1
|
Hu W, Zheng X, Li Y, Du J, Lv Y, Su S, Xiao B, Ye X, Jiang Q, Tan H, Liao B, Chen B. High vulnerability and a big conservation gap: Mapping the vulnerability of coastal scleractinian corals in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157363. [PMID: 35843331 DOI: 10.1016/j.scitotenv.2022.157363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Scleractinian corals build the most complex and diverse ecosystems in the ocean with various ecosystem services, yet continue to be degraded by natural and anthropogenic stressors. Despite the rapid decline in scleractinian coral habitats in South China, they are among the least concerning in global coral vulnerability maps. This study developed a rapid assessment approach that combines vulnerability components and species distribution models to map coral vulnerability within a large region based on limited data. The approach contained three aspects including, exposure, habitat suitability, and coral-conservation-based adaptive capacity. The exposure assessment was based on seven indicators, and the habitat suitability was mapped using Maximum Entropy and Random Forest models. Vulnerability of scleractinian corals in South China was spatially evaluated using the approach developed here. The results showed that the average exposure of the study region was 0.62, indicating relatively high pressure. The highest exposure occurred from the east coast of the Leizhou Peninsula to the Pearl River Estuary. Aquaculture and shipping were the most common causes of exposure. Highly suitable habitats for scleractinian corals are concentrated between 18°N-22°N. Only 21.6 % of the potential coral habitats are included in marine protected areas, indicating that there may still be large conservation gaps for scleractinian corals in China. In total, 37.7 % of the potential coral habitats were highly vulnerable, with the highest vulnerability appearing in the Guangdong Province. This study presents the first attempt to map the vulnerability of scleractinian corals along the coast of South China. The proposed approach and findings provide an essential tool and information supporting the sustainable management and conservation of coral reef ecosystems, addressing an important gap on the world's coral reef vulnerability map.
Collapse
Affiliation(s)
- Wenjia Hu
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China; Observation and Research Station of wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Xiamen 361005, China.
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571199, China
| | - Jianguo Du
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China
| | - Yihua Lv
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 528248, China
| | - Shangke Su
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Xiaomin Ye
- Key Laboratory of Space Ocean Remote Sensing and Application, National Satellite Ocean Application Service, Ministry of Natural Resources, Beijing 100081, China
| | - Qutu Jiang
- Department of Geography, The University of Hong Kong, Hong Kong 999077, China
| | - Hongjian Tan
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Baolin Liao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Bin Chen
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China; Observation and Research Station of wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
2
|
Arafeh‐Dalmau N, Brito‐Morales I, Schoeman DS, Possingham HP, Klein CJ, Richardson AJ. Incorporating climate velocity into the design of climate‐smart networks of marine protected areas. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nur Arafeh‐Dalmau
- Centre for Biodiversity and Conservation Science School of Biological Sciences The University of Queensland St Lucia Queensland Australia
- School of Earth and Environmental Sciences The University of Queensland St Lucia Queensland Australia
| | - Isaac Brito‐Morales
- School of Earth and Environmental Sciences The University of Queensland St Lucia Queensland Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere BioSciences Precinct (QBP) St Lucia Queensland Australia
| | - David S. Schoeman
- Global‐Change Ecology Research Group School of Science, Technology and Engineering University of the Sunshine Coast Maroochydore Queensland Australia
- Centre for African Conservation Ecology Department of Zoology Nelson Mandela University Gqeberha South Africa
| | - Hugh P. Possingham
- Centre for Biodiversity and Conservation Science School of Biological Sciences The University of Queensland St Lucia Queensland Australia
- The Nature Conservancy Arlington Virginia USA
| | - Carissa J. Klein
- Centre for Biodiversity and Conservation Science School of Biological Sciences The University of Queensland St Lucia Queensland Australia
- School of Earth and Environmental Sciences The University of Queensland St Lucia Queensland Australia
| | - Anthony J. Richardson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere BioSciences Precinct (QBP) St Lucia Queensland Australia
- Centre for Applications in Natural Resource Mathematics School of Mathematics and Physics The University of Queensland St Lucia Queensland Australia
| |
Collapse
|
3
|
Gibbs DA, West JM, Bradley P. Incorporating adaptation and resilience into an integrated watershed and coral reef management plan. PLoS One 2021; 16:e0253343. [PMID: 34166409 PMCID: PMC8224911 DOI: 10.1371/journal.pone.0253343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Changing environmental conditions are forcing natural resource managers and communities to adapt their strategies to account for global shifts in precipitation, temperature, sea level and more, all of which are occurring in addition to local human impacts. Adapting to threats from climate change requires a fundamental shift in the practice of natural resource management through the development of forward-looking "climate-smart" goals and strategies. Here we present a proof-of-concept application of a decision-support tool to help design climate-smart management actions for the watershed and coral reef management plan for Guánica Bay watershed in southwest Puerto Rico. We also explore the connection between adaptation planning and coral reef resilience, using a recently developed Puerto Rico-wide reef resilience assessment. In the first phase of the study, we used the publicly available Adaptation Design Tool to draft initial climate-smart versions of twelve proposed management actions. In the second phase, two actions (dirt road management on steep slopes, and coral reef restoration) were further refined through consultations with local experts to make more detailed design adjustments; this included the option to use information from the coral reef resilience assessment to inform design improvements. The first phase resulted in moderately detailed assessments that broadly accounted for anticipated direct and indirect effects of climate change on the planned management actions. The second phase resulted in more site-specific technical assessments and additional important design details. The expert panel charged with discussing climate-smart reef restoration around Guánica used the reef resilience assessment to guide discussion of reef restoration, highlighting the importance of having such information available for adaptation planning. This study demonstrates how climate change impacts can be effectively incorporated into a management plan at the most granular level of planning and how a structured, formalized process can be as valuable as the resulting adaptation information.
Collapse
Affiliation(s)
- David A. Gibbs
- Oak Ridge Institute for Science Education fellow at U.S. Environmental Protection Agency, Washington, D.C., United States of America
| | - Jordan M. West
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C., United States of America
| | - Patricia Bradley
- Patricia Bradley, Tetra Tech, Inc., Owings Mills, MD, United States of America
| |
Collapse
|
4
|
Gibbs DA, West JM. Resilience assessment of Puerto Rico's coral reefs to inform reef management. PLoS One 2019; 14:e0224360. [PMID: 31689312 PMCID: PMC6830742 DOI: 10.1371/journal.pone.0224360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/11/2019] [Indexed: 01/19/2023] Open
Abstract
Globally increasing sea surface temperatures threaten coral reefs, both directly and through interactions with local stressors. More resilient reefs have a higher likelihood of returning to a coral-dominated state following a disturbance, such as a mass bleaching event. To advance practical approaches to reef resilience assessments and aid resilience-based management of coral reefs, we conducted a resilience assessment for Puerto Rico's coral reefs, modified from methods used in other U.S. jurisdictions. We calculated relative resilience scores for 103 sites from an existing commonwealth-wide survey using eight resilience indicators-such as coral diversity, macroalgae percent cover, and herbivorous fish biomass-and assessed which indicators most drove resilience. We found that sites of very different relative resilience were generally highly spatially intermixed, underscoring the importance and necessity of decision making and management at fine scales. In combination with information on levels of two localized stressors (fishing pressure and pollution exposure), we used the resilience indicators to assess which of seven potential management actions could be used at each site to maintain or improve resilience. Fishery management was the management action that applied to the most sites. Furthermore, we combined sites' resilience scores with projected ocean warming to assign sites to vulnerability categories. Island-wide or community-level managers can use the actions and vulnerability information as a starting point for resilience-based management of their reefs. This assessment differs from many previous ones because we tested how much information could be yielded by a "desktop" assessment using freely-available, existing data rather than from a customized, resilience-focused field survey. The available data still permitted analyses comparable to previous assessments, demonstrating that desktop resilience assessments can substitute for assessments with field components under some circumstances.
Collapse
Affiliation(s)
- David A. Gibbs
- Oak Ridge Institute for Science Education fellow at U.S. Environmental Protection Agency, Washington, D.C., United States of America
- * E-mail:
| | - Jordan M. West
- U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., United States of America
| |
Collapse
|
5
|
Tittensor DP, Beger M, Boerder K, Boyce DG, Cavanagh RD, Cosandey-Godin A, Crespo GO, Dunn DC, Ghiffary W, Grant SM, Hannah L, Halpin PN, Harfoot M, Heaslip SG, Jeffery NW, Kingston N, Lotze HK, McGowan J, McLeod E, McOwen CJ, O’Leary BC, Schiller L, Stanley RRE, Westhead M, Wilson KL, Worm B. Integrating climate adaptation and biodiversity conservation in the global ocean. SCIENCE ADVANCES 2019; 5:eaay9969. [PMID: 31807711 PMCID: PMC6881166 DOI: 10.1126/sciadv.aay9969] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/01/2019] [Indexed: 05/18/2023]
Abstract
The impacts of climate change and the socioecological challenges they present are ubiquitous and increasingly severe. Practical efforts to operationalize climate-responsive design and management in the global network of marine protected areas (MPAs) are required to ensure long-term effectiveness for safeguarding marine biodiversity and ecosystem services. Here, we review progress in integrating climate change adaptation into MPA design and management and provide eight recommendations to expedite this process. Climate-smart management objectives should become the default for all protected areas, and made into an explicit international policy target. Furthermore, incentives to use more dynamic management tools would increase the climate change responsiveness of the MPA network as a whole. Given ongoing negotiations on international conservation targets, now is the ideal time to proactively reform management of the global seascape for the dynamic climate-biodiversity reality.
Collapse
Affiliation(s)
- Derek P. Tittensor
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
- Corresponding author.
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Kristina Boerder
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Daniel G. Boyce
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Guillermo Ortuño Crespo
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Daniel C. Dunn
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, Australia
| | | | | | - Lee Hannah
- The Moore Center for Science, Conservation International, Arlington, VA, USA
| | - Patrick N. Halpin
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Mike Harfoot
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Susan G. Heaslip
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Nicholas W. Jeffery
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Naomi Kingston
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Heike K. Lotze
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Chris J. McOwen
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Bethan C. O’Leary
- School of Environment and Life Sciences, University of Salford, Manchester, UK
- Department of Environment and Geography, University of York, York, UK
| | - Laurenne Schiller
- Marine Affairs Program, Dalhousie University, Halifax, NS, Canada
- Ocean Wise, Vancouver, BC, Canada
| | - Ryan R. E. Stanley
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Maxine Westhead
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | | | - Boris Worm
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
West JM, Courtney CA, Hamilton AT, Parker BA, Gibbs DA, Bradley P, Julius SH. Adaptation Design Tool for Climate-Smart Management of Coral Reefs and Other Natural Resources. ENVIRONMENTAL MANAGEMENT 2018; 62:644-664. [PMID: 29934650 PMCID: PMC6153638 DOI: 10.1007/s00267-018-1065-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/03/2018] [Indexed: 05/31/2023]
Abstract
Scientists and managers of natural resources have recognized an urgent need for improved methods and tools to enable effective adaptation of management measures in the face of climate change. This paper presents an Adaptation Design Tool that uses a structured approach to break down an otherwise overwhelming and complex process into tractable steps. The tool contains worksheets that guide users through a series of design considerations for adapting their planned management actions to be more climate-smart given changing environmental stressors. Also provided with other worksheets is a framework for brainstorming new adaptation options in response to climate threats not yet addressed in the current plan. Developed and tested in collaboration with practitioners in Hawai'i and Puerto Rico using coral reefs as a pilot ecosystem, the tool and associated reference materials consist of worksheets, instructions and lessons-learned from real-world examples. On the basis of stakeholder feedback from expert consultations during tool development, we present insights and recommendations regarding how to maximize tool efficiency, gain the greatest value from the thought process, and deal with issues of scale and uncertainty. We conclude by reflecting on how the tool advances the theory and practice of assessment and decision-making science, informs higher level strategic planning, and serves as a platform for a systematic, transparent and inclusive process to tackle the practical implications of climate change for management of natural resources.
Collapse
Affiliation(s)
- Jordan M West
- Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave, NW (8623R), Washington, DC, 20460, USA.
| | | | - Anna T Hamilton
- Center for Ecological Sciences, Tetra Tech, Inc., 502 W. Cordova Road, Suite C, Santa Fe, NM, 87505, USA
| | - Britt A Parker
- Cooperative Institute for Research In Environmental Sciences, University of Colorado Boulder, 325 Broadway R/PSD, DSRC/GD111, Boulder, Colorado, 80305, USA
| | - David A Gibbs
- Oak Ridge Institute for Science and Education (ORISE) Fellow at the U.S. Environmental Protection Agency, 1200 Pennsylvania Ave, NW (8623R), Washington, DC, 20460, USA
| | - Patricia Bradley
- Center for Ecological Sciences, Tetra Tech, Inc., Owings Mills, MD, 21117, USA
| | - Susan H Julius
- Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave, NW (8623R), Washington, DC, 20460, USA
| |
Collapse
|
7
|
Stein BA. Peering into the future of wildlands management. Ecology 2017. [DOI: 10.1002/ecy.1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bruce A. Stein
- National Wildlife Federation; 1990 K Street NW., Suite 430 Washington DC 20006 USA
| |
Collapse
|