1
|
Metzler S, Kirchner J, Grasse AV, Cremer S. Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecol Evol 2023; 23:37. [PMID: 37550612 PMCID: PMC10405452 DOI: 10.1186/s12862-023-02137-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/16/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Fighting disease while fighting rivals exposes males to constraints and trade-offs during male-male competition. We here tested how both the stage and intensity of infection with the fungal pathogen Metarhizium robertsii interfere with fighting success in Cardiocondyla obscurior ant males. Males of this species have evolved long lifespans during which they can gain many matings with the young queens of the colony, if successful in male-male competition. Since male fights occur inside the colony, the outcome of male-male competition can further be biased by interference of the colony's worker force. RESULTS We found that severe, but not yet mild, infection strongly impaired male fighting success. In late-stage infection, this could be attributed to worker aggression directed towards the infected rather than the healthy male and an already very high male morbidity even in the absence of fighting. Shortly after pathogen exposure, however, male mortality was particularly increased during combat. Since these males mounted a strong immune response, their reduced fighting success suggests a trade-off between immune investment and competitive ability already early in the infection. Even if the males themselves showed no difference in the number of attacks they raised against their healthy rivals across infection stages and levels, severely infected males were thus losing in male-male competition from an early stage of infection on. CONCLUSIONS Males of the ant C. obscurior have a well-developed immune system that raises a strong immune response very fast after fungal exposure. This allows them to cope with mild pathogen exposures without compromising their success in male-male competition, and hence to gain multiple mating opportunities with the emerging virgin queens of the colony. Under severe infection, however, they are weak fighters and rarely survive a combat already at early infection when raising an immune response, as well as at progressed infection, when they are morbid and preferentially targeted by worker aggression. Workers thereby remove males that pose a future disease threat by biasing male-male competition. Our study thus reveals a novel social immunity mechanism how social insect workers protect the colony against disease risk.
Collapse
Affiliation(s)
- Sina Metzler
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria
| | - Jessica Kirchner
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria
| | - Anna V Grasse
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria
| | - Sylvia Cremer
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria.
| |
Collapse
|
2
|
McMahon S, Matzke M, Tuni C. Food Limitation but Not Enhanced Rates of Ejaculate Production Imposes Reproductive and Survival Costs to Male Crickets. Cells 2021; 10:cells10061498. [PMID: 34203610 PMCID: PMC8232169 DOI: 10.3390/cells10061498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Estimating costs of ejaculate production is challenging. Metabolic investment in ejaculates may come at the expense of other physiological functions and may negatively affect future reproduction and/or survival. These trade-offs are especially likely to occur under constrained resource pools (e.g., poor nutrition). Here, we investigated costs of ejaculate production via trade-offs in the field cricket Gryllus bimaculatus. We experimentally increased rates of ejaculate production, while keeping an unmanipulated group, in adult males kept at high and low feeding regimes and tested the effects of our treatments on (i) somatic maintenance (i.e., changes in male body mass), (ii) future reproduction (i.e., the likelihood of producing a spermatophore and the viability of its sperm), and (iii) lifetime survival and longevity. We predicted investment in ejaculates to impinge upon all measured responses, especially in low-fed individuals. Instead, we only found negative effects of food limitation, suggesting low or undetectable costs of spermatophore production. High mating rates may select for males to maximize their capacity of ejaculate production, making ejaculate traits less prone to trade-offs with other fitness-related life history traits. Nevertheless, males were impaired due to nutrient deficiency in producing viable ejaculates, suggesting condition-dependent costs for ejaculate production.
Collapse
|
3
|
Lemaître JF, Gaillard JM, Ramm SA. The hidden ageing costs of sperm competition. Ecol Lett 2020; 23:1573-1588. [PMID: 32906225 DOI: 10.1111/ele.13593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Ageing and sexual selection are intimately linked. There is by now compelling evidence from studies performed across diverse organisms that males allocating resources to mating competition incur substantial physiological costs, ultimately increasing ageing. However, although insightful, we argue here that to date these studies cover only part of the relationship linking sexual selection and ageing. Crucially, allocation to traits important in post-copulatory sexual selection, that is sperm competition, has been largely ignored. As we demonstrate, such allocation could potentially explain much diversity in male and female ageing patterns observed both within and among species. We first review how allocation to sperm competition traits such as sperm and seminal fluid production depends on the quality of resources available to males and can be associated with a wide range of deleterious effects affecting both somatic tissues and the germline, and thus modulate ageing in both survival and reproductive terms. We further hypothesise that common biological features such as plasticity, prudent sperm allocation and seasonality of ejaculate traits might have evolved as counter-adaptations to limit the ageing costs of sperm competition. Finally, we discuss the implications of these emerging ageing costs of sperm competition for current research on the evolutionary ecology of ageing.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| |
Collapse
|
4
|
Chérasse S, Aron S. Impact of immune activation on stored sperm viability in ant queens. Proc Biol Sci 2019; 285:20182248. [PMID: 30963911 DOI: 10.1098/rspb.2018.2248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ant queens mate on a single occasion early in life and store millions of sperm cells in their spermatheca. By carefully using stored sperm to fertilize eggs, they can produce large colonies of thousands of individuals. Queens can live for decades and their lifetime reproductive success is dependent on their ability to keep stored sperm alive. Maintaining high sperm viability requires metabolic energy which could trade-off with other costly processes such as immunity. We tested the impact of immune activation on the survival of stored sperm by prompting Lasius niger ant queens to mount a melanization response and subsequently measuring sperm viability in their spermatheca. Since queens face different challenges that influence energy allocation depending on the life stage of their colony, we measured sperm viability after immune activation in both newly mated queens (incipient) and in queens 1 year after mating (established). We found that immune activation reduced sperm viability in established queens but not in incipient queens, showing that the cost of immunity on sperm preservation depends on the life stage. Unexpectedly, established queens had significantly higher sperm viability in their spermatheca compared to incipient queens suggesting that ant queens are able to remove dead sperm from their spermatheca.
Collapse
Affiliation(s)
- Sarah Chérasse
- Evolutionary Biology and Ecology, Université Libre de Bruxelles , Avenue Franklin Roosevelt 50, 1050 Brussels , Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles , Avenue Franklin Roosevelt 50, 1050 Brussels , Belgium
| |
Collapse
|
5
|
Metzler S, Schrempf A, Heinze J. Individual- and ejaculate-specific sperm traits in ant males. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:284-290. [PMID: 29273326 DOI: 10.1016/j.jinsphys.2017.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/07/2017] [Accepted: 12/17/2017] [Indexed: 06/07/2023]
Abstract
Sperm cells are the most morphologically diverse cells across animal taxa. Within species, sperm and ejaculate traits have been suggested to vary with the male's competitive environment, e.g., level of sperm competition, female mating status and quality, and also with male age, body mass, physiological condition, and resource availability. Most previous studies have based their conclusions on the analysis of only one or a few ejaculates per male without investigating differences among the ejaculates of the same individual. This masks potential ejaculate-specific traits. Here, we provide data on the length, quantity, and viability of sperm ejaculated by wingless males of the ant Cardiocondyla obscurior. Males of this ant species are relatively long-lived and can mate with large numbers of female sexuals throughout their lives. We analyzed all ejaculates across the individuals' lifespan and manipulated the availability of mating partners. Our study shows that both the number and size of sperm cells transferred during copulations differ among individuals and also among ejaculates of the same male. Sperm quality does not decrease with male age, but the variation in sperm number between ejaculates indicates that males need considerable time to replenish their sperm supplies. Producing many ejaculates in a short time appears to be traded-off against male longevity rather than sperm quality.
Collapse
Affiliation(s)
- Sina Metzler
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany; IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria.
| | - Alexandra Schrempf
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
6
|
Chérasse S, Baer B, Schiøtt M, Boomsma JJ. Differential immune gene expression in sperm storage organs of leaf-cutting ants. ACTA ACUST UNITED AC 2018; 221:jeb.173435. [PMID: 29444846 DOI: 10.1242/jeb.173435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/01/2018] [Indexed: 02/04/2023]
Abstract
Leaf-cutting ant queens mate with multiple males during a single nuptial flight and store sperm for up to two decades. During mating, males transfer sperm from their accessory testes to the queen bursa copulatrix from where it enters the spermatheca, an insect sperm storage organ that has become highly specialized in long-lived ant queens who never re-mate later in life. Long-term storage without the possibility to obtain new sperm creates an immune defence dilemma, because recognition of non-self cells eliminates infections but may also target irreplaceable sperm and reduce lifetime reproductive success. We therefore hypothesized that non-specific immune responses, like pathogen melanization, should be silenced in the spermatheca, because they rely on general non-self recognition, and that specific responses such as antimicrobial peptides are activated instead as they specifically target pathogenic bacteria and/or fungi. The maintenance of uninfected sperm cells by males before mating is not constrained by non-self recognition, meaning immune regulation might be more liberal in male reproductive organs. To test this hypothesis, we measured gene expression of two antimicrobial peptides, abaecin and defensin, and prophenoloxidase, an important enzyme of the melanization pathway, in male accessory glands and testes and in queen bursae copulatrix and spermathecae of Acromyrmex echinatior and Atta colombica leaf-cutting ants. As expected, prophenoloxidase expression was low in reproductive organs that sustain prolonged contact with sperm, whereas antimicrobial peptides showed average to high expression, indicating that leaf-cutting ants invest in specific rather than generalist immune defences for pathogen protection in organs that store sperm.
Collapse
Affiliation(s)
- Sarah Chérasse
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark .,Evolutionary Biology and Ecology, Department of Organism Biology, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Boris Baer
- Centre for Integrative Bee Research (CIBER), Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Eckel BA, Guo R, Reinhardt K. More Pitfalls with Sperm Viability Staining and a Viability-Based Stress Test to Characterize Sperm Quality. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Dávila F, Aron S. Protein restriction affects sperm number but not sperm viability in male ants. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:71-76. [PMID: 28559110 DOI: 10.1016/j.jinsphys.2017.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 05/09/2023]
Abstract
Sperm cells are costly to produce; diet should therefore affect sperm number and/or viability. In non-social insects and vertebrates, there is compelling evidence that diet influences sperm production. Less is known about this relationship in eusocial hymenopterans (all ants and some bees and wasps), whose mating systems impose unique selective pressures on sperm production. Males face physiological constraints: they acquire all of the resources they will use in future reproductive efforts as larvae and emerge from the pupal stage with a fixed, non-renewable amount of sperm. Furthermore, males die shortly after copulation, but their genetic material persists for years since their spermatozoa are stored in their mates' spermathecae. We examined the effects of protein restriction during larval development on sperm number and viability in the Argentine ant Linepithema humile. We also looked at its impact on male development, adult mass, and adult fluctuating asymmetry. We found that protein restriction during larval development significantly reduced sperm production, but not sperm viability. It did not affect the number of males reared, male mass, or male asymmetry. However, males from protein-restricted nests developed much more slowly than males from protein-supplemented nests. These results suggest investing in sperm quality and in somatic growth, which enhances a male's ability to disperse and find a mate, are critical to successful male reproduction.
Collapse
Affiliation(s)
- Francisco Dávila
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/12, 1050 Brussels, Belgium.
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/12, 1050 Brussels, Belgium
| |
Collapse
|
9
|
Peng Y, Grassl J, Millar AH, Baer B. Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen Nosema apis. Proc Biol Sci 2016; 283:rspb.2015.1785. [PMID: 26791609 DOI: 10.1098/rspb.2015.1785] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The societies of ants, bees and wasps are genetically closed systems where queens only mate during a brief mating episode prior to their eusocial life and males therefore provide queens with a lifetime supply of high-quality sperm. These ejaculates also contain a number of defence proteins that have been detected in the seminal fluid but their function and efficiency have never been investigated in great detail. Here, we used the honeybee Apis mellifera and quantified whether seminal fluid is able to combat infections of the fungal pathogen Nosema apis, a widespread honeybee parasite that is also sexually transmitted. We provide the first empirical evidence that seminal fluid has a remarkable antimicrobial activity against N. apis spores and that antimicrobial seminal fluid components kill spores in multiple ways. The protein fraction of seminal fluid induces extracellular spore germination, which disrupts the life cycle of N. apis, whereas the non-protein fraction of seminal fluid induces a direct viability loss of intact spores. We conclude that males provide their ejaculates with efficient antimicrobial molecules that are able to kill N. apis spores and thereby reduce the risk of disease transmission during mating. Our findings could be of broader significance to master honeybee diseases in managed honeybee stock in the future.
Collapse
Affiliation(s)
- Yan Peng
- Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Julia Grassl
- Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - A Harvey Millar
- Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Boris Baer
- Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| |
Collapse
|
10
|
Heinze J. The male has done his work - the male may go. CURRENT OPINION IN INSECT SCIENCE 2016; 16:22-27. [PMID: 27720046 DOI: 10.1016/j.cois.2016.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 06/06/2023]
Abstract
Perennial social insects are famous for the extraordinary longevity of their queens. While the lifespan of termite kings matches those of queens, males of social Hymenoptera are usually considered to die after one or a few copulations. While this is true in species with highly synchronized nuptial flights, in others males mate over much longer periods. Male longevity is not correlated with the life span of queens but appears to be adapted to mating opportunities. This is demonstrated by the extreme life span of Cardiocondyla ant males, which monopolize mating with virgin queens over many months. Cardiocondyla offers the opportunity to investigate why male longevity varies even among closely related taxa and how male age affects sperm and offspring quality.
Collapse
Affiliation(s)
- Jürgen Heinze
- LS Zoologie/Evolutionsbiologie, Universität Regenburg, 93040 Regensburg, Germany.
| |
Collapse
|
11
|
Devigili A, Belluomo V, Locatello L, Rasotto MB, Pilastro A. Postcopulatory cost of immune system activation in Poecilia reticulata. ETHOL ECOL EVOL 2016. [DOI: 10.1080/03949370.2016.1152305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Vincenzo Belluomo
- Department of Life Science, Second University of Naples, 81100 Caserta, Italy
| | - Lisa Locatello
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | | - Andrea Pilastro
- Department of Biology, University of Padua, 35131 Padua, Italy
| |
Collapse
|
12
|
Helft F, Monnin T, Doums C. First Evidence of Inclusive Sexual Selection in the Ant Cataglyphis cursor: Worker Aggressions Differentially Affect Male Access to Virgin Queens. Ethology 2015. [DOI: 10.1111/eth.12376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Florence Helft
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7618 Institute of Ecology and Environmental Sciences of Paris; Paris France
- École Pratique des Hautes Études; Paris France
- Département Systématique et Évolution; ISYEB, UMR 7205 CNRS UPMC Muséum National d'Histoire Naturelle; Paris France
| | - Thibaud Monnin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7618 Institute of Ecology and Environmental Sciences of Paris; Paris France
| | - Claudie Doums
- École Pratique des Hautes Études; Paris France
- Département Systématique et Évolution; ISYEB, UMR 7205 CNRS UPMC Muséum National d'Histoire Naturelle; Paris France
| |
Collapse
|
13
|
Dávila F, Chérasse S, Boomsma JJ, Aron S. Ant sperm storage organs do not have phenoloxidase constitutive immune activity. JOURNAL OF INSECT PHYSIOLOGY 2015; 78:9-14. [PMID: 25911976 DOI: 10.1016/j.jinsphys.2015.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/13/2015] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
The prophenoloxidase system (proPO-AS) is a primordial constituent of insect innate immunity. Its broad action spectrum, rapid response time, and cytotoxic by-products induced by phenoloxidase (PO) production contribute to the effective clearing of invading pathogens. However, such immune reactions may not be optimal for insect organs that evolved to have mutualistic interactions with non-self-cells. Ant queens are long-lived, but only mate early in adult life and store the sperm in a specialized organ, the spermatheca. They never re-mate so their life-time reproductive success is ultimately sperm-limited, which maintains strong selection for high sperm viability before and after storage. The proPO-AS may therefore be inappropriate for the selective clearing of sexually transmitted infections, as it might also target sperm cells that cannot be replaced. We measured PO enzymatic activity in the sperm storage organs of three ant species before and after mating. Our data show that no PO is produced in the sperm storage organs, relative to other somatic tissues as controls, and that these negative results are not due to non-detection in small volumes as non-immune-relevant catalase activity in single spermatheca fluid samples of both virgin and mated queens was significant. The lack of PO activity in sperm storage organs across three different ant species may represent an evolutionarily conserved adaptation to life-long sperm storage by ant queens. We expect that PO activity will be similarly suppressed in queen spermathecae of other eusocial Hymenoptera (bees and wasps) and, more generally, of insect females that store sperm for long periods.
Collapse
Affiliation(s)
- Francisco Dávila
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, 1050 Brussels, Belgium.
| | - Sarah Chérasse
- Centre for Social Evolution, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
14
|
Consequences of Nosema apis infection for male honey bees and their fertility. Sci Rep 2015; 5:10565. [PMID: 26123530 PMCID: PMC4485221 DOI: 10.1038/srep10565] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/14/2015] [Indexed: 12/12/2022] Open
Abstract
The queens of eusocial bees, ants and wasps mate only during a very short period early in life and males therefore produce ejaculates consisting of large numbers of high quality sperm. Such extreme selection for high fecundity resulted in males investing minimally into their somatic survival, including their immune system. However, if susceptible males are unable to protect their reproductive tissue from infections, they compromise queen fitness if they transfer pathogens during mating. We used the honey bee Apis mellifera and investigated the course of infection of the sexually transmitted pathogen Nosema apis. We predicted that honey bee males are susceptible but protect their reproductive tissues from infections. We investigated the effects of N. apis infections on the midgut, the accessory glands and the accessory testes and quantified the consequences of infection on male survival and fecundity. We found that N. apis is able to infect males, and as infections progressed, it significantly impacted fertility and survival in older males. Even though we confirm males to be able to minimize N. apis infections of their reproductive tissues, the parasite is present in ejaculates of older males. Consequently N. apis evolved alternative routes to successfully infect ejaculates and get sexually transmitted.
Collapse
|
15
|
Ho EKH, Frederickson ME. Alate susceptibility in ants. Ecol Evol 2014; 4:4209-19. [PMID: 25540683 PMCID: PMC4267860 DOI: 10.1002/ece3.1291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/22/2014] [Indexed: 12/02/2022] Open
Abstract
Pathogens are predicted to pose a particular threat to eusocial insects because infections can spread rapidly in colonies with high densities of closely related individuals. In ants, there are two major castes: workers and reproductives. Sterile workers receive no direct benefit from investing in immunity, but can gain indirect fitness benefits if their immunity aids the survival of their fertile siblings. Virgin reproductives (alates), on the other hand, may be able to increase their investment in reproduction, rather than in immunity, because of the protection they receive from workers. Thus, we expect colonies to have highly immune workers, but relatively more susceptible alates. We examined the survival of workers, gynes, and males of nine ant species collected in Peru and Canada when exposed to the entomopathogenic fungus Beauveria bassiana. For the seven species in which treatment with B. bassiana increased ant mortality relative to controls, we found workers were significantly less susceptible compared with both alate sexes. Female and male alates did not differ significantly in their immunocompetence. Our results suggest that, as with other nonreproductive tasks in ant colonies like foraging and nest maintenance, workers have primary responsibility for colony immunity, allowing alates to specialize on reproduction. We highlight the importance of colony-level selection on individual immunity in ants and other eusocial organisms.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Ecology and Evolutionary Biology, University of Toronto 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|