1
|
Wu SN, Wang YJ, Gao ZH, Liutkevičienė R, Rovite V. Recent Advances in Ionic Mechanisms in Pituitary Cells: Implications for Electrophysiological and Electropharmacological Research. J Clin Med 2025; 14:3117. [PMID: 40364147 PMCID: PMC12072979 DOI: 10.3390/jcm14093117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Pituitary cells are specialized cells located within the pituitary gland, a small, pea-sized gland situated at the base of the brain. Through the use of cellular electrophysiological techniques, the electrical properties of these cells have been revealed. This review paper aims to introduce the ion currents that are known to be functionally expressed in pituitary cells. These currents include a voltage-gated Na+ current (INa), erg-mediated K+ current (IK(erg)), M-type K+ current (IK(M)), hyperpolarization-activated cation current (Ih), and large-conductance Ca2+-activated K+ (BKCa) channel. The biophysical characteristics of the respective ion current were described. Additionally, we also provide explanations for the effect of various drugs or compounds on each of these currents. GH3-cell exposure to GV-58 can increase the magnitude of INa with a concurrent rise in the inactivation time constant of the current. The presence of esaxerenone, an antagonist of the aldosterone receptor, directly suppresses the magnitude of peak and late INa. Risperidone, an atypical antipsychotic agent, is effective at suppressing the IK(erg) amplitude directly, and di(2-ethylhexyl)-phthalate suppressed IK(erg). Solifenacin and kynurenic acid can interact with the KM channel to stimulate IK(M), while carisbamate and cannabidiol inhibit the Ih amplitude activated by sustained hyperpolarization. Moreover, the presence of either rufinamide or QO-40 can enhance the activity of single BKCa channels. To summarize, alterations in ion currents within native pituitary cells or pituitary tumor cells can influence their functional activity, particularly in processes like stimulus-secretion coupling. The effects of small-molecule modulators, as demonstrated here, bear significance in clinical, therapeutic, and toxicological contexts.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Research and Education, An-Nan Hospital, China Medical University, No. 66, Section 2, Changhe Road, An Nan District, Tainan 70965, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 701401, Taiwan
| | - Ya-Jean Wang
- Department of Senior Services Industry Management, Minghsin University of Science and Technology, Hsinchu 300401, Taiwan
| | - Zi-Han Gao
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 701401, Taiwan
| | - Rasa Liutkevičienė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50106 Kaunas, Lithuania
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre (BMC), LV-1067 Riga, Latvia
| |
Collapse
|
2
|
Papadopoulou-Marketou N, Tsoli M, Chatzellis E, Alexandraki KI, Kaltsas G. Hereditary Syndromes Associated with Pancreatic and Lung Neuroendocrine Tumors. Cancers (Basel) 2024; 16:2075. [PMID: 38893191 PMCID: PMC11171219 DOI: 10.3390/cancers16112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) and lung NETs (LNETs) represent a rare but clinically significant subgroup of neoplasms. While the majority is sporadic, approximately 17% of PanNETs and a subset of LNETs develop in the context of monogenic familial tumor syndromes, especially multiple endocrine neoplasia type 1 (MEN1) syndrome. Other inherited syndromes associated with PanNETs include MEN4, von Hippel-Lindau (VHL) syndrome, neurofibromatosis type 1 (NF1), and tuberous sclerosis complex (TSC). These syndromes are highly penetrant and their clinical manifestations may vary even among members of the same family. They are attributed to genetic mutations involving key molecular pathways regulating cell growth, differentiation, and angiogenesis. Pancreatic NETs in hereditary syndromes are often multiple, develop at a younger age compared to sporadic tumors, and are associated with endocrine and nonendocrine tumors derived from multiple organs. Lung NETs are not as common as PanNETs and are mostly encountered in MEN1 syndrome and include typical and atypical lung carcinoids. Early detection of PanNETs and LNETs related to inherited syndromes is crucial, and specific follow-up protocols need to be employed to optimize diagnosis and management. Genetic screening is recommended in childhood, and diagnostic screening starts often in adolescence, even in asymptomatic mutation carriers. Optimal management and therapeutic decisions should be made in the context of a multidisciplinary team in specialized centers, whereas specific biomarkers aiming to identify patients denoted to follow a more aggressive course need to be developed.
Collapse
Affiliation(s)
- Nektaria Papadopoulou-Marketou
- Neuroendocrine Tumor Unit, EURACAN 4 and ENETS Centre of Excellence, 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.T.); (G.K.)
| | - Marina Tsoli
- Neuroendocrine Tumor Unit, EURACAN 4 and ENETS Centre of Excellence, 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.T.); (G.K.)
| | | | | | - Gregory Kaltsas
- Neuroendocrine Tumor Unit, EURACAN 4 and ENETS Centre of Excellence, 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.T.); (G.K.)
| |
Collapse
|
3
|
Geslot A, Vialon M, Caron P, Grunenwald S, Vezzosi D. New therapies for patients with multiple endocrine neoplasia type 1. ANNALES D'ENDOCRINOLOGIE 2021; 82:112-120. [PMID: 33839123 DOI: 10.1016/j.ando.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
In 1953, for the first time, Paul Wermer described a family presenting endocrine gland neoplasms over several generations. The transmission was autosomal dominant and the penetrance was high. Forty years later in 1997, the multiple endocrine neoplasia type 1 (MEN1) gene was sequenced, thus enabling diagnosis and early optimal treatment. Patients carrying the MEN1 gene present endocrine but also non-endocrine tumors. Parathyroid, pancreatic and pituitary impairment are the three main types of endocrine involvement. The present article details therapeutic management of hyperparathyroidism, neuroendocrine pancreatic tumors and pituitary adenomas in patients carrying the MEN1 gene. Significant therapeutic progress has in fact been made in the last few years. As concerns the parathyroid glands, screening of family members and regular monitoring of affected subjects now raise the question of early management of parathyroid lesions and optimal timing of parathyroid surgery. As concerns the duodenum-pancreas, proton-pump inhibitors are able to control gastrin-secreting syndrome, reducing mortality in MEN1 patients. Mortality in MEN1 patients is no longer mainly secondary to uncontrolled hormonal secretion but to metastatic (mainly pancreatic) disease progression. Tumor risk requires regular monitoring of morphological assessment, leading to iterative pancreatic surgery in a large number of patients. Finally, pituitary adenomas in MEN1 patients are traditionally described as aggressive, invasive and resistant to medical treatment. However, regular pituitary screening showed them to be in fact infra-centimetric and non-secreting in the majority of patients. Consequently, it is necessary to regularly monitor MEN1 patients, with regular clinical, biological and morphological work-up. Several studies showed that this regular monitoring impairs quality of life. Building a relationship of trust between patients and care provider is therefore essential. It enables the patient to be referred for psychological or psychiatric care in difficult times, providing long-term support and preventing any breakdown in continuity of care.
Collapse
Affiliation(s)
- Aurore Geslot
- Service d'endocrinologie, hôpital Larrey, 24, chemin de Pouvourville, 31029 Toulouse cedex 9, France
| | - Magaly Vialon
- Service d'endocrinologie, hôpital Larrey, 24, chemin de Pouvourville, 31029 Toulouse cedex 9, France
| | - Philippe Caron
- Service d'endocrinologie, hôpital Larrey, 24, chemin de Pouvourville, 31029 Toulouse cedex 9, France
| | - Solange Grunenwald
- Service d'endocrinologie, hôpital Larrey, 24, chemin de Pouvourville, 31029 Toulouse cedex 9, France
| | - Delphine Vezzosi
- Institut CardioMet, Toulouse, France; Service d'endocrinologie, hôpital Larrey, 24, chemin de Pouvourville, 31029 Toulouse cedex 9, France.
| |
Collapse
|
4
|
Nelakurti DD, Pappula AL, Rajasekaran S, Miles WO, Petreaca RC. Comprehensive Analysis of MEN1 Mutations and Their Role in Cancer. Cancers (Basel) 2020; 12:cancers12092616. [PMID: 32937789 PMCID: PMC7565326 DOI: 10.3390/cancers12092616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancers are characterized by accumulation of genetic mutations in key cell cycle regulators that alter or disable the function of these genes. Such mutations can be inherited or arise spontaneously during the life of the individual. The MEN1 gene prevents uncontrolled cell division and it is considered a tumor suppressor. Inherited MEN1 mutations are associated with certain parathyroid and pancreatic syndromes while spontaneous mutations have been detected in cancer cells. We investigated whether inherited mutations appear in cancer cells which would suggest that patients with parathyroid and pancreatic syndromes have a predisposition to develop cancer. We find a weak correlation between the spectrum of inherited mutations and those appearing spontaneously. Thus, inherited MEN1 mutations may not be a good predictor of tumorigenesis. Abstract MENIN is a scaffold protein encoded by the MEN1 gene that functions in multiple biological processes, including cell proliferation, migration, gene expression, and DNA damage repair. MEN1 is a tumor suppressor gene, and mutations that disrupts MEN1 function are common to many tumor types. Mutations within MEN1 may also be inherited (germline). Many of these inherited mutations are associated with a number of pathogenic syndromes of the parathyroid and pancreas, and some also predispose patients to hyperplasia. In this study, we cataloged the reported germline mutations from the ClinVar database and compared them with the somatic mutations detected in cancers from the Catalogue of Somatic Mutations in Cancer (COSMIC) database. We then used statistical software to determine the probability of mutations being pathogenic or driver. Our data show that many confirmed germline mutations do not appear in tumor samples. Thus, most mutations that disable MEN1 function in tumors are somatic in nature. Furthermore, of the germline mutations that do appear in tumors, only a fraction has the potential to be pathogenic or driver mutations.
Collapse
Affiliation(s)
- Devi D. Nelakurti
- Biomedical Science Undergraduate Program, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Amrit L. Pappula
- Computer Science and Engineering Undergraduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Swetha Rajasekaran
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Wayne O. Miles
- Department of Cancer Biology and Genetics, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
- Correspondence:
| |
Collapse
|
5
|
Malczewska A, Kos-Kudła B, Kidd M, Drozdov I, Bodei L, Matar S, Oberg K, Modlin IM. The clinical applications of a multigene liquid biopsy (NETest) in neuroendocrine tumors. Adv Med Sci 2020; 65:18-29. [PMID: 31841822 PMCID: PMC7453408 DOI: 10.1016/j.advms.2019.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE There are few effective biomarkers for neuroendocrine tumors. Precision oncology strategies have provided liquid biopsies for real-time and tailored decision-making. This has led to the development of the first neuroendocrine tumor liquid biopsy (the NETest). The NETest represents a transcriptomic signature of neuroendocrine tumor (NETs) that captures tumor biology and disease activity. The data have direct clinical application in terms of identifying residual disease, disease progress and the efficacy of treatment. In this overview we assess the available published information on the metrics and clinical efficacy of the NETest. MATERIAL AND METHODS Published data on the NETest have been collated and analyzed to understand the clinical application of this multianalyte biomarker in NETs. RESULTS NETest assay has been validated as a standardized and reproducible clinical laboratory measurement. It is not affected by demographic characteristics, or acid suppressive medication. Clinical utility of the NETest has been documented in gastroenteropancreatic, bronchopulmonary NETs, in paragangliomas and pheochromocytomas. The test facilitates accurate diagnosis of a NET disease, and real-time monitoring of the disease status (stable/progressive disease). It predicts aggressive tumor behavior, identifies operative tumor resection, and efficacy of the medical treatment (e.g. somatostatin analogues), or peptide receptor radionuclide therapy (PRRT). NETest metrics and clinical applications out-perform standard biomarkers like chromogranin A. CONCLUSIONS The NETest exhibits clinically competent metrics as an effective biomarker for neuroendocrine tumors. Measurement of NET transcripts in blood is a significant advance in neuroendocrine tumor management and demonstrates that blood provides a viable source to identify and monitor tumor status.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland.
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Mark Kidd
- Wren Laboratories, Branford, CT, USA
| | | | - Lisa Bodei
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden
| | - Irvin M Modlin
- Gastroenterological Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Nobecourt PF, Zagzag J, Asare EA, Perrier ND. Intraoperative Decision-Making and Technical Aspects of Parathyroidectomy in Young Patients With MEN1 Related Hyperparathyroidism. Front Endocrinol (Lausanne) 2018; 9:618. [PMID: 30459713 PMCID: PMC6232704 DOI: 10.3389/fendo.2018.00618] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/27/2018] [Indexed: 01/13/2023] Open
Abstract
One in 5,000 to 1 in 50,000 births have multiple endocrine neoplasia type 1 (MEN1). MEN1 is a hereditary syndrome clinically defined by the presence of two of the following endocrine tumors in the same patient: parathyroid adenomas, entero-pancreatic endocrine tumors and pituitary tumors. Most commonly, patients with MEN1 manifest primarily with signs and symptoms linked to primary hyperparathyroidism. By age 50, it is estimated that 100% of patients with MEN1 will have been diagnosed with primary hyperparathyroidism. These patients will need to undergo resection of their hyperfunctioning glands, however there is no clear consensus on which procedure to perform and when to perform it in these patients. In this original study we describe and explain the rational of our peri-operative approach and management at MD Anderson Cancer Center of MEN1 patients with hyperparathyroidism. This protocol includes preoperative evaluation, intraoperative decision-making and detailed surgical technique adopted for these patients' care. Additionally we review follow-up and disease management in instances of recurrent primary hyperparathyroidism in patients with MEN1 syndrome.
Collapse
Affiliation(s)
- Priscilla F Nobecourt
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Jonathan Zagzag
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elliot A Asare
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy D Perrier
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|