1
|
Li Y, Devenish C, Tosa MI, Luo M, Bell DM, Lesmeister DB, Greenfield P, Pichler M, Levi T, Yu DW. Combining environmental DNA and remote sensing for efficient, fine-scale mapping of arthropod biodiversity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230123. [PMID: 38705177 PMCID: PMC11070265 DOI: 10.1098/rstb.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 05/07/2024] Open
Abstract
Arthropods contribute importantly to ecosystem functioning but remain understudied. This undermines the validity of conservation decisions. Modern methods are now making arthropods easier to study, since arthropods can be mass-trapped, mass-identified, and semi-mass-quantified into 'many-row (observation), many-column (species)' datasets, with homogeneous error, high resolution, and copious environmental-covariate information. These 'novel community datasets' let us efficiently generate information on arthropod species distributions, conservation values, uncertainty, and the magnitude and direction of human impacts. We use a DNA-based method (barcode mapping) to produce an arthropod-community dataset from 121 Malaise-trap samples, and combine it with 29 remote-imagery layers using a deep neural net in a joint species distribution model. With this approach, we generate distribution maps for 76 arthropod species across a 225 km2 temperate-zone forested landscape. We combine the maps to visualize the fine-scale spatial distributions of species richness, community composition, and site irreplaceability. Old-growth forests show distinct community composition and higher species richness, and stream courses have the highest site-irreplaceability values. With this 'sideways biodiversity modelling' method, we demonstrate the feasibility of biodiversity mapping at sufficient spatial resolution to inform local management choices, while also being efficient enough to scale up to thousands of square kilometres. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Yuanheng Li
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- Faculty of Biology, University of Duisburg-Essen, Essen 45141, Germany
| | - Christian Devenish
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR47TJ, UK
| | - Marie I. Tosa
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mingjie Luo
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - David M. Bell
- Pacific Northwest Research Station, U.S. Department of Agriculture Forest Service, Corvallis, OR 97331, USA
| | - Damon B. Lesmeister
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR 97331, USA
- Pacific Northwest Research Station, U.S. Department of Agriculture Forest Service, Corvallis, OR 97331, USA
| | - Paul Greenfield
- CSIRO Energy, Lindfield, New South Wales, Australia
- School of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Taal Levi
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Douglas W. Yu
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR47TJ, UK
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, People’s Republic of China
| |
Collapse
|
2
|
Boyd J, Johnston RJ, Ringold P. Biophysical Measures to Support Analysis and Communication of Existence Values. INTERNATIONAL REVIEW OF ENVIRONMENTAL AND RESOURCE ECONOMICS 2023; 17:153-230. [PMID: 37426326 PMCID: PMC10324542 DOI: 10.1561/101.00000152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A recent focus of ecosystem services research has been on the definition of biophysical outcomes and measures most closely linked to social welfare. There is a particular need to identify biophysical outcomes corresponding to existence values. (Values associated with existence apart from any current or future use). We review economic and ecological evidence to answer two key questions: First, what are ideal characteristics of linking indicators for existence values? Linking indicators should be: understandable, subject to direct sensory perception, represented at relevant temporal and spatial scales, comprehensive, and quantifiable in a repeatable manner. Second, what types of ecosystem outcomes are most likely to be associated with these values? We distinguish between indicators of taxa and ecological landscapes, and then multiple subcategories within each. Our fundamental conclusion is that while there are general principles informing the specification of linking indicators of existence values, there is no compact set of indicators or measures that applies universally. The case-specific nature of these issues-general guidelines notwithstanding-implies the need for sustained partnerships between social and biophysical scientists to address questions of indicator choice.
Collapse
Affiliation(s)
- James Boyd
- Resources for the Future, Washington, DC
| | | | - Paul Ringold
- US EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR
| |
Collapse
|
3
|
Zhang M, Zhang L, He H, Ren X, Lv Y, Niu Z, Chang Q, Xu Q, Liu W. Improvement of ecosystem quality in National Key Ecological Function Zones in China during 2000-2015. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116406. [PMID: 36352714 DOI: 10.1016/j.jenvman.2022.116406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Improving ecosystem quality is the ultimate goal of ecological restoration projects and sustainable ecosystem management. However, previous results of ecosystem quality lack comparability among different regions when assessing the effectiveness of ecological restoration projects on the regional or national scales, due to the influence of geographical and climatic background conditions. Here we proposed a new index, ecosystem quality ratio (EQR), by integrating the status of landscape structure, ecosystem services, ecosystem stability, and human disturbance relative to their reference conditions, and assessed the EQR changes in China's counties and National Key Ecological Function Zones (NKEFZs) from 1990 to 2015. The results showed that the average ecosystem quality of China's counties deviated from the reference condition by 28%. EQR decreased by 1.2% during 1990-2000 but increased by 3.7% during 2000-2015. Those counties with increasing EQR in 2000-2015 occupy 64.7%, with obviously increasing counties mainly located in the water conservation, biodiversity maintenance, and water and soil conservation types of NKEFZs. The EQR increase in counties within NKEFZs was 3.65 times that outside of NKEFZs. Remarkable improvement of ecosystem quality occurred in the forest region in Changbai Mountain, biodiversity and soil conservation region in Wuling Mountains, and hilly and gully region of Loess Plateau, where EQR increases mainly resulted from the conversion of farmland to forest or grassland and consequent increases in ecosystem services and stability. The magnitude of EQR enhancement showed a positive relationship with the increase in forest and grassland coverage in NKEFZs. Our results highlight the important role of ecological restoration projects in improving ecosystem quality in China, and demonstrate the feasibility of the new index (EQR) for the assessment of ecosystem quality in terms of ecosystem management and restoration.
Collapse
Affiliation(s)
- Mengyu Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Honglin He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xiaoli Ren
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Lv
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China
| | - Zhong'en Niu
- School of Resources and Environmental Engineering, Ludong University, Shandong, 264025, China
| | - Qingqing Chang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weihua Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; National Ecosystem Science Data Center, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Hansen AJ, Mullan K, Theobald DM, Robinson N, East A, Powell S. Informing conservation decisions to target private lands of highest ecological value and risk of loss. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2612. [PMID: 35366043 DOI: 10.1002/eap.2612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
Natural habitats on private lands are potentially important components of national biodiversity conservation strategies, yet they are being rapidly lost to development. Conservation easements and other means of protecting these habitats have expanded in use and will be most effective if they target private lands of highest biodiversity value and risk of loss. We developed a Biodiversity Conservation Priority Index (BCPI) based on ecological value and risk of habitat loss for remaining areas of natural vegetation cover (NVC) in the northwestern United States and addressed two questions: (1) Which remaining NVC on private lands is the highest priority for biodiversity conservation based on ecological value and risk of development? And (2) are conservation easements in NVC placed preferentially in locations of high biodiversity conservation priority? Drawing on the concept of ecological integrity, we integrated five metrics of ecological structure, function, and composition to quantify ecological value of NVC. These included net primary productivity, species richness, ecosystem type representation, imperiled species range rarity, and connectivity among "Greater Wildland Ecosystems." Risk of habitat loss was derived from analysis of biophysical and sociodemographic predictors of NVC loss. Ecological value and risk of loss were combined into the BCPI. We then analyzed spatial patterns of BCPI to identify the NVC highest in biodiversity conservation priority and examined the relationship between BCPI and conservation easement status. We found that BCPI varied spatially across the study area and was highest in western and southern portions of the study area. High BCPI was associated with suburban and rural development, roads, urban proximity, valley bottom landforms, and low intensity of current development. Existing conservation easements were distributed more towards lower BCPI values than unprotected NVC at both the study area and region scales. The BCPI can be used to better inform land use decision making at local, regional, and potentially national scales in order to better achieve biodiversity goals.
Collapse
Affiliation(s)
- Andrew J Hansen
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Katrina Mullan
- Department of Economics, University of Montana, Missoula, Montana, USA
| | | | | | - Alyson East
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Scott Powell
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
5
|
Multiple UAV Flights across the Growing Season Can Characterize Fine Scale Phenological Heterogeneity within and among Vegetation Functional Groups. REMOTE SENSING 2022. [DOI: 10.3390/rs14051290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Grasslands and shrublands exhibit pronounced spatial and temporal variability in structure and function with differences in phenology that can be difficult to observe. Unpiloted aerial vehicles (UAVs) can measure vegetation spectral patterns relatively cheaply and repeatably at fine spatial resolution. We tested the ability of UAVs to measure phenological variability within vegetation functional groups and to improve classification accuracy at two sites in Montana, U.S.A. We tested four flight frequencies during the growing season. Classification accuracy based on reference data increased by 5–10% between a single flight and scenarios including all conducted flights. Accuracy increased from 50.6 to 61.4% at the drier site, while at the more mesic/densely vegetated site, we found an increase of 59.0 to 64.4% between a single and multiple flights over the growing season. Peak green-up varied by 2–4 weeks within the scenes, and sparse vegetation classes had only a short detectable window of active phtosynthesis; therefore, a single flight could not capture all vegetation that was active across the growing season. The multi-temporal analyses identified differences in the seasonal timing of green-up and senescence within herbaceous and sagebrush classes. Multiple UAV measurements can identify the fine-scale phenological variability in complex mixed grass/shrub vegetation.
Collapse
|
6
|
Acuña-Alonso C, Álvarez X, Valero E, Pacheco FAL. Modelling of threats that affect Cyano-HABs in an eutrophicated reservoir: First phase towards water security and environmental governance in watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152155. [PMID: 34890658 DOI: 10.1016/j.scitotenv.2021.152155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Cyano-HABs are proliferating around the world due to anthropogenic nutrient enrichment of freshwater bodies. This study seeks to obtain a holistic vision over the various threats that affect the Cyano-HABs of Umia basin and especially of A Baxe reservoir (Galicia, NW Spain), through the method of Partial least squares path modelling (PLS-PM). The A Baxe reservoirs is a fundamental source of drinking water supply to surrounding dwellings. This study identifies and quantify the variables that increase contaminant concentration and decrease ecological integrity, as well as how this scenario evolved over various hydrologic years. In this regard, the PLS-PM equations will be robust and powerful tools to predict changes in eutrophication and ecological integrity, as response to measures implemented in the basin that can improve water quality. The dependent latent variables are "Eutrophication" (chlorophyl-a, Microcystis sp.) and "Ecological Integrity" (METI Bioindicator). The independent latent variables are "SWP", which represents surface water parameters (phosphorus, nitrogen and pH) and "Climatic Conditions" (temperature, precipitation). The PLS-PM results revealed that 51.0% of "Eutrophication" is predicted by the independent variables. The connections between latent variables are quantified through path coefficients (β). The "SWP" contributes by increasing "Eutrophication" (β = 0.235), the same occurring with the "Climatic Conditions" (β = -0.672). The variables "Eutrophication" (β = -0.217) and "SWP" (β = -0.483) lower the "Ecological Integrity". On the other hand, different trophic scenarios, adapted to the temperature increase predicted for the study area, were tested, and it was found that ecological integrity would improve by 46% if the oligotrophic state were reached. Therefore, it is recommended to prevent pollution by means of water control and governance plans, as well as corrective and preventive measures, which guarantee the water security of the river basins. Despite the complex mathematics behind the PLS-PM models, their user-friendly development and application through interactive graphical interfaces make them easily transposable to other eutrophic reservoirs, widening the readership of these studies focused on multiple-geosphere assessment of environmental impacts.
Collapse
Affiliation(s)
- Carolina Acuña-Alonso
- University of Vigo, Agroforestry Group, School of Forestry Engineering, 36005 Pontevedra, Spain.
| | - Xana Álvarez
- University of Vigo, Agroforestry Group, School of Forestry Engineering, 36005 Pontevedra, Spain.
| | - Enrique Valero
- University of Vigo, Agroforestry Group, School of Forestry Engineering, 36005 Pontevedra, Spain.
| | - Fernando António Leal Pacheco
- Center of Chemistry of Vila Real, University of Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal.
| |
Collapse
|
7
|
Zelený J, Mercado-Bettín D, Müller F. Towards the evaluation of regional ecosystem integrity using NDVI, brightness temperature and surface heterogeneity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148994. [PMID: 34328885 DOI: 10.1016/j.scitotenv.2021.148994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Maintaining ecological integrity is globally acknowledged as a strategic goal, yet there is no consensus on a practical and widely usable methodology to assess it. This study proposes a comprehensive approach to quantify regional ecosystem integrity based on FAIR data, obtained using satellite remote sensing and image analysis. Three variables are central to this approach: normalized difference vegetation index (NDVI), at-satellite brightness temperature (BT) and vegetation surface heterogeneity (HG), corresponding to ecosystem integrity indicators exergy capture, biotic water flows and abiotic heterogeneity. The indicators are assessed across the vegetation period and a representative Regional Index of Ecological Integrity (RIEI) is proposed to express the integrity of two case study areas and representative land use types. The proposed approach proved powerful in representing the anthropogenic and autopoietic gradient within study regions in high detail. Arable lands and urban areas ranked lowest, while dense forests and wetlands highest, agriculture being the most significant factor reducing regional integrity. Areas with conservation significance ranked either having the highest integrity, when dense vegetation was present, and mediocre or even low in case of e.g., sand dunes, marches and rock formations. Limitations of the method comprise: insufficient representation of biodiversity, sensitivity to cloud cover and demanding in-situ validation. The approach can be scaled from global to local level, adapted to various remote sensing techniques and complemented by a diversity of data (e.g., ecosystem services, geomorphological, climatic) to provide deeper understanding of landscape ecosystem integrity.
Collapse
Affiliation(s)
- Jakub Zelený
- Faculty of Humanities, Charles University in Prague, Pátkova 2137/5, 182 00 Prague 8, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Christian-Albrechts-University Kiel, Institute for Natural Resource Conservation, Olshausenstraße 75, 24118 Kiel, Germany.
| | - Daniel Mercado-Bettín
- Universidad de Antioquia, Escuela Ambiental, Medellin, Colombia; Catalan Institute for Water Research, Girona, Spain; Universitat de Girona, Girona, Spain; Christian-Albrechts-University of Kiel, Department of Hydrology and Water Resources Management, Kiel, Germany
| | - Felix Müller
- Christian-Albrechts-University Kiel, Institute for Natural Resource Conservation, Olshausenstraße 75, 24118 Kiel, Germany
| |
Collapse
|
8
|
Karr JR, Larson ER, Chu EW. Ecological integrity is both real and valuable. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Eric R. Larson
- Department of Natural Resources and Environmental Sciences University of Illinois Urbana Illinois USA
| | - Ellen W. Chu
- Ecologist and Editor Port Townsend Washington USA
| |
Collapse
|
9
|
Acuña-Alonso C, Fernandes ACP, Álvarez X, Valero E, Pacheco FAL, Varandas SDGP, Terêncio DPS, Fernandes LFS. Water security and watershed management assessed through the modelling of hydrology and ecological integrity: A study in the Galicia-Costa (NW Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143905. [PMID: 33340864 DOI: 10.1016/j.scitotenv.2020.143905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Water management is a crucial tool for addressing the increasing uncertainties caused by climate change, biodiversity loss and the conditions of socioeconomic limits. The multiple factors affecting water resources need to be successfully managed to achieve optimal governance and thus move towards water security. This study seeks to obtain a holistic vision of the various threats that affect the ecological integrity of the basins that form the hydrological district of Galicia-Costa, through the method of partial least squares path modelling (PLS-PM). The data is analysed overall for the hydrological years from 2009 to 2015. The independent latent variables are "Anthropogenic" (comprising the percentage of water bodies with edges alongside artificial surfaces, the percentage connected to artificial land use patches, the edge density of artificial surfaces and population density) and "Nature" (edge density of forestry land uses, edge length of land water bodies alongside forested areas and the percentage of land occupied by the largest patch of forest). The dependent latent variables are "SWP", which represents surface water parameters (biological oxygen demand, chlorides, conductivity and dissolved iron) and "Ecological Integrity" (METI Bioindicator). The connections between latent variables are uantified through path coefficients (β). From an overall perspective, the PLS-PM results reveal that 69.0% of "SWP" is predicted by the independent variables (R2 = 0.690), "Anthropogenic" contributes by increasing SWP (β = 0.471), while "Nature" decreases the concentration of SWP (β = -0.523), which indicates the polluting parameters in the water. The variables "Anthropogenic" (β = -0.351) and "SWP" (β = -0.265) lower the quality of "Ecological Integrity". This variable must be managed through soil conservation measures for the benefit of water security. This study has been able to identify and quantify the variables that increase contaminant concentration and decrease ecological integrity, providing a promising methodology that facilitates protection and correction measures to guarantee water safety.
Collapse
Affiliation(s)
- Carolina Acuña-Alonso
- Forestry Engineering School, University of Vigo, Campus A Xunqueira s/n., 36005 Pontevedra, Spain.
| | - António Carlos Pinheiro Fernandes
- Center for Research and Agro-environmental and Biological Technologies, University of Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal.
| | - Xana Álvarez
- Forestry Engineering School, University of Vigo, Campus A Xunqueira s/n., 36005 Pontevedra, Spain.
| | - Enrique Valero
- Forestry Engineering School, University of Vigo, Campus A Xunqueira s/n., 36005 Pontevedra, Spain.
| | - Fernando António Leal Pacheco
- Center of Chemistry of Vila Real, University of Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal.
| | - Simone Da Graça Pinto Varandas
- Center for Research and Agro-environmental and Biological Technologies, University of Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal.
| | - Daniela Patrícia Salgado Terêncio
- Center of Chemistry of Vila Real, University of Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal; Center for Research and Agro-environmental and Biological Technologies, University of Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal.
| | - Luís Filipe Sanches Fernandes
- Center for Research and Agro-environmental and Biological Technologies, University of Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal.
| |
Collapse
|