1
|
Chan AHH, Dunning J, Beck KB, Burke T, Chik HYJ, Dunleavy D, Evans T, Ferreira A, Fourie B, Griffith SC, Hillemann F, Schroeder J. Animal social networks are robust to changing association definitions. Behav Ecol Sociobiol 2025; 79:26. [PMID: 39927187 PMCID: PMC11802709 DOI: 10.1007/s00265-025-03559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025]
Abstract
The interconnecting links between individuals in an animal social network are often defined by discrete, directed behaviours, but where these are difficult to observe, a network link (edge) may instead be defined by individuals sharing a space at the same time, which can then be used to infer a social association. The method by which these associations are defined should be informed by the biological significance of edges, and therefore often vary between studies. Identifying an appropriate measure of association remains a challenge to behavioural ecologists. Here, we use automatically recorded feeder visit data from four bird systems to compare three methods to identify a social association: (1) strict time-window, (2) co-occurrence in a group, and (3) arrival-time. We tested the similarity of the resulting networks by comparing the repeatability and sensitivity of individuals' social traits (network degree, strength, betweenness). We found that networks constructed using different methods but applying similar, ecologically relevant definitions of associations based on individuals' spatio-temporal co-occurrence, showed similar characteristics. Our findings suggest that the different methods to construct animal social networks are comparable, but result in subtle differences driven by species biology and feeder design. We urge researchers to carefully evaluate the ecological context of their study systems when making methodological decisions. Specifically, researchers in ecology and evolution should carefully consider the biological relevance of an edge in animal social networks, and the implications of adopting different definitions. Supplementary Information The online version contains supplementary material available at 10.1007/s00265-025-03559-7.
Collapse
Affiliation(s)
- Alex Hoi Hang Chan
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
| | - Jamie Dunning
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kristina B Beck
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Daniel Dunleavy
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
| | - Tim Evans
- Center for Complexity Science, Imperial College London, London, UK
| | - André Ferreira
- Centre d’Ecologie Fonctionnelle et Evolutive, University Montpellier, Montpellier, France
| | - Babette Fourie
- Centre d’Ecologie Fonctionnelle et Evolutive, University Montpellier, Montpellier, France
- Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Porto, Portugal
| | | | | | - Julia Schroeder
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
| |
Collapse
|
2
|
Madsen A, de Silva S. Societies with fission-fusion dynamics as complex adaptive systems: the importance of scale. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230175. [PMID: 39034708 PMCID: PMC11293855 DOI: 10.1098/rstb.2023.0175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 01/13/2024] [Indexed: 07/23/2024] Open
Abstract
In this article, we argue that social systems with fission-fusion (FF) dynamics are best characterized within a complex adaptive systems (CAS) framework. We discuss how different endogenous and exogenous factors drive scale-dependent network properties across temporal, spatial and social domains. Importantly, this view treats the dynamics themselves as objects of study, rather than variously defined notions of static 'social groups' that have hitherto dominated thinking in behavioural ecology. CAS approaches allow us to interrogate FF dynamics in taxa that do not conform to more traditional conceptualizations of sociality and encourage us to pose new types of questions regarding the sources of stability and change in social systems, distinguishing regular variations from those that would lead to system-level reorganization. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Anastasia Madsen
- Department of Ecology, Behavior and Evolution, University of California, San Diego, CA92093-0021, USA
| | - Shermin de Silva
- Department of Ecology, Behavior and Evolution, University of California, San Diego, CA92093-0021, USA
| |
Collapse
|
3
|
Hartman CRA, Wilkinson GS, Razik I, Hamilton IM, Hobson EA, Carter GG. Hierarchically embedded scales of movement shape the social networks of vampire bats. Proc Biol Sci 2024; 291:20232880. [PMID: 38654645 PMCID: PMC11040254 DOI: 10.1098/rspb.2023.2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Social structure can emerge from hierarchically embedded scales of movement, where movement at one scale is constrained within a larger scale (e.g. among branches, trees, forests). In most studies of animal social networks, some scales of movement are not observed, and the relative importance of the observed scales of movement is unclear. Here, we asked: how does individual variation in movement, at multiple nested spatial scales, influence each individual's social connectedness? Using existing data from common vampire bats (Desmodus rotundus), we created an agent-based model of how three nested scales of movement-among roosts, clusters and grooming partners-each influence a bat's grooming network centrality. In each of 10 simulations, virtual bats lacking social and spatial preferences moved at each scale at empirically derived rates that were either fixed or individually variable and either independent or correlated across scales. We found that numbers of partners groomed per bat were driven more by within-roost movements than by roost switching, highlighting that co-roosting networks do not fully capture bat social structure. Simulations revealed how individual variation in movement at nested spatial scales can cause false discovery and misidentification of preferred social relationships. Our model provides several insights into how nonsocial factors shape social networks.
Collapse
Affiliation(s)
- C. Raven A. Hartman
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Imran Razik
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado Postal 0843-03092, Panama
| | - Ian M. Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Gerald G. Carter
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado Postal 0843-03092, Panama
| |
Collapse
|
4
|
Stapelfeldt B, Tress C, Koch R, Tress J, Kerth G, Scheuerlein A. Long-term field study reveals that warmer summers lead to larger and longer-lived females only in northern populations of Natterer's bats. Oecologia 2023; 201:853-861. [PMID: 36773071 PMCID: PMC10038953 DOI: 10.1007/s00442-023-05318-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/07/2023] [Indexed: 02/12/2023]
Abstract
Animals often respond to climate change with changes in morphology, e.g., shrinking body size with increasing temperatures, as expected by Bergmann's rule. Because small body size can have fitness costs for individuals, this trend could threaten populations. Recent studies, however, show that morphological responses to climate change and the resulting fitness consequences cannot be generalized even among related species. In this long-term study, we investigate the interaction between ambient temperature, body size and survival probability in a large number of individually marked wild adult female Natterer's bats (Myotis nattereri). We compare populations from two geographical regions in Germany with a different climate. In a sliding window analysis, we found larger body sizes in adult females that were raised in warmer summers only in the northern population, but not in the southern population that experienced an overall warmer climate. With a capture-mark-recapture approach, we showed that larger individuals had higher survival rates, demonstrating that weather conditions in early life could have long-lasting fitness effects. The different responses in body size to warmer temperatures in the two regions highlight that fitness-relevant morphological responses to climate change have to be viewed on a regional scale and may affect local populations differently.
Collapse
Affiliation(s)
- Bianca Stapelfeldt
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.
| | - Christoph Tress
- Fledermausforschungsprojekt Wooster Teerofen e.V., Wooster Teerofen, Germany
| | - Ralf Koch
- Naturpark Nossentiner/Schwinzer Heide, Plau am See OT Karow, Germany
| | - Johannes Tress
- Fledermausforschungsprojekt Wooster Teerofen e.V., Wooster Teerofen, Germany
| | - Gerald Kerth
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
5
|
Penndorf J, Ewart KM, Klump BC, Martin JM, Aplin LM. Social network analysis reveals context-dependent kin relationships in wild sulphur-crested cockatoos Cacatua galerita. J Anim Ecol 2023; 92:171-182. [PMID: 36349451 DOI: 10.1111/1365-2656.13839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022]
Abstract
A preference to associate with kin facilitates inclusive fitness benefits, and increased tolerance or cooperation between kin may be an added benefit of group living. Many species exhibit preferred associations with kin; however, it is often hard to disentangle active preferences from passive overlap, for example caused by limited dispersal or inheritance of social position. Many parrots exhibit social systems consisting of pair-bonded individuals foraging in variably sized fission-fusion flocks within larger communal roosts of hundreds of individuals. Previous work has shown that, despite these fission-fusion dynamics, individuals can exhibit long-term preferred foraging associations outside their pair bonds. Yet the underlying drivers of these social preferences remain largely unknown. In this study, we use a network approach to examine the influence of kinship on social associations and interactions in wild, communally roosting sulphur-crested cockatoos, Cacatua galerita. We recorded roost co-membership, social associations and interactions in 561 individually marked birds across three neighbouring roosts. We then collected genetic samples from 205 cockatoos, and conducted a relationship analysis to construct a kinship network. Finally, we tested correlations between kinship and four social networks: association, affiliative, low-intensity aggression and high-intensity aggression. Our result showed that while roosting groups were clearly defined, they showed little genetic differentiation or kin structuring. Between roost movement was high, with juveniles, especially females, repeatedly moving between roosts. Both within roosting communities, and when visiting different roosts, individuals preferentially associated with kin. Supporting this, individuals were also more likely to allopreen kin. However, contrary to expectation, individuals preferred to direct aggression towards kin, with this effect only observed when individuals shared roost membership. By measuring social networks within and between large roosting groups, we could remove potential effects of passive spatial overlap on kin structuring. Our study reveals that sulphur-crested cockatoos actively prefer to associate with kin, both within and between roosting groups. By examining this across different interaction types, we further demonstrate that sulphur-crested cockatoos exhibit behavioural and context-dependent interaction rules towards kin. Our results help reveal the drivers of social association in this species, while adding to the evidence for social complexity in parrots.
Collapse
Affiliation(s)
- Julia Penndorf
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Kyle M Ewart
- Australian Museum Research Institute, Sydney, New South Wales, Australia.,School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barbara Christina Klump
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - John M Martin
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia.,Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Lucy M Aplin
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
6
|
Rensel LJ, Hodges KE, Lausen CL. Maternity colony social structure of myotis in British Columbia, Canada. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Sunga J, Webber QM, Humber J, Rodrigues B, Broders HG. Roost fidelity partially explains maternity roosting association patterns in Myotis lucifugus. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Finch D, Schofield H, Firth JA, Mathews F. Social networks of the greater horseshoe bat during the hibernation season: a landscape-scale case study. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Kerth G. Long-term field studies in bat research: importance for basic and applied research questions in animal behavior. Behav Ecol Sociobiol 2022; 76:75. [PMID: 35669868 PMCID: PMC9135593 DOI: 10.1007/s00265-022-03180-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Animal species differ considerably in longevity. Among mammals, short-lived species such as shrews have a maximum lifespan of about a year, whereas long-lived species such as whales can live for more than two centuries. Because of their slow pace of life, long-lived species are typically of high conservation concern and of special scientific interest. This applies not only to large mammals such as whales, but also to small-sized bats and mole-rats. To understand the typically complex social behavior of long-lived mammals and protect their threatened populations, field studies that cover substantial parts of a species' maximum lifespan are required. However, long-term field studies on mammals are an exception because the collection of individualized data requires considerable resources over long time periods in species where individuals can live for decades. Field studies that span decades do not fit well in the current career and funding regime in science. This is unfortunate, as the existing long-term studies on mammals yielded exciting insights into animal behavior and contributed data important for protecting their populations. Here, I present results of long-term field studies on the behavior, demography, and life history of bats, with a particular focus on my long-term studies on wild Bechstein's bats. I show that long-term studies on individually marked populations are invaluable to understand the social system of bats, investigate the causes and consequences of their extraordinary longevity, and assess their responses to changing environments with the aim to efficiently protect these unique mammals in the face of anthropogenic global change.
Collapse
Affiliation(s)
- Gerald Kerth
- Zoological Institute and Museum, Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Stapelfeldt B, Scheuerlein A, Tress C, Koch R, Tress J, Kerth G. Precipitation during two weeks in spring influences reproductive success of first-year females in the long-lived Natterer's bat. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211881. [PMID: 35223067 PMCID: PMC8847888 DOI: 10.1098/rsos.211881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Bats are characterized by low reproductive rates in contrast with most of other small mammals. This makes their populations vulnerable when inclement environmental conditions such as cold and rainy weather impair the reproductive success of females. The fine-scale effect of weather on bats, however, remains largely unknown. Using a sliding window analysis approach on an 18-year individualized dataset on six Natterer's bat (Myotis nattereri) colonies, we investigated the effect of fine-scale weather conditions on age-specific reproductive success. We found that increased precipitation during a short time window in spring strongly reduced the probability of successful reproduction of first-year (FY) females. Our data suggest that this time window is concomitant with implantation or early pregnancy, before substantial investment into embryo development. In addition, larger FY had higher reproductive success, suggesting that reproduction may be condition dependent in young females. Reproductive success of older females was not affected by either weather or individual parameters. Our results show that changes in precipitation pattern may compromise the reproductive success of FY females. Further studies are needed to better understand the impact of weather conditions on reproductive success in long-lived bats under climate change scenarios.
Collapse
Affiliation(s)
- Bianca Stapelfeldt
- Universität Greifswald Zoologisches Institut und Museum, Greifswald Mecklenburg-Vorpommern, Germany
| | - Alexander Scheuerlein
- Universität Greifswald Zoologisches Institut und Museum, Greifswald Mecklenburg-Vorpommern, Germany
| | | | - Ralf Koch
- Naturpark Nossentiner/Schwinzer Heide, Germany
| | - Johannes Tress
- Fledermausforschungsprojekt Wooster Teerofen e.V., Germany
| | - Gerald Kerth
- Universität Greifswald Zoologisches Institut und Museum, Greifswald Mecklenburg-Vorpommern, Germany
| |
Collapse
|
11
|
Hobson EA, Silk MJ, Fefferman NH, Larremore DB, Rombach P, Shai S, Pinter-Wollman N. A guide to choosing and implementing reference models for social network analysis. Biol Rev Camb Philos Soc 2021; 96:2716-2734. [PMID: 34216192 PMCID: PMC9292850 DOI: 10.1111/brv.12775] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Analysing social networks is challenging. Key features of relational data require the use of non-standard statistical methods such as developing system-specific null, or reference, models that randomize one or more components of the observed data. Here we review a variety of randomization procedures that generate reference models for social network analysis. Reference models provide an expectation for hypothesis testing when analysing network data. We outline the key stages in producing an effective reference model and detail four approaches for generating reference distributions: permutation, resampling, sampling from a distribution, and generative models. We highlight when each type of approach would be appropriate and note potential pitfalls for researchers to avoid. Throughout, we illustrate our points with examples from a simulated social system. Our aim is to provide social network researchers with a deeper understanding of analytical approaches to enhance their confidence when tailoring reference models to specific research questions.
Collapse
Affiliation(s)
- Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, U.S.A
| | - Matthew J Silk
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Treliever Road, Penryn, Cornwall, TR10 9FE, U.K
| | - Nina H Fefferman
- Departments of Ecology and Evolutionary Biology & Mathematics, University of Tennessee, 569 Dabney Hall, Knoxville, TN, 37996, U.S.A
| | - Daniel B Larremore
- Department of Computer Science, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309, U.S.A.,BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave,, Boulder, CO, 80303, U.S.A
| | - Puck Rombach
- Department of Mathematics & Statistics, University of Vermont, 82 University Place, Burlington, VT, 05405, U.S.A
| | - Saray Shai
- Department of Mathematics and Computer Science, Wesleyan University, Science Tower 655, 265 Church Street, Middletown, CT, 06459, U.S.A
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Drive South, Los Angeles, CA, 90095, U.S.A
| |
Collapse
|
12
|
Waag AG, Treanor JJ, Kropczynski JN, Johnson JS. Social networks based on frequency of roost cohabitation do not reflect association rates of Myotis lucifugus within their roosts. Ecol Evol 2021; 11:5927-5936. [PMID: 34141193 PMCID: PMC8207371 DOI: 10.1002/ece3.7244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 11/17/2022] Open
Abstract
Bats are a group of mammals well known for forming dynamic social groups. Studies of bat social structures are often based upon the frequency at which bats occupy the same roosts because observing bats directly is not always possible. However, it is not always clear how closely bats occupying the same roost associate with each other, obscuring whether associations result from social relationships or factors such as shared preferences for roosts. Our goal was to determine if bats cohabitating buildings were also found together inside roosts by using anti-collision technology for PIT tags, which enables simultaneous detection of multiple tags. We PIT-tagged 293 female little brown myotis (Myotis lucifugus) and installed antennas within two buildings used as maternity roosts in Yellowstone National Park. Antennas were positioned at roost entryways to generate cohabitation networks and along regions of attic ceilings in each building to generate intraroost networks based on proximity of bats to each other. We found that intraroost and cohabitation networks of buildings were significantly correlated, with the same bats tending to be linked in both networks, but that bats cohabitating the same building often roosted apart, leading to differing assessments of social structure. Cohabitation rates implied that bats associate with a greater number of their roost-mates than was supported by observations within the roost. This caused social networks built upon roost cohabitation rates to be denser, smaller in diameter, and contain nodes with higher average degree centrality. These results show that roost cohabitation does not reflect preference for roost-mates in little brown myotis, as is often inferred from similar studies, and that social network analyses based on cohabitation may provide misleading results.
Collapse
Affiliation(s)
- Austin G. Waag
- Department of Biological SciencesOhio UniversityAthensOHUSA
| | - John J. Treanor
- United States National Park ServiceYellowstone National ParkMammoth Hot SpringsWYUSA
| | | | | |
Collapse
|
13
|
Mordue S, Aegerter J, Mill A, Dawson DA, Crepaldi C, Wolff K. Population structure, gene flow and relatedness of Natterer’s bats in Northern England. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThere have been significant declines in population numbers of many bat species in the United Kingdom, including Natterer’s batsMyotis nattereri, over the last century, largely due to anthropogenic changes. The philopatry, which temperate-zone bats often exhibit to their natal landscapes, in combination with anthropogenic threats, can lead to fragmentation, isolation and sub-division of populations. This may result in bottlenecks and declines in genetic diversity. Multi-scaled research is required to disentangle how the variation in the physical traits of bat species (e.g. affecting flight), as well as their social and behavioural traits (e.g. community size, migration, breeding systems), may affect the genetic health of populations and provide a potential buffer against fragmentation. We used microsatellite markers to characterise the genetic diversity and population structure present in Natterer’s bat colonies to determine whether summer roosting bat colonies were spatially differentiated or part of a meta-population. Analyses of population structure and measures of genetic relatedness suggest spatially differentiated populations of bats exhibit long term site fidelity to summer roosting sites, whilst high genetic diversity at sites indicates gene exchange occurs via swarming sites. Natterer’s bats in northern England may travel greater distances to swarming sites than has been previously documented.
Collapse
|
14
|
Zeus VM, Köhler A, Reusch C, Fischer K, Balkema-Buschmann A, Kerth G. Analysis of astrovirus transmission pathways in a free-ranging fission-fusion colony of Natterer’s bats (Myotis nattereri). Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02932-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Bats are a diverse and widespread order of mammals. They fulfill critical ecosystem roles but may also act as reservoirs and spreaders for zoonotic agents. Consequently, many recent studies have focused on the potential of bats to spread diseases to other animals and to humans. However, virus transmission networks within bat colonies remain largely unexplored. We studied the detection rate and transmission pathway of astroviruses in a free-ranging Natterer’s bat colony (Myotis nattereri) that exhibits a high fission-fusion dynamic. Based on automatic roost monitoring data of radio-frequency identification tagged bats, we assessed the impact of the strength of an individual’s roosting associations with all other colony members (weighted degree), and the number of roost sites (bat boxes) an individual used—both being proxies for individual exposure risk—on the detected presence of astrovirus-related nucleic acid in individual swab samples. Moreover, we tested to which degree astrovirus sequence types were shared between individuals that frequently roosted together, as proxy for direct transmission risk, and between bats sharing the same roost sites in close temporal succession, as proxy for indirect transmission risk. Neither roosting associations nor the number of different roost sites had an effect on detected virus presence in individual bats. Transmission network data suggest that astroviruses are transmitted both via direct and indirect contact, implying that roost sites pose a risk of astrovirus infection for several days after the bats leave them. Our study offers novel insights in the presence and transmission of viruses within social networks of bat colonies.
Significance statement
Bats provide many ecosystem services but have moved into the focus of virological research as potential carriers of zoonotic disease agents. However, the sparse information available about virus transmission within bat colonies is solely based on simulated transmission data. In this field study, we examined the daily roosting behavior in a wild bat colony in relation to the presence of viruses in individual colony members. Our findings suggest that astroviruses are transmitted by direct contact and via contaminated roost sites. Bats typically defecate in their roost sites, and astroviruses can remain infectious in feces for several days. The here observed virus diversity and roosting behavior suggest that bats can contract astroviruses even if they use contaminated roost sites days after infected individuals have left. This study provides first-time insights in the transmission of astroviruses within bat colonies in the wild.
Collapse
|
15
|
Katsis LKD, Linton DM, Macdonald DW. The effect of group size, reproductive condition and time period on sexual segregation patterns in three vespertilionid bat species. J Zool (1987) 2020. [DOI: 10.1111/jzo.12843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L. K. D. Katsis
- Wildlife Conservation Research Unit (WildCRU) Department of Zoology The Recanati‐Kaplan Centre University of Oxford Tubney UK
| | - D. M. Linton
- Wildlife Conservation Research Unit (WildCRU) Department of Zoology The Recanati‐Kaplan Centre University of Oxford Tubney UK
| | - D. W. Macdonald
- Wildlife Conservation Research Unit (WildCRU) Department of Zoology The Recanati‐Kaplan Centre University of Oxford Tubney UK
| |
Collapse
|
16
|
Saito M, Bercovitch FB, Idani G. The impact of Masai giraffe nursery groups on the development of social associations among females and young individuals. Behav Processes 2020; 180:104227. [PMID: 32853714 DOI: 10.1016/j.beproc.2020.104227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Fission-fusion social systems involve the splitting and merging of subgroups with frequent changes in membership occurring as a result of a number of ecological and social factors, such as demographic processes including birth, movement, or death. Giraffe reside in fission-fusion social systems, and we studied how reproductive status influence associations among females, as well as how associations differ between calves and juveniles. Data were collected in Katavi National Park, Tanzania, during five study periods. We used social network analysis to identify whether reproductive status and developmental stages predict differences in giraffe social association. We found that females with offspring maintain stronger associations than females without offspring. We also revealed that calves and juveniles had similar network association patterns. Our results suggest that the presence of dependent offspring influences the social associations of females and individuals less than 1.5 years of age are still maintaining strong social associations with nursery group members. We conclude that nursery groups among giraffe are co-operative rearing units that probably reduce the costs of rearing to mothers, and may provide a group structure for animals to begin to develop skills useful for their future life in a fission-fusion social system.
Collapse
Affiliation(s)
- Miho Saito
- Department of Ethology, Graduate School of Human Sciences, Osaka University, 1-2 Yamada-oka, Suita, 565-0871, Japan; Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan.
| | - Fred B Bercovitch
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan
| | - Gen'ichi Idani
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan
| |
Collapse
|
17
|
|
18
|
Schmidbauer P, Denzinger A. Social calls of Myotis nattereri during swarming: Call structure mirrors the different behavioral context. PLoS One 2019; 14:e0221792. [PMID: 31490957 PMCID: PMC6730923 DOI: 10.1371/journal.pone.0221792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/14/2019] [Indexed: 11/26/2022] Open
Abstract
Swarming is a characteristic behavior of bats that occurs in different social contexts. We studied the swarming behavior of Myotis nattereri at a maternity colony and at an autumn swarming site in South-West Germany by using synchronized sound and video recordings. Swarming was always associated with social vocalizations consisting of four frequently occurring call types. Call type A was a short call with a broadband steep-shallow-steep downward frequency modulation. Call type B consisted of two elements beginning with a broadband upward hooked element followed by a steep frequency modulated element. Call type C showed a characteristic rapid downward-upward-downward frequency modulation. Call type D was a long sinusoidal trill-like call with high variability in signal structure. All call types were recorded at the maternity colony, as well as at the autumn swarming site, but the incidence of each call type differed distinctly between the study sites. At the maternity roost, type A calls were most commonly produced. We found evidence for an individual signature in this call type and suggest that this social call has the function of a contact call in Natterer’s bats. At the autumn swarming site, type D calls were the most common social calls; in contrast, this call type was recorded only twice at the maternity roost. The occurrence of trills mainly at the autumn swarming site and their high variability suggests that trills function as male advertisement calls in M. nattereri.
Collapse
Affiliation(s)
- Philipp Schmidbauer
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Annette Denzinger
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
|