacific Islands. Eggs laid by queens that mated with nestmate males had a higher hatching rate than eggs laid by queens mated to males from neighboring (Hawaii × Kauai) or distant introduced populations (Hawaii/Kauai × Okinawa). Furthermore, inbreeding queens had a longer lifespan and produced a less female-biased offspring sex ratio than queens from allopatric mating. This suggests that the genetic divergence between different source populations may already be so large that in case of multiple invasions eventual crossbreeding might negatively affect the fitness of tramp ants.
Collapse
Affiliation(s)
- Jürgen Heinze
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Regensburg, Germany
| | | | - Abel Bernadou
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
|
9
|
Blacher P, Huggins TJ, Bourke AFG. Evolution of ageing, costs of reproduction and the fecundity-longevity trade-off in eusocial insects. Proc Biol Sci 2018; 284:rspb.2017.0380. [PMID: 28701554 PMCID: PMC5524490 DOI: 10.1098/rspb.2017.0380] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 01/04/2023] Open
Abstract
Eusocial insects provide special opportunities to elucidate the evolution of ageing as queens have apparently evaded costs of reproduction and reversed the fecundity–longevity trade-off generally observed in non-social organisms. But how reproduction affects longevity in eusocial insects has rarely been tested experimentally. In this study, we took advantage of the reproductive plasticity of workers to test the causal role of reproduction in determining longevity in eusocial insects. Using the eusocial bumblebee Bombus terrestris, we found that, in whole colonies, in which workers could freely ‘choose’ whether to become reproductive, workers' level of ovarian activation was significantly positively associated with longevity and ovary-active workers significantly outlived ovary-inactive workers. By contrast, when reproductivity was experimentally induced in randomly selected workers, thereby decoupling it from other traits, workers' level of ovarian activation was significantly negatively associated with longevity and ovary-active workers were significantly less long-lived than ovary-inactive workers. These findings show that workers experience costs of reproduction and suggest that intrinsically high-quality individuals can overcome these costs. They also raise the possibility that eusocial insect queens exhibit condition-dependent longevity and hence call into question whether eusociality entails a truly reversed fecundity–longevity trade-off involving a fundamental remodelling of conserved genetic and endocrine networks underpinning ageing.
Collapse
Affiliation(s)
- Pierre Blacher
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Timothy J Huggins
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
10
|
Heinze J. Life-history evolution in ants: the case of Cardiocondyla. Proc Biol Sci 2018; 284:rspb.2016.1406. [PMID: 28298341 DOI: 10.1098/rspb.2016.1406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/06/2016] [Indexed: 01/09/2023] Open
Abstract
Ants are important components of most terrestrial habitats, and a better knowledge of the diversity of their life histories is essential to understand many aspects of ecosystem functioning. The myrmicine genus Cardiocondyla shows a wide range of colony structures, reproductive behaviours, queen and male lifespans, and habitat use. Reconstructing the evolutionary pathways of individual and social phenotypic traits suggests that the ancestral life history of Cardiocondyla was characterized by the presence of multiple, short-lived queens in small-sized colonies and a male polyphenism with winged dispersers and wingless fighters, which engage in lethal combat over female sexuals within their natal nests. Single queening, queen polyphenism, the loss of winged males and tolerance among wingless males appear to be derived traits that evolved with changes in nesting habits, colony size and the spread from tropical to seasonal environments. The aim of this review is to bring together the information on life-history evolution in Cardiocondyla and to highlight the suitability of this genus for functional genomic studies of adaptation, phenotypic plasticity, senescence, invasiveness and other key life-history traits of ants.
Collapse
Affiliation(s)
- Jürgen Heinze
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
11
|
Feldmeyer B, Elsner D, Alleman A, Foitzik S. Species-specific genes under selection characterize the co-evolution of slavemaker and host lifestyles. BMC Evol Biol 2017; 17:237. [PMID: 29202686 PMCID: PMC5715652 DOI: 10.1186/s12862-017-1078-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The transition to a parasitic lifestyle entails comprehensive changes to the selective regime. In parasites, genes encoding for traits that facilitate host detection, exploitation and transmission should be under selection. Slavemaking ants are social parasites that exploit the altruistic behaviour of their hosts by stealing heterospecific host brood during raids, which afterwards serve as slaves in slavemaker nests. Here we search for evidence of selection in the transcriptomes of three slavemaker species and three closely related hosts. We expected selection on genes underlying recognition and raiding or defense behaviour. Analyses of selective forces in species with a slavemaker or host lifestyle allowed investigation into whether or not repeated instances of slavemaker evolution share the same genetic basis. To investigate the genetic basis of host-slavemaker co-evolution, we created orthologous clusters from transcriptome sequences of six Temnothorax ant species - three slavemakers and three hosts - to identify genes with signatures of selection. We further tested for functional enrichment in selected genes from slavemakers and hosts respectively and investigated which pathways the according genes belong to. RESULTS Our phylogenetic analysis, based on more than 5000 ortholog sequences, revealed sister species status for two slavemakers as well as two hosts, contradicting a previous phylogeny based on mtDNA. We identified 309 genes with signs of positive selection on branches leading to slavemakers and 161 leading to hosts. Among these were genes potentially involved in cuticular hydrocarbon synthesis, thus species recognition, and circadian clock functionality possibly explaining the different activity patterns of slavemakers and hosts. There was little overlap of genes with signatures of positive selection among species, which are involved in numerous different functions and different pathways. CONCLUSIONS We identified different genes, functions and pathways under positive selection in each species. These results point to species-specific adaptations rather than convergent trajectories during the evolution of the slavemaker and host lifestyles suggesting that the evolution of parasitism, even in closely related species, may be achieved in diverse ways.
Collapse
Affiliation(s)
- B Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Molecular Ecology, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - D Elsner
- Evolutionary Biology and Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany
| | - A Alleman
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - S Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| |
Collapse
|
12
|
Giehr J, Grasse AV, Cremer S, Heinze J, Schrempf A. Ant queens increase their reproductive efforts after pathogen infection. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170547. [PMID: 28791176 PMCID: PMC5541571 DOI: 10.1098/rsos.170547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 05/31/2023]
Abstract
Infections with potentially lethal pathogens may negatively affect an individual's lifespan and decrease its reproductive value. The terminal investment hypothesis predicts that individuals faced with a reduced survival should invest more into reproduction instead of maintenance and growth. Several studies suggest that individuals are indeed able to estimate their body condition and to increase their reproductive effort with approaching death, while other studies gave ambiguous results. We investigate whether queens of a perennial social insect (ant) are able to boost their reproduction following infection with an obligate killing pathogen. Social insect queens are special with regard to reproduction and aging, as they outlive conspecific non-reproductive workers. Moreover, in the ant Cardiocondyla obscurior, fecundity increases with queen age. However, it remained unclear whether this reflects negative reproductive senescence or terminal investment in response to approaching death. Here, we test whether queens of C. obscurior react to infection with the entomopathogenic fungus Metarhizium brunneum by an increased egg-laying rate. We show that a fungal infection triggers a reinforced investment in reproduction in queens. This adjustment of the reproductive rate by ant queens is consistent with predictions of the terminal investment hypothesis and is reported for the first time in a social insect.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Anna V. Grasse
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Alexandra Schrempf
- Zoology/Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Kohlmeier P, Negroni MA, Kever M, Emmling S, Stypa H, Feldmeyer B, Foitzik S. Intrinsic worker mortality depends on behavioral caste and the queens' presence in a social insect. Naturwissenschaften 2017; 104:34. [PMID: 28353195 DOI: 10.1007/s00114-017-1452-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/30/2022]
Abstract
According to the classic life history theory, selection for longevity depends on age-dependant extrinsic mortality and fecundity. In social insects, the common life history trade-off between fecundity and longevity appears to be reversed, as the most fecund individual, the queen, often exceeds workers in lifespan several fold. But does fecundity directly affect intrinsic mortality also in social insect workers? And what is the effect of task on worker mortality? Here, we studied how social environment and behavioral caste affect intrinsic mortality of ant workers. We compared worker survival between queenless and queenright Temnothorax longispinosus nests and demonstrate that workers survive longer under the queens' absence. Temnothorax ant workers fight over reproduction when the queen is absent and dominant workers lay eggs. Worker fertility might therefore increase lifespan, possibly due to a positive physiological link between fecundity and longevity, or better care for fertile workers. In social insects, division of labor among workers is age-dependant with young workers caring for the brood and old ones going out to forage. We therefore expected nurses to survive longer than foragers, which is what we found. Surprisingly, inactive inside workers showed a lower survival than nurses but comparable to that of foragers. The reduced longevity of inactive workers could be due to them being older than the nurses, or due to a positive effect of activity on lifespan. Overall, our study points to behavioral caste-dependent intrinsic mortality rates and a positive association between fertility and longevity not only in queens but also in ant workers.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany.
| | - Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Stefanie Emmling
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Heike Stypa
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| |
Collapse
|
14
|
Schrempf A, Giehr J, Röhrl R, Steigleder S, Heinze J. Royal Darwinian Demons: Enforced Changes in Reproductive Efforts Do Not Affect the Life Expectancy of Ant Queens. Am Nat 2017; 189:436-442. [PMID: 28350504 DOI: 10.1086/691000] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
One of the central tenets of life-history theory is that organisms cannot simultaneously maximize all fitness components. This results in the fundamental trade-off between reproduction and life span known from numerous animals, including humans. Social insects are a well-known exception to this rule: reproductive queens outlive nonreproductive workers. Here, we take a step forward and show that under identical social and environmental conditions the fecundity-longevity trade-off is absent also within the queen caste. A change in reproduction did not alter life expectancy, and even a strong enforced increase in reproductive efforts did not reduce residual life span. Generally, egg-laying rate and life span were positively correlated. Queens of perennial social insects thus seem to maximize at the same time two fitness parameters that are normally negatively correlated. Even though they are not immortal, they best approach a hypothetical "Darwinian demon" in the animal kingdom.
Collapse
|
15
|
Pamminger T, Buttstedt A, Norman V, Schierhorn A, Botías C, Jones JC, Basley K, Hughes WOH. The effects of juvenile hormone on Lasius niger reproduction. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:1-7. [PMID: 27614175 DOI: 10.1016/j.jinsphys.2016.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
Reproduction has been shown to be costly for survival in a wide diversity of taxa. The resulting trade-off, termed the reproduction-survival trade-off, is thought to be one of the most fundamental forces of life-history evolution. In insects the pleiotropic effect of juvenile hormone (JH), antagonistically regulating reproduction and pathogen resistance, is suggested to underlie this phenomenon. In contrast to the majority of insects, reproductive individuals in many eusocial insects defy this trade-off and live both long and prosper. By remodelling the gonadotropic effects of JH in reproductive regulation, the queens of the long-lived black garden ant Lasius niger (living up to 27 years), have circumvented the reproduction-survival trade off enabling them to maximize both reproduction and pathogen resistance simultaneously. In this study we measure fertility, vitellogenin gene expression and protein levels after experimental manipulation of hormone levels. We use these measurements to investigate the mechanistic basis of endocrinological role remodelling in reproduction and determine how JH suppresses reproduction in this species, rather then stimulating it, like in the majority of insects. We find that JH likely inhibits three key aspects of reproduction both during vitellogenesis and oogenesis, including two previously unknown mechanisms. In addition, we document that juvenile hormone, as in the majority of insects, has retained some stimulatory function in regulating vitellogenin expression. We discuss the evolutionary consequences of this complex regulatory architecture of reproduction in L. niger, which might enable the evolution of similar reproductive phenotypes by alternate regulatory pathways, and the surprising flexibility regulatory role of juvenile hormone in this process.
Collapse
Affiliation(s)
- T Pamminger
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| | - A Buttstedt
- Institut Für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Halle 06099, Germany
| | - V Norman
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - A Schierhorn
- Institut Für Biochemie, Martin-Luther-Universität Halle Wittenberg, Halle 06099, Germany
| | - C Botías
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - J C Jones
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - K Basley
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - W O H Hughes
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
16
|
Kramer BH, Schaible R, Scheuerlein A. Worker lifespan is an adaptive trait during colony establishment in the long-lived ant Lasius niger. Exp Gerontol 2016; 85:18-23. [PMID: 27620822 DOI: 10.1016/j.exger.2016.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/04/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
Eusociality has been recognized as a strong driver of lifespan evolution. While queens show extraordinary lifespans of 20years and more, worker lifespan is short and variable. A recent comparative study found that in eusocial species with larger average colony sizes the disparities in the lifespans of the queen and the worker are also greater, which suggests that lifespan might be an evolved trait. Here, we tested whether the same pattern holds during colony establishment: as colonies grow larger, worker lifespan should decrease. We studied the mortality of lab-reared Lasius niger workers from colonies at two different developmental stages (small and intermediate-sized) in a common garden experiment. Workers were kept in artificial cohorts that differed only with respect to the stage of the colony they were born in. We found that the stage of the birth colony affected the body size and the survival probability of the workers. The workers that had emerged from early stage colonies were smaller and had lower mortality during the first 400days of their life than the workers born in colonies at a later stage. Our results suggest that early stage colonies produce small workers with an increased survival probability. These workers are gradually augmented by larger workers with a decreased survival probability that serve as a redundant workforce with easily replaceable individuals. We doubt that the observed differences in lifespan are driven by differences in body size. Rather, we suspect that physiological mechanisms are the basis for the observed differences in lifespan.
Collapse
Affiliation(s)
- Boris H Kramer
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands.
| | - Ralf Schaible
- Max Planck Institute for Demographic Research, Rostock, Germany
| | | |
Collapse
|
17
|
de Verges J, Nehring V. A critical look at proximate causes of social insect senescence: damage accumulation or hyperfunction? CURRENT OPINION IN INSECT SCIENCE 2016; 16:69-75. [PMID: 27720053 DOI: 10.1016/j.cois.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 06/06/2023]
Abstract
Social insects have received attention for their extreme lifespan variation and reversal of the fecundity/longevity trade-off. However, proximate causes of senescence in general are disputed, and social insects often fail to meet the predictions of prevailing models. We present evidence for and against the long-held free radical theory of aging in social insects, and consider the application of the competing hyperfunction theory. Current results present problems for both theories, and a more complex picture of the biological processes involved emerges. The eusocial life style might allow colonies to allocate damage in ways that create seemingly senescence-free life histories. Only experimental approaches characterizing multiple senescence factors simultaneously will shed light on how social insects defy the conventions of senescence.
Collapse
Affiliation(s)
- Jane de Verges
- University of Freiburg, Biology I, Evolution & Ecology, Hauptstraße 1, D-79104 Freiburg, Germany
| | - Volker Nehring
- University of Freiburg, Biology I, Evolution & Ecology, Hauptstraße 1, D-79104 Freiburg, Germany.
| |
Collapse
|
18
|
Korb J. Why do social insect queens live so long? Approaches to unravel the sociality-aging puzzle. CURRENT OPINION IN INSECT SCIENCE 2016; 16:104-107. [PMID: 27720043 DOI: 10.1016/j.cois.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/02/2016] [Accepted: 06/07/2016] [Indexed: 05/25/2023]
Abstract
Social insects are characterized by an apparent reshaping of the fecundity/longevity trade-off with sociality. Currently, we have only sketchy information about the potential underlying causes and mechanisms of aging and senescence which in addition are restricted to few model insect organisms (mainly the fruit fly Drosophila melanogaster and the honey bee Apis mellifera). How can we gain a more thorough understanding how sociality shapes senescence and the fecundity/longevity trade-off? By reviewing available literature, I propose a comparative approach that offers the opportunity to gain fundamental insights into uncovering the basis for this life history trade-off and its reshaping with sociality.
Collapse
Affiliation(s)
- Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Germany.
| |
Collapse
|
19
|
Negroni MA, Jongepier E, Feldmeyer B, Kramer BH, Foitzik S. Life history evolution in social insects: a female perspective. CURRENT OPINION IN INSECT SCIENCE 2016; 16:51-57. [PMID: 27720050 DOI: 10.1016/j.cois.2016.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Social insects are known for their unusual life histories with fecund, long-lived queens and sterile, short-lived workers. We review ultimate factors underlying variation in life history strategies in female social insects, whose social life reshapes common trade-offs, such as the one between fecundity and longevity. Interspecific life history variation is associated with colony size, mediated by changes in division of labour and extrinsic mortality. In addition to the ratio of juvenile to adult mortality, social factors such as queen number influence life history trajectories. We discuss two hypotheses explaining why queen fecundity and lifespan is higher in single-queen societies and suggest further research directions on the evolution of life history variation in social insects.
Collapse
Affiliation(s)
- Matteo Antoine Negroni
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Evelien Jongepier
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Molecular Ecology, Senckenberganlage 25, Frankfurt am Main 60325, Germany
| | - Boris H Kramer
- Theoretical Research in Evolutionary Life Sciences (TRES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Susanne Foitzik
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany.
| |
Collapse
|
20
|
von Wyschetzki K, Lowack H, Heinze J. Transcriptomic response to injury sheds light on the physiological costs of reproduction in ant queens. Mol Ecol 2016; 25:1972-85. [PMID: 26880273 DOI: 10.1111/mec.13588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 01/04/2023]
Abstract
The trade-off between reproduction and longevity is widespread among multicellular organisms. As an important exception, the reproductive females of perennial social insects (ants, honeybees, termites) are simultaneously highly fertile and very long-lived relative to their nonreproductive nestmates. The observation that increased fecundity is not coupled with decreased lifespan suggests that social insect queens do not have to reallocate resources between reproduction and self-maintenance. If queens have to compensate for the costs of reproduction on the level of the individual, the activation of other energy-demanding physiological processes might force them to reduce the production of eggs. To test this hypothesis in ant queens, we increased immunity costs by injury and measured the effect of this treatment on egg-laying rates and genomewide gene expression. Amputation of both middle legs led to a temporary decrease in egg-laying rates and affected the expression of 947 genes corresponding to 9% of the transcriptome. The changes comprised the upregulation of the immune and wound healing response on the one hand, and the downregulation of germ cell development, central nervous system development and learning ability on the other hand. Injury strongly influenced metabolism by inducing catabolism and repressing amino acid and nitrogen compound metabolism. By comparing our results to similar transcriptomic studies in insects, we found a highly consistent upregulation of immune genes due to sterile and septic wounding. The gene expression changes, complemented by the temporary decline of egg-laying rates, clearly reveal a trade-off between reproduction and the immune response in social insect queens.
Collapse
Affiliation(s)
- Katharina von Wyschetzki
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Helena Lowack
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Jürgen Heinze
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| |
Collapse
|
21
|
Lockett GA, Almond EJ, Huggins TJ, Parker JD, Bourke AFG. Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp Gerontol 2016; 77:52-61. [PMID: 26883339 DOI: 10.1016/j.exger.2016.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/24/2016] [Accepted: 02/12/2016] [Indexed: 02/03/2023]
Abstract
Eusocial insects provide special insights into the genetic pathways influencing aging because of their long-lived queens and flexible aging schedules. Using qRT-PCR in the primitively eusocial bumble bee Bombus terrestris (Linnaeus), we investigated expression levels of four candidate genes associated with taxonomically widespread age-related pathways (coenzyme Q biosynthesis protein 7, COQ7; DNA methyltransferase 3, Dnmt3; foraging, for; and vitellogenin, vg). In Experiment 1, we tested how expression changes with queen relative age and productivity. We found a significant age-related increase in COQ7 expression in queen ovary. In brain, all four genes showed higher expression with increasing female (queen plus worker) production, with this relationship strengthening as queen age increased, suggesting a link with the positive association of fecundity and longevity found in eusocial insect queens. In Experiment 2, we tested effects of relative age and social environment (worker removal) in foundress queens and effects of age and reproductive status in workers. In this experiment, workerless queens showed significantly higher for expression in brain, as predicted if downregulation of for is associated with the cessation of foraging by foundress queens following worker emergence. Workers showed a significant age-related increase in Dnmt3 expression in fat body, suggesting a novel association between aging and methylation in B. terrestris. Ovary activation was associated with significantly higher vg expression in fat body and, in younger workers, in brain, consistent with vitellogenin's ancestral role in regulating egg production. Overall, our findings reveal a mixture of novel and conserved features in age-related genetic pathways under primitive eusociality.
Collapse
Affiliation(s)
- Gabrielle A Lockett
- School of Biological Sciences, University of Southampton, Life Sciences Building, Highfield Campus, Southampton SO17 1BJ, UK
| | - Edward J Almond
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Timothy J Huggins
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Joel D Parker
- School of Biological Sciences, University of Southampton, Life Sciences Building, Highfield Campus, Southampton SO17 1BJ, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
22
|
|
23
|
Rueppell O, Königseder F, Heinze J, Schrempf A. Intrinsic survival advantage of social insect queens depends on reproductive activation. J Evol Biol 2015; 28:2349-54. [PMID: 26348543 PMCID: PMC5540307 DOI: 10.1111/jeb.12749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023]
Abstract
The central trade-off between reproduction and longevity dominates most species' life history. However, no mortality cost of reproduction is apparent in eusocial species, particularly social insects in the order Hymenoptera: one or a few individuals (typically referred to as queens) in a group specialize on reproduction and are generally longer lived than all other group members (typically referred to as workers), despite having the same genome. However, it is unclear whether this survival advantage is due to social facilitation by the group or an intrinsic, individual property. Furthermore, it is unknown whether the correlation between reproduction and longevity is due to a direct mechanistic link or an indirect consequence of the social role of the reproductives. To begin addressing these questions, we performed a comparison of queen and worker longevity in the ant Cardiocondyla obscurior under social isolation conditions. Survival of single queens and workers was compared under laboratory conditions, monitoring and controlling for brood production. Our results indicate that there is no intrinsic survival advantage of queens relative to workers unless individuals are becoming reproductively active. This interactive effect of caste and reproduction on life expectancy outside of the normal social context suggests that the positive correlation between reproduction and longevity in social insect queens is due to a direct link that can activate intrinsic survival mechanisms to ensure queen longevity.
Collapse
Affiliation(s)
- Olav Rueppell
- Department of Biology, University of North Carolina, 321 McIver Street., Greensboro, NC 27403, USA
| | - Florian Königseder
- Biologie I, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jürgen Heinze
- Biologie I, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Alexandra Schrempf
- Biologie I, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
24
|
Kramer BH, Schrempf A, Scheuerlein A, Heinze J. Ant Colonies Do Not Trade-Off Reproduction against Maintenance. PLoS One 2015; 10:e0137969. [PMID: 26383861 PMCID: PMC4575186 DOI: 10.1371/journal.pone.0137969] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/24/2015] [Indexed: 11/22/2022] Open
Abstract
The question on how individuals allocate resources into maintenance and reproduction is one of the central questions in life history theory. Yet, resource allocation into maintenance on the organismic level can only be measured indirectly. This is different in a social insect colony, a "superorganism" where workers represent the soma and the queen the germ line of the colony. Here, we investigate whether trade-offs exist between maintenance and reproduction on two levels of biological organization, queens and colonies, by following single-queen colonies of the ant Cardiocondyla obscurior throughout the entire lifespan of the queen. Our results show that maintenance and reproduction are positively correlated on the colony level, and we confirm results of an earlier study that found no trade-off on the individual (queen) level. We attribute this unexpected outcome to the existence of a positive feedback loop where investment into maintenance (workers) increases the rate of resource acquisition under laboratory conditions. Even though food was provided ad libitum, variation in productivity among the colonies suggests that resources can only be utilized and invested into additional maintenance and reproduction by the colony if enough workers are available. The resulting relationship between per-capita and colony productivity in our study fits well with other studies conducted in the field, where decreasing per-capita productivity and the leveling off of colony productivity have been linked to density dependent effects due to competition among colonies. This suggests that the absence of trade-offs in our laboratory study might also be prevalent under natural conditions, leading to a positive association of maintenance, (= growth) and reproduction. In this respect, insect colonies resemble indeterminate growing organisms.
Collapse
Affiliation(s)
- Boris H. Kramer
- Max-Planck-Institute for Demographic Research, Konrad-Zuse-Str. 1, D-18055, Rostock, Germany
| | - Alexandra Schrempf
- Zoology / Evolutionary Biology lab, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| | - Alexander Scheuerlein
- Max-Planck-Institute for Demographic Research, Konrad-Zuse-Str. 1, D-18055, Rostock, Germany
| | - Jürgen Heinze
- Zoology / Evolutionary Biology lab, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| |
Collapse
|
25
|
von Wyschetzki K, Rueppell O, Oettler J, Heinze J. Transcriptomic Signatures Mirror the Lack of the Fecundity/Longevity Trade-Off in Ant Queens. Mol Biol Evol 2015; 32:3173-85. [PMID: 26341296 DOI: 10.1093/molbev/msv186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Life-history theory predicts a trade-off between reproductive investment and self-maintenance. The negative association between fertility and longevity found throughout multicellular organisms supports this prediction. As an important exception, the reproductives of many eusocial insects (ants, bees, and termites) are simultaneously very long-lived and highly fertile. Here, we examine the proximate basis for this exceptional relationship by comparing whole-body transcriptomes of differently aged queens of the ant Cardiocondyla obscurior. We show that the sets of genes differentially expressed with age significantly overlap with age-related expression changes previously found in female Drosophila melanogaster. We identified several developmental processes, such as the generation of neurons, as common signatures of aging. More generally, however, gene expression in ant queens and flies changes with age mainly in opposite directions. In contrast to flies, reproduction-associated genes were upregulated and genes associated with metabolic processes and muscle contraction were downregulated in old relative to young ant queens. Furthermore, we searched for putative C. obscurior longevity candidates associated with the previously reported lifespan-prolonging effect of mating by comparing the transcriptomes of queens that differed in mating and reproductive status. We found 21 genes, including the putative aging candidate NLaz (an insect homolog of APOD), which were consistently more highly expressed in short-lived, unmated queens than in long-lived, mated queens. Our study provides clear evidence that the alternative regulation of conserved molecular pathways that mediate the interplay among mating, egg laying, and aging underlies the lack of the fecundity/longevity trade-off in ant queens.
Collapse
Affiliation(s)
| | - Olav Rueppell
- Department of Biology, University of North Carolina, Greensboro
| | - Jan Oettler
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Regensburg, Germany
| | - Jürgen Heinze
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
26
|
Haeler E, Fiedler K, Grill A. What prolongs a butterfly's life?: Trade-offs between dormancy, fecundity and body size. PLoS One 2014; 9:e111955. [PMID: 25390334 PMCID: PMC4229126 DOI: 10.1371/journal.pone.0111955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/17/2014] [Indexed: 11/30/2022] Open
Abstract
In butterflies, life span often increases only at the expense of fecundity. Prolonged life span, on the other hand, provides more opportunities for oviposition. Here, we studied the association between life span and summer dormancy in two closely related species of Palearctic Meadow Brown butterflies, the endemic Maniola nurag and the widespread M. jurtina, from two climatic provenances, a Mediterranean and a Central European site, and tested the relationships between longevity, body size and fecundity. We experimentally induced summer dormancy and hence prolonged the butterflies’ life in order to study the effects of such a prolonged life. We were able to modulate longevity only in Mediterranean females by rearing them under summer photoperiodic conditions (light 16 h : dark 8 h), thereby more than doubling their natural life span, to up to 246 days. Central European individuals kept their natural average live span under all treatments, as did Mediterranean individuals under autumn treatment (light 11: dark 13). Body size only had a significant effect in the smaller species, M. nurag, where it affected the duration of dormancy and lifetime fecundity. In the larger species, M. jurtina, a prolonged adult life span did, surprisingly, not convey any fecundity loss. In M. nurag, which generally deposited fewer eggs, extended life had a fecundity cost. We conclude that Mediterranen M. jurtina butterflies have an extraordinary plasticity in aging which allows them to extend life span in response to adverse environmental conditions and relieve the time limitation on egg-laying while maintaining egg production at equal levels.
Collapse
Affiliation(s)
- Elena Haeler
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Konrad Fiedler
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Andrea Grill
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
27
|
Boomsma JJ, Huszár DB, Pedersen JS. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Gálvez D, Chapuisat M. Immune priming and pathogen resistance in ant queens. Ecol Evol 2014; 4:1761-7. [PMID: 24963375 PMCID: PMC4063474 DOI: 10.1002/ece3.1070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022] Open
Abstract
Growing empirical evidence indicates that invertebrates become more resistant to a pathogen following initial exposure to a nonlethal dose; yet the generality, mechanisms, and adaptive value of such immune priming are still under debate. Because life-history theory predicts that immune priming and large investment in immunity should be more frequent in long-lived species, we here tested for immune priming and pathogen resistance in ant queens, which have extraordinarily long life span. We exposed virgin and mated queens of Lasius niger and Formica selysi to a low dose of the entomopathogenic fungus Beauveria bassiana, before challenging them with a high dose of the same pathogen. We found evidence for immune priming in naturally mated queens of L. niger. In contrast, we found no sign of priming in virgin queens of L. niger, nor in virgin or experimentally mated queens of F. selysi, which indicates that immune priming in ant queens varies according to mating status and mating conditions or species. In both ant species, mated queens showed higher pathogen resistance than virgin queens, which suggests that mating triggers an up-regulation of the immune system. Overall, mated ant queens combine high reproductive output, very long life span, and elevated investment in immune defense. Hence, ant queens are able to invest heavily in both reproduction and maintenance, which can be explained by the fact that mature queens will be protected and nourished by their worker offspring.
Collapse
Affiliation(s)
- Dumas Gálvez
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne Lausanne, Switzerland
| | - Michel Chapuisat
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne Lausanne, Switzerland
| |
Collapse
|