1
|
Kannan K, Galizia CG, Nouvian M. Consistency and individuality of honeybee stinging behaviour across time and social contexts. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241295. [PMID: 39881791 PMCID: PMC11774586 DOI: 10.1098/rsos.241295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Whether individuals exhibit consistent behavioural variation is a central question in the field of animal behaviour. This question is particularly interesting in the case of social animals, as their behaviour may be strongly modulated by the collective. In this study, we ask whether honeybees exhibit individual differences in stinging behaviour. We demonstrate that bees are relatively stable in their decision to sting-or not-in a specific context and show temporal consistency suggestive of an internal state modulation. We also investigated how social factors such as the alarm pheromone or another bee modulated this behaviour. The presence of alarm pheromone increased the likelihood of a bee to sting but this response decayed over trials, while the presence of a conspecific decreased individual stinging likelihood. These factors, however, did not alter stinging consistency. We therefore propose that social modulation acts by shifting the stinging threshold of individuals. Finally, experimental manipulation of group composition with respect to the ratio of aggressive and gentle bees within a group did not affect the behaviour of focal bees. Overall, our results establish honeybee stinging behaviour as a promising model for studying mechanistically how collective and individual traits interact to regulate individual variability.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- International Max Plank Research School for Quantitative Behaviour Ecology and Evolution, Konstanz, Germany
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Morgane Nouvian
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Shakeel M, Brockmann A. Temporal effects of sugar intake on fly local search and honey bee dance behaviour. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:415-429. [PMID: 37624392 DOI: 10.1007/s00359-023-01670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Honey bees communicate flight navigational information of profitable food to nestmates via their dance, a small-scale walking pattern, inside the nest. Hungry flies and honey bee foragers exhibit a sugar-elicited search involving path integration that bears a resemblance to dance behaviour. This study aimed to investigate the temporal dynamics of the initiation of sugar-elicited search and dance behaviour, using a comparative approach. Passive displacement experiments showed that feeding and the initiation of search could be spatially and temporally dissociated. Sugar intake increased the probability of initiating a search but the actual onset of walking triggers the path integration system to guide the search. When prevented from walking after feeding, flies and bees maintained their motivation for a path integration-based search for a duration of 3 min. In flies, turning and associated characters were significantly reduced during this period but remained higher than in flies without sugar stimulus. These results suggest that sugar elicits two independent behavioural responses: path integration and increased turning, with the initiation and duration of path integration system being temporally restricted. Honey bee dance experiments demonstrated that the motivation of foragers to initiate dance persisted for 15 min, while the number of circuits declined after 3 min following sugar ingestion. Based on these findings, we propose that food intake during foraging increases the probability to initiate locomotor behaviours involving the path integration system in both flies and honey bees, and this ancestral connection might have been co-opted and elaborated during the evolution of dance communication by honey bees.
Collapse
Affiliation(s)
- Manal Shakeel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India.
- University of Trans-Disciplinary Health Science and Technology, Bangalore, 560064, India.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| |
Collapse
|
3
|
Alves DA, George EA, Kaur R, Brockmann A, Hrncir M, Grüter C. Diverse communication strategies in bees as a window into adaptations to an unpredictable world. Proc Natl Acad Sci U S A 2023; 120:e2219031120. [PMID: 37279263 PMCID: PMC10268221 DOI: 10.1073/pnas.2219031120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Communication is a fundamental feature of animal societies and helps their members to solve the challenges they encounter, from exploiting food sources to fighting enemies or finding a new home. Eusocial bees inhabit a wide range of environments and they have evolved a multitude of communication signals that help them exploit resources in their environment efficiently. We highlight recent advances in our understanding of bee communication strategies and discuss how variation in social biology, such as colony size or nesting habits, and ecological conditions are important drivers of variation in communication strategies. Anthropogenic factors, such as habitat conversion, climate change, or the use of agrochemicals, are changing the world bees inhabit, and it is becoming clear that this affects communication both directly and indirectly, for example by affecting food source availability, social interactions among nestmates, and cognitive functions. Whether and how bees adapt their foraging and communication strategies to these changes represents a new frontier in bee behavioral and conservation research.
Collapse
Affiliation(s)
- Denise A. Alves
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Lausanne,13418-900Piracicaba, Brazil
| | - Ebi A. George
- Department of Ecology and Evolution, Biophore, University of Lausanne, Bristol1015, Switzerland
| | - Rajbir Kaur
- School of Biological Sciences, University of BristolBS8 1TQ, United Kingdom
| | - Axel Brockmann
- National Centre for Biological Sciences – Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Michael Hrncir
- Department of Physiology, Bioscience Institute, University of São Paulo05508-090São Paulo, Brazil
| | - Christoph Grüter
- School of Biological Sciences, University of BristolBS8 1TQ, United Kingdom
| |
Collapse
|
4
|
Rajagopal S, Brockmann A, George EA. Environment-dependent benefits of interindividual variation in honey bee recruitment. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Smith ML, Davidson JD, Wild B, Dormagen DM, Landgraf T, Couzin ID. Behavioral variation across the days and lives of honey bees. iScience 2022; 25:104842. [PMID: 36039297 PMCID: PMC9418442 DOI: 10.1016/j.isci.2022.104842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 10/30/2022] Open
Abstract
In honey bee colonies, workers generally change tasks with age (from brood care, to nest work, to foraging). While these trends are well established, our understanding of how individuals distribute tasks during a day, and how individuals differ in their lifetime behavioral trajectories, is limited. Here, we use automated tracking to obtain long-term data on 4,100+ bees tracked continuously at 3 Hz, across an entire summer, and use behavioral metrics to compare behavior at different timescales. Considering single days, we describe how bees differ in space use, detection, and movement. Analyzing the behavior exhibited across their entire lives, we find consistent inter-individual differences in the movement characteristics of individuals. Bees also differ in how quickly they transition through behavioral space to ultimately become foragers, with fast-transitioning bees living the shortest lives. Our analysis framework provides a quantitative approach to describe individual behavioral variation within a colony from single days to entire lifetimes.
Collapse
Affiliation(s)
- Michael L. Smith
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- Department of Biological Sciences, Auburn University, Auburn AL 36849, USA
| | - Jacob D. Davidson
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Benjamin Wild
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - David M. Dormagen
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tim Landgraf
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Iain D. Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
6
|
Chatterjee A, Bais D, Brockmann A, Ramesh D. Search Behavior of Individual Foragers Involves Neurotransmitter Systems Characteristic for Social Scouting. FRONTIERS IN INSECT SCIENCE 2021; 1:664978. [PMID: 38468879 PMCID: PMC10926421 DOI: 10.3389/finsc.2021.664978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/10/2021] [Indexed: 03/13/2024]
Abstract
In honey bees search behavior occurs as social and solitary behavior. In the context of foraging, searching for food sources is performed by behavioral specialized foragers, the scouts. When the scouts have found a new food source, they recruit other foragers (recruits). These recruits never search for a new food source on their own. However, when the food source is experimentally removed, they start searching for that food source. Our study provides a detailed description of this solitary search behavior and the variation of this behavior among individual foragers. Furthermore, mass spectrometric measurement showed that the initiation and performance of this solitary search behavior is associated with changes in glutamate, GABA, histamine, aspartate, and the catecholaminergic system in the optic lobes and central brain area. These findings strikingly correspond with the results of an earlier study that showed that scouts and recruits differ in the expression of glutamate and GABA receptors. Together, the results of both studies provide first clear support for the hypothesis that behavioral specialization in honey bees is based on adjusting modulatory systems involved in solitary behavior to increase the probability or frequency of that behavior.
Collapse
Affiliation(s)
- Arumoy Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Deepika Bais
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Divya Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
7
|
Pailler L, Desvignes S, Ruhland F, Pineirua M, Lucas C. Vibratory behaviour produces different vibrations patterns in presence of reproductives in a subterranean termite species. Sci Rep 2021; 11:9902. [PMID: 33972576 PMCID: PMC8110524 DOI: 10.1038/s41598-021-88292-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/26/2021] [Indexed: 11/09/2022] Open
Abstract
Vibratory behaviours are widespread in social insects, but the produced vibrations remain poorly explored. Communication using vibrations is an efficient way to transmit information in subterranean environments where visual and odorant signals are less efficient. In termites, different vibratory behaviours are performed in different contexts like reproductive regulation and alarm signalling, but only few studies explored the structure of the produced vibrations (i.e., duration, number of pulses, amplitude). Here, we described several types of vibrations produced by a vibratory behaviour widespread in termites (body-shaking), which can be transmitted through the substrate and detected by other colony members. We analysed the structures of the emitted vibrations and the occurrence of the body-shaking events in presence/absence of reproductives and/or in presence/absence of a stress stimuli (flashlight) in the subterranean termite Reticulitermes flavipes. Interestingly, only the presence of the reproductives did influence the number of pulses and the duration of the emitted vibrations. Moreover, the first part of the emitted vibrations seems to be enough to encode reproductive information, but other parts might hold other type of information. Body-shaking occurrence did increase in presence of reproductives but only briefly under a flashlight. These results show that vibratory cues are complex in termites and their diversity might encode a plurality of social cues.
Collapse
Affiliation(s)
- Louis Pailler
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Samuel Desvignes
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Fanny Ruhland
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Miguel Pineirua
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Christophe Lucas
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France.
| |
Collapse
|
8
|
George EA, Thulasi N, Kohl PL, Suresh S, Rutschmann B, Brockmann A. Distance estimation by Asian honey bees in two visually different landscapes. J Exp Biol 2021; 224:jeb.242404. [PMID: 33795415 DOI: 10.1242/jeb.242404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 11/20/2022]
Abstract
Honey bees estimate distances to food sources using image motion experienced on the flight path and they use this measure to tune the waggle phase duration in their dance communication. Most studies on the dance-related odometer are based on experiments with Apis mellifera foragers trained into small tunnels with black and white patterns which allowed quantifiable changes in the optic flow. In this study, we determined the calibration curves of two Asian honey bee species, A. florea and A. cerana, in two different natural environments with clear differences in the vegetation conditions and hence visual contrast. We found that the dense vegetation condition (with higher contrast) elicited a more rapid increase in the waggle phase duration with distance than the sparse vegetation in A. florea but not in A. cerana Our findings suggest that contrast sensitivity of the waggle dance odometer might vary among honey bee species.
Collapse
Affiliation(s)
| | - Neethu Thulasi
- National Centre for Biological Sciences, Bangalore 560065, India
- Department of Apiculture, University of Agricultural Sciences, GKVK, Bellary Road, Bangalore 560065, India
| | - Patrick L Kohl
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sachin Suresh
- National Centre for Biological Sciences, Bangalore 560065, India
| | - Benjamin Rutschmann
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Axel Brockmann
- National Centre for Biological Sciences, Bangalore 560065, India
| |
Collapse
|
9
|
Incorvaia DC, Hintze A, Dyer FC. Spatial allocation without spatial recruitment in bumblebees. Behav Ecol 2021. [DOI: 10.1093/beheco/araa125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Any foraging animal is expected to allocate its efforts among resource patches that vary in quality across time and space. For social insects, this problem is shifted to the colony level: the task of allocating foraging workers to the best patches currently available. To deal with this task, honeybees rely upon differential recruitment via the dance language, while some ants use differential recruitment on odor trails. Bumblebees, close relatives of honeybees, should also benefit from optimizing spatial allocation but lack any targeted recruitment system. How bumblebees solve this problem is thus of immense interest to evolutionary biologists studying collective behavior. It has been thought that bumblebees could solve the spatial allocation problem by relying on the summed individual decisions of foragers, who occasionally sample and shift to alternative resources. We use field experiments to test the hypothesis that bumblebees augment individual exploration with social information. Specifically, we provide behavioral evidence that, when higher-concentration sucrose arrives at the nest, employed foragers abandon their patches to begin searching for the better option; they are more likely to accept novel resources if they match the quality of the sucrose solution experienced in the nest. We explored this strategy further by building an agent-based model of bumblebee foraging. This model supports the hypothesis that using social information to inform search decisions is advantageous over individual search alone. Our results show that bumblebees use a collective foraging strategy built on social modulation of individual decisions, providing further insight into the evolution of collective behavior.
Collapse
Affiliation(s)
- Darren C Incorvaia
- Department of Integrative Biology and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - Arend Hintze
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Department for Complex Dynamical Systems and MicroData Analytics, Dalarna University, Högskolegatan, Falun, Sweden
| | - Fred C Dyer
- Department of Integrative Biology and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
George EA, Pimplikar S, Thulasi N, Brockmann A. Similarities in dance follower behaviour across honey bee species suggest a conserved mechanism of dance communication. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
A standardized battery of tests to measure Octopus vulgaris’ behavioural performance. INVERTEBRATE NEUROSCIENCE 2020; 20:4. [DOI: 10.1007/s10158-020-0237-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
|
12
|
Neuroethology of the Waggle Dance: How Followers Interact with the Waggle Dancer and Detect Spatial Information. INSECTS 2019; 10:insects10100336. [PMID: 31614450 PMCID: PMC6835826 DOI: 10.3390/insects10100336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 11/16/2022]
Abstract
Since the honeybee possesses eusociality, advanced learning, memory ability, and information sharing through the use of various pheromones and sophisticated symbol communication (i.e., the "waggle dance"), this remarkable social animal has been one of the model symbolic animals for biological studies, animal ecology, ethology, and neuroethology. Karl von Frisch discovered the meanings of the waggle dance and called the communication a "dance language." Subsequent to this discovery, it has been extensively studied how effectively recruits translate the code in the dance to reach the advertised destination and how the waggle dance information conflicts with the information based on their own foraging experience. The dance followers, mostly foragers, detect and interact with the waggle dancer, and are finally recruited to the food source. In this review, we summarize the current state of knowledge on the neural processing underlying this fascinating behavior.
Collapse
|
13
|
George EA, Bröger A, Thamm M, Brockmann A, Scheiner R. Inter‐individual variation in honey bee dance intensity correlates with expression of the
foraging
gene. GENES BRAIN AND BEHAVIOR 2019; 19:e12592. [DOI: 10.1111/gbb.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 05/14/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Ebi A. George
- National Centre for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Ann‐Kathrin Bröger
- Behavioral Physiology & Sociobiology, Biocenter University of Würzburg Würzburg Germany
| | - Markus Thamm
- Behavioral Physiology & Sociobiology, Biocenter University of Würzburg Würzburg Germany
| | - Axel Brockmann
- National Centre for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Ricarda Scheiner
- Behavioral Physiology & Sociobiology, Biocenter University of Würzburg Würzburg Germany
| |
Collapse
|