1
|
Planas-Sitjà I, Ioannou CC. State-behaviour feedbacks between boldness and food intake shape escape responses in fish (Gasterosteus aculeatus). Commun Biol 2025; 8:227. [PMID: 39948246 PMCID: PMC11825722 DOI: 10.1038/s42003-025-07669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Consistent differences in intrinsic state, amplified through state-dependent behaviour, could explain the ubiquity of animal personality variation. Boldness is often positively associated with a high metabolism and food intake. Even though a high food consumption is known to compromise oxygen-demanding activities, the influence of food intake on anti-predator escape responses has rarely been considered. By conducting experiments with three-spined sticklebacks (Gasterosteus aculeatus) in a setup with real-time tracking and a decoy heron predator, we show that bolder fish benefited from a higher food intake than shy fish, and reacted faster to a predator attack when food intake was the same before being attacked. However, a higher food intake slowed down the escape responses. These results shine light on how the fitness of shy and bold tactics could be balanced in the wild: the faster reaction of bold fish is impaired by their higher food consumption.
Collapse
Affiliation(s)
- Isaac Planas-Sitjà
- Animal Ecology, Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Japan.
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, United Kingdom
| |
Collapse
|
2
|
Amat-Trigo F, Andreou D, Gillingham PK, Britton JR. Individual phenotypic variability in the behaviour of an aggregative riverine fish is structured along a reactive-proactive axis. PLoS One 2024; 19:e0312187. [PMID: 39565817 PMCID: PMC11578482 DOI: 10.1371/journal.pone.0312187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/02/2024] [Indexed: 11/22/2024] Open
Abstract
High phenotypic diversity should provide populations with resilience to environmental change by increasing their capacity to respond to changing conditions. The aim of this study was to identify whether there is consistency in individual behaviours on a reactive-proactive axis in European barbel Barbus barbus ("barbel"), a riverine and aggregatory fish that expresses individual differences in its behaviours in nature. This was tested using three sequential experiments in ex-situ conditions that required individuals to leave a shelter and then explore new habitats ('open-field test'), respond to social stimuli ('mirror-image stimulation test') and forage ('foraging behaviour test'; assessing exploratory traits). Each suite of experiments was replicated three times per individual (46 hours minimum time between replicates). There was high variability in behaviours both within and among individuals. The most repeatable behaviours were latency to exit the shelter, active time in the shelter, and the number of food items consumed. Principal component scores did, however, indicate a range of consistent behavioural phenotypes across the individuals, distributing them along a reactive-proactive axis in which most of individuals were more reactive phenotypes (shyer, less exploratory, less social). These results suggest that within controlled conditions, there is considerable phenotypic diversity among individuals in their behaviours, suggesting their populations will have some adaptive capacity to environmental change.
Collapse
Affiliation(s)
- Fatima Amat-Trigo
- Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, United Kingdom
| | - Demetra Andreou
- Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, United Kingdom
| | - Phillipa K. Gillingham
- Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, United Kingdom
| | - J. Robert Britton
- Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, United Kingdom
| |
Collapse
|
3
|
Nunes S. Animal-friendly behavioral testing in field studies: examples from ground squirrels. Front Behav Neurosci 2023; 17:1239774. [PMID: 37681193 PMCID: PMC10480841 DOI: 10.3389/fnbeh.2023.1239774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Field studies of behavior provide insight into the expression of behavior in its natural ecological context and can serve as an important complement to behavioral studies conducted in the lab under controlled conditions. In addition to naturalistic observations, behavioral testing can be an important component of field studies of behavior. This mini review evaluates a sample of behavioral testing methods in field studies to identify ways in which behavioral testing can be animal-friendly and generate ethologically relevant data. Specific examples, primarily from studies of ground squirrels, are presented to illustrate ways in which principles of animal-friendly behavioral testing can be applied to and guide testing methods. Tests conducted with animals in their natural habitat and that elicit naturally occurring behavioral responses can minimize stress and disturbance for animals, as well as disruption of the larger ecosystem, and can have high ethological validity. When animals are trapped or handled as part of a study, behavioral testing can be incorporated into handling procedures to reduce overall disturbance. When behavior is evaluated in a testing arena, the arena can be designed to resemble natural conditions to increase the ethological relevance of the test. Efforts to minimize time spent in testing arenas can also reduce disturbance to animals. Adapting a behavioral test to a species or habitat conditions can facilitate reduced disruption to subjects and increased ethological relevance of the test.
Collapse
Affiliation(s)
- Scott Nunes
- Department of Biology, University of San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Ehlman SM, Scherer U, Bierbach D, Francisco FA, Laskowski KL, Krause J, Wolf M. Leveraging big data to uncover the eco-evolutionary factors shaping behavioural development. Proc Biol Sci 2023; 290:20222115. [PMID: 36722081 PMCID: PMC9890127 DOI: 10.1098/rspb.2022.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mapping the eco-evolutionary factors shaping the development of animals' behavioural phenotypes remains a great challenge. Recent advances in 'big behavioural data' research-the high-resolution tracking of individuals and the harnessing of that data with powerful analytical tools-have vastly improved our ability to measure and model developing behavioural phenotypes. Applied to the study of behavioural ontogeny, the unfolding of whole behavioural repertoires can be mapped in unprecedented detail with relative ease. This overcomes long-standing experimental bottlenecks and heralds a surge of studies that more finely define and explore behavioural-experiential trajectories across development. In this review, we first provide a brief guide to state-of-the-art approaches that allow the collection and analysis of high-resolution behavioural data across development. We then outline how such approaches can be used to address key issues regarding the ecological and evolutionary factors shaping behavioural development: developmental feedbacks between behaviour and underlying states, early life effects and behavioural transitions, and information integration across development.
Collapse
Affiliation(s)
- Sean M. Ehlman
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - David Bierbach
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Fritz A. Francisco
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany
| | - Kate L. Laskowski
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - Jens Krause
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| |
Collapse
|
5
|
Brand JA, Naimo AC, Michelangeli M, Martin JM, Sih A, Wong BBM, Chapple DG. Social context mediates the expression of a personality trait in a gregarious lizard. Oecologia 2022; 200:359-369. [PMID: 36173475 PMCID: PMC9675666 DOI: 10.1007/s00442-022-05269-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
The social environment is a key factor that influences behavioural traits across a wide array of species. Yet, when investigating individual differences in behaviour, studies tend to measure animals in isolation from other conspecifics-even in social species. Surprisingly, whether behavioural traits measured in isolation are predictive of individual-level behaviour when in social groups is still poorly understood. Here, we repeatedly measured risk-taking behaviour (i.e. boldness; 741 total trials) in both the presence and absence of conspecifics in a social lizard, the delicate skink (Lampropholis delicata). Further, we manipulated food availability during group trials to test whether the effect of the social environment on risk-taking behaviour was mediated by competition over resources. Using 105 lizards collected from three independent populations, we found that individual risk-taking behaviour was repeatable when measured in either social isolation or within groups both with and without food resources available. However, lizards that were bolder during individual trials were not also bolder when in groups, regardless of resource availability. This was largely driven by individual differences in social behavioural plasticity, whereby individual skinks responded differently to the presence of conspecifics. Together, this resulted in a rank order change of individual behavioural types across the social conditions. Our results highlight the importance of the social environment in mediating animal personality traits across varying levels of resource availability. Further, these findings suggest that behavioural traits when measured in isolation, may not reflect individual variation in behaviour when measured in more ecologically realistic social groups.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| | - Annalise C Naimo
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Marcus Michelangeli
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 DOI: 10.6084/m9.figshare.c.6315476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
7
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 PMCID: PMC9709565 DOI: 10.1098/rsos.221189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/08/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M. Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
8
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 DOI: 10.5281/zenodo.7299681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
9
|
Detecting behavioural lateralisation in Poecilia reticulata is strongly dependent on experimental design. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abstract
Despite the potential benefits gained from behavioural lateralisation, defined as the asymmetrical expression of cognitive functioning, this trait demonstrates widespread variation within and between populations. Numerous methodologies have been applied to investigate lateralisation, although whether different methodologies give consistent results has been relatively understudied. In this study, we assess (1) the repeatability of individual Poecilia reticulata’s lateralisation indexes between a classic detour assay (I-maze), quasi-circular mirror maze and novel detour assay (a radially symmetric Y-maze); (2) whether the methodological standard of analysing only the first ten turns in a detour assay accurately quantifies lateralisation; and (3) whether lateralisation indexes produced can be adequately explained by random chance by comparing the observed data to a novel unbiased ‘coin-toss’ randomisation model. We found (1) the two detour assays to produce generally consistent results in terms of relative lateralisation (directionality) but differed in terms of absolute laterality (intensity). The mirror assay, however, demonstrated no similarity to either assay. (2) The first ten turns were generally reflective of all turns undertaken during the 15-min trial but reducing the number of turns did exaggerate lateralisation indexes. (3) The observed laterality indexes from the assays were found to be similar to corresponding datasets produced by the randomisation model, with significant deviations likely explained by individuals’ propensity to perform consecutive turns in the same direction. These results demonstrate the need to increase the number of observed turning choices to reduce the likelihood of producing spurious or exaggerated lateralisation indexes from random chance or external influences.
Significance statement
Published studies investigating lateralisation, or ‘handedness’, in fish species have used a diverse array of methodologies. Given the variability in methodologies being employed and the widespread variation in the extent fish are lateralised and in which direction (left or right), it is important to assess whether different methods produce consistent laterality indexes. From assessing individual Poecilia reticulata in three laterality assays, the direction of lateralisation was found to correlate between the two detour assays measuring turn choice, although the absolute strength of this laterality was not consistent. There were no correlations between these assays and in an individual’s eye-use when viewing their reflection in a mirror maze assay. However, further investigation using a novel unbiased ‘coin-toss’ randomisation model to simulate replica datasets for each assay brings into question whether patterns of laterality found in the observed population differ significantly from random chance.
Collapse
|
10
|
Gartland LA, Firth JA, Laskowski KL, Jeanson R, Ioannou CC. Sociability as a personality trait in animals: methods, causes and consequences. Biol Rev Camb Philos Soc 2021; 97:802-816. [PMID: 34894041 DOI: 10.1111/brv.12823] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Within animal populations there is variation among individuals in their tendency to be social, where more sociable individuals associate more with other individuals. Consistent inter-individual variation in 'sociability' is considered one of the major axes of personality variation in animals along with aggressiveness, activity, exploration and boldness. Not only is variation in sociability important in terms of animal personalities, but it holds particular significance for, and can be informed by, two other topics of major interest: social networks and collective behaviour. Further, knowledge of what generates inter-individual variation in social behaviour also holds applied implications, such as understanding disorders of social behaviour in humans. In turn, research using non-human animals in the genetics, neuroscience and physiology of these disorders can inform our understanding of sociability. For the first time, this review brings together insights across these areas of research, across animal taxa from primates to invertebrates, and across studies from both the laboratory and field. We show there are mixed results in whether and how sociability correlates with other major behavioural traits. Whether and in what direction these correlations are observed may differ with individual traits such as sex and body condition, as well as ecological conditions. A large body of evidence provides the proximate mechanisms for why individuals vary in their social tendency. Evidence exists for the importance of genes and their expression, chemical messengers, social interactions and the environment in determining an individual's social tendency, although the specifics vary with species and other variables such as age, and interactions amongst these proximate factors. Less well understood is how evolution can maintain consistent variation in social tendencies within populations. Shifts in the benefits and costs of social tendencies over time, as well as the social niche hypothesis, are currently the best supported theories for how variation in sociability can evolve and be maintained in populations. Increased exposure to infectious diseases is the best documented cost of a greater social tendency, and benefits include greater access to socially transmitted information. We also highlight that direct evidence for more sociable individuals being safer from predators is lacking. Variation in sociability is likely to have broad ecological consequences, but beyond its importance in the spread of infectious diseases, direct evidence is limited to a few examples related to dispersal and invasive species biology. Overall, our knowledge of inter-individual variation in sociability is highly skewed towards the proximate mechanisms. Our review also demonstrates, however, that considering research from social networks and collective behaviour greatly enriches our understanding of sociability, highlighting the need for greater integration of these approaches into future animal personality research to address the imbalance in our understanding of sociability as a personality trait.
Collapse
Affiliation(s)
- Lizzy A Gartland
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, U.K
| | - Josh A Firth
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Kate L Laskowski
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, U.S.A
| | - Raphael Jeanson
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, 31062, Toulouse, France
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, U.K
| |
Collapse
|
11
|
Killen SS, Cortese D, Cotgrove L, Jolles JW, Munson A, Ioannou CC. The Potential for Physiological Performance Curves to Shape Environmental Effects on Social Behavior. Front Physiol 2021; 12:754719. [PMID: 34858209 PMCID: PMC8632012 DOI: 10.3389/fphys.2021.754719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
As individual animals are exposed to varying environmental conditions, phenotypic plasticity will occur in a vast array of physiological traits. For example, shifts in factors such as temperature and oxygen availability can affect the energy demand, cardiovascular system, and neuromuscular function of animals that in turn impact individual behavior. Here, we argue that nonlinear changes in the physiological traits and performance of animals across environmental gradients—known as physiological performance curves—may have wide-ranging effects on the behavior of individual social group members and the functioning of animal social groups as a whole. Previous work has demonstrated how variation between individuals can have profound implications for socially living animals, as well as how environmental conditions affect social behavior. However, the importance of variation between individuals in how they respond to changing environmental conditions has so far been largely overlooked in the context of animal social behavior. First, we consider the broad effects that individual variation in performance curves may have on the behavior of socially living animals, including: (1) changes in the rank order of performance capacity among group mates across environments; (2) environment-dependent changes in the amount of among- and within-individual variation, and (3) differences among group members in terms of the environmental optima, the critical environmental limits, and the peak capacity and breadth of performance. We then consider the ecological implications of these effects for a range of socially mediated phenomena, including within-group conflict, within- and among group assortment, collective movement, social foraging, predator-prey interactions and disease and parasite transfer. We end by outlining the type of empirical work required to test the implications for physiological performance curves in social behavior.
Collapse
Affiliation(s)
- Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Daphne Cortese
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lucy Cotgrove
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jolle W Jolles
- Center for Ecological Research and Forestry Applications (CREAF), Campus de Bellaterra (UAB), Barcelona, Spain
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Näslund J. Unreplicable state‐dependent effects on start‐box emergence latency in wild‐origin sticklebacks. Ethology 2021. [DOI: 10.1111/eth.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Joacim Näslund
- Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
- Department of Aquatic Resources Institute of Freshwater Research Swedish University of Agricultural Sciences Drottningholm Sweden
| |
Collapse
|