1
|
Smirnov A, Guitián F, Ramirez-Rico J, Bartolomé JF. A zirconia/tantalum biocermet: in vitro and in vivo evaluation for biomedical implant applications. J Mater Chem B 2024; 12:8919-8928. [PMID: 39158622 DOI: 10.1039/d4tb01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A biocermet made of zirconia/20 vol% tantalum (3Y-TZP/Ta) is a new composite with exceptional capabilities due to a combination of properties that are rarely achieved in conventional materials (high strength and toughness, cyclic fatigue resistance and flaw tolerance, wear resistance, corrosion resistance, electrical conductivity, etc.). In this study, for the first time, the biomedical performance of a 3Y-TZP/Ta biocermet was evaluated in detail. Its in vitro biocompatibility was assessed using mesenchymal stem cell culture. The effectiveness of in vivo osteointegration of the biocermet was confirmed 6 months after implantation into the proximal tibiae of New Zealand white rabbits. In addition, the possibility of using magnetic resonance imaging (MRI) for medical analysis of the considered biocermet material was studied. The 3Y-TZP/Ta composite showed no injurious effect on cell morphology, extracellular matrix production or cell proliferation. Moreover, the implanted biocermet appeared to be capable of promoting bone growth without adverse reactions. On the other hand, this biocermet demonstrates artefact-free performance in MRI biomedical image analysis studies, making it more suitable for implant applications. These findings open up possibilities for a wide range of applications of these materials in orthopedics, dentistry and other areas such as replacement of hard tissues.
Collapse
Affiliation(s)
- Anton Smirnov
- Federal State Budgetary Educational Institution of the Higher Education Moscow State University of Technology "STANKIN", Moscow, Russian Federation
| | - Francisco Guitián
- Instituto de Materiales, iMATUS - USC, Santiago de Compostela, Spain
| | - Joaquín Ramirez-Rico
- Instituto de Ciencia de Materiales de Sevilla, CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Seville, Spain
- Dpto. Física de La Materia Condensada, Universidad de Sevilla, Avda. Reina Mercedes SN, 41012 Seville, Spain
| | - José F Bartolomé
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Cheung CL, Wu M, Fang G, Ho JDL, Liang L, Tan KV, Lin FH, Chang HC, Kwok KW. Omnidirectional Monolithic Marker for Intra-Operative MR-Based Positional Sensing in Closed MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:439-448. [PMID: 37647176 DOI: 10.1109/tmi.2023.3309967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
We present a design of an inductively coupled radio frequency (ICRF) marker for magnetic resonance (MR)-based positional tracking, enabling the robust increase of tracking signal at all scanning orientations in quadrature-excited closed MR imaging (MRI). The marker employs three curved resonant circuits fully covering a cylindrical surface that encloses the signal source. Each resonant circuit is a planar spiral inductor with parallel plate capacitors fabricated monolithically on flexible printed circuit board (FPC) and bent to achieve the curved structure. Size of the constructed marker is Ø3-mm ×5 -mm with quality factor > 22, and its tracking performance was validated with 1.5 T MRI scanner. As result, the marker remains as a high positive contrast spot under 360° rotations in 3 axes. The marker can be accurately localized with a maximum error of 0.56 mm under a displacement of 56 mm from the isocenter, along with an inherent standard deviation of 0.1-mm. Accrediting to the high image contrast, the presented marker enables automatic and real-time tracking in 3D without dependency on its orientation with respect to the MRI scanner receive coil. In combination with its small form-factor, the presented marker would facilitate robust and wireless MR-based tracking for intervention and clinical diagnosis. This method targets applications that can involve rotational changes in all axes (X-Y-Z).
Collapse
|
3
|
Kreutz-Rodrigues L, Gibreel W, Carlsen BT, Frick MA, Mardini S, Bakri K. Clinical and Radiological Safety of Retained Implantable Doppler Devices Used for Free Flap Monitoring. Plast Surg (Oakv) 2022; 30:20-24. [PMID: 35096688 PMCID: PMC8793759 DOI: 10.1177/22925503211006537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Implantable Doppler devices are reliable adjuncts used for free flap monitoring. Occasionally, the probe/wire is not removed and remains in the soft tissues. The clinical safety of the retained probes and safety and compatibility with magnetic resonance imaging (MRI) have not been studied. We present a series of retained implantable Doppler probes examining clinic outcomes, safety and compatibility with MRI, and effect on MRI image quality. METHODS A retrospective review was conducted of patients who had an implantable Doppler device for free flap monitoring between July 2007 and August 2018. Routine post-operative imaging was reviewed for all patients to identify incidental findings of a retained probe. A subset of patients with retained implantable Doppler probes who underwent MRI was identified. Magnetic resonance images were reviewed to detect any degradation of image quality. RESULTS A total of 323 patients who had an implantable Doppler device placed were reviewed 18 (5.6%) patients were identified with a retained probe and were included in this study. Mean age was 49 years with mean follow-up of 34.4 months. One potential device-related complication occurred in 1 (5.6%) patient. A total of 32 MRI scans were performed in 8 patients with retained devices, including 6 patients who underwent a total of 21 MRIs of the surgical site. There were no complications related to the MRI scans, and we found no significant degradation of image quality. CONCLUSION Retained implantable Doppler probes were not associated with substantial adverse clinical outcomes nor affected MRI image quality of the surgical site.
Collapse
Affiliation(s)
| | - Waleed Gibreel
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Brian T. Carlsen
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew A. Frick
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Samir Mardini
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Karim Bakri
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA,Karim Bakri, Division of Plastic and Reconstructive Surgery, Department of Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
4
|
Abstract
Diagnostic and interventional cardiac catheterization is routinely used in the diagnosis and treatment of congenital heart disease. There are well-established concerns regarding the risk of radiation exposure to patients and staff, particularly in children given the cumulative effects of repeat exposure. Magnetic resonance imaging (MRI) offers the advantage of being able to provide better soft tissue visualization, tissue characterization, and quantification of ventricular volumes and vascular flow. Initial work using MRI catheterization employed fusion of x-ray and MRI techniques, with x-ray fluoroscopy to guide catheter placement and subsequent MRI assessment for anatomical and hemodynamic assessment. Image overlay of 3D previously acquired MRI datasets with live fluoroscopic imaging has also been used to guide catheter procedures.Hybrid x-ray and MRI-guided catheterization paved the way for clinical application and validation of this technique in the assessment of pulmonary vascular resistance and pharmacological stress studies. Purely MRI-guided catheterization also proved possible with passive catheter tracking. First-in-man MRI-guided cardiac catheter interventions were possible due to the development of MRI-compatible guidewires, but halted due to guidewire limitations.More recent developments in passive and active catheter tracking have led to improved visualization of catheters for MRI-guided catheterization. Improvements in hardware and software have also increased image quality and scanning times with better interactive tools for the operator in the MRI catheter suite to navigate through the anatomy as required in real time. This has expanded to MRI-guided electrophysiology studies and radiofrequency ablation in humans. Animal studies show promise for the utility of MRI-guided interventional catheterization. Ongoing investment and development of MRI-compatible guidewires will pave the way for MRI-guided diagnostic and interventional catheterization coming into the mainstream.
Collapse
|
5
|
Alipour A, Gokyar S, Algin O, Atalar E, Demir HV. An inductively coupled ultra-thin, flexible, and passive RF resonator for MRI marking and guiding purposes: Clinical feasibility. Magn Reson Med 2017; 80:361-370. [PMID: 29148092 DOI: 10.1002/mrm.26996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/17/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of this study is to develop a wireless, flexible, ultra-thin, and passive radiofrequency-based MRI resonant fiducial marker, and to validate its feasibility in a phantom model and several body regions. METHODS Standard microfabrication processing was used to fabricate the resonant marker. The proposed marker consists of two metal traces in the shape of a square with an edge length of 8 mm, with upper and lower traces connected to each other by a metalized via. A 3T MRI fiducial marking procedure was tested in phantom and ex vivo, and then the marker's performance was evaluated in an MRI experiment using humans. The radiofrequency safety was also tested using temperature sensors in the proximity of the resonator. RESULTS A flexible resonator with a thickness of 115 μm and a dimension of 8 × 8 mm was obtained. The experimental results in the phantom show that at low background flip angles (6-18°), the resonant marker enables precise and rapid visibility, with high marker-to-background contrast and signal-to-noise ratio improvement of greater than 10 in the vicinity of the marker. Temperature analysis showed a specific absorption ratio gain of 1.3. Clinical studies further showed a successful biopsy procedure using the fiducial marking functionality of our device. CONCLUSIONS The ultra-thin and flexible structure of this wireless flexible radiofrequency resonant marker offers effective and safe MR visualization with high feasibility for anatomic marking and guiding at various regions of the body. Magn Reson Med 80:361-370, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Akbar Alipour
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
| | - Sayim Gokyar
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
| | - Oktay Algin
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey.,Department of Radiology, Ankara Ataturk Training and Research Hospital, Ankara, Turkey
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey.,LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Mathematical and Physical Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
6
|
Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility. Sci Rep 2016; 6:24414. [PMID: 27090955 PMCID: PMC4836298 DOI: 10.1038/srep24414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
Abstract
In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments.
Collapse
|
7
|
Reiss S, Bitzer A, Bock M. An optical setup for electric field measurements in MRI with high spatial resolution. Phys Med Biol 2015; 60:4355-70. [PMID: 25984961 DOI: 10.1088/0031-9155/60/11/4355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Yao W, Schaeffter T, Seneviratne L, Althoefer K. Developing a Magnetic Resonance-Compatible Catheter for Cardiac Catheterization. J Med Device 2012. [DOI: 10.1115/1.4007281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is a means to guide cardiac interventions and provide excellent soft tissue contrast while avoiding radiation hazards. This paper investigates and evaluates a new Magnetic Resonance (MR)-compatible catheter for cardiac catheterization. Important mechanical properties of the catheter are measured and investigated; these include flexibility, pushability, and torquability. The mechanical performance of the MR-compatible and steerable catheter is benchmarked against three commercially-available clinical ablation catheters that are not MR-compatible. The MR-compatibility of the proposed catheter is also evaluated through an experimental study inside a 1.5 T MRI scanner. The new catheter is shown to have a mechanical performance comparable to that of existing catheters while being MR compatible.
Collapse
Affiliation(s)
- Wei Yao
- Research Associate Division of Engineering, King's College London, Strand, London WC2R 2LS, UK e-mail:
| | - Tobias Schaeffter
- Professor Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas's Hospital, London SE1 7EH, UK e-mail:
| | - Lakmal Seneviratne
- Professor Division of Engineering, King's College London, Strand, London WC2R 2LS, UK; Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi, United Arab Emirates e-mail:
| | - Kaspar Althoefer
- Professor Department of Informatics, King's College London, Strand, London WC2R 2LS, UK e-mail:
| |
Collapse
|
9
|
Reiter T, Gensler D, Ritter O, Weiss I, Geistert W, Kaufmann R, Hoffmeister S, Friedrich MT, Wintzheimer S, Düring M, Nordbeck P, Jakob PM, Ladd ME, Quick HH, Bauer WR. Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures. J Cardiovasc Magn Reson 2012; 14:12. [PMID: 22296883 PMCID: PMC3292926 DOI: 10.1186/1532-429x-14-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 02/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating. METHODS A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip. RESULTS A maximum temperature rise of 22.4°C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2°C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8°C. CONCLUSION Up to a maximum of 22.4°C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner.
Collapse
Affiliation(s)
- Theresa Reiter
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Daniel Gensler
- Department of Experimental Physics V, University of Wuerzburg, Wuerzburg, Germany
| | - Oliver Ritter
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | | - Stefan Wintzheimer
- Department of Experimental Physics V, University of Wuerzburg, Wuerzburg, Germany
| | - Markus Düring
- Department of Experimental Physics V, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Nordbeck
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Peter M Jakob
- Department of Experimental Physics V, University of Wuerzburg, Wuerzburg, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital, Essen, Essen, Germany
| | - Harald H Quick
- Institute of Medical Physics (IMP), University of Erlangen-Nuernberg, Erlangen, Germany
| | - Wolfgang R Bauer
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
10
|
Microstructure and mechanical properties of as-cast Zr-Nb alloys. Acta Biomater 2011; 7:4278-84. [PMID: 21843663 DOI: 10.1016/j.actbio.2011.07.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/20/2011] [Accepted: 07/24/2011] [Indexed: 11/20/2022]
Abstract
On the basis of the microstructures and mechanical properties of as-cast Zr-(0-24)Nb alloys the effects of phase constitution on the mechanical properties and magnetic susceptibility are discussed in order to develop Zr alloys for use in magnetic resonance imaging (MRI). The microstructures were evaluated using an X-ray diffractometer, an optical microscope, and a transmission electron microscope; the mechanical properties were evaluated by a tensile test. The α' phase was dominantly formed with less than 6 mass% Nb content. The ω phase was formed in Zr-(6-20)Nb alloys, but disappeared from Zr-22Nb. The β phase dominantly existed in Zr-(9-24)Nb alloys. The mechanical properties as well as the magnetic susceptibility of the Zr-Nb alloys varied depending on the phase constitution. The Zr-Nb alloys consisting of mainly α' phase showed high strength, moderate ductility, and a high Young's modulus, retaining low magnetic susceptibility. Zr-Nb alloys containing a larger volume of ω phase were found to be brittle and, thus, should be avoided, despite their low magnetic susceptibility. When the Zr-Nb alloys consisted primarily of β phase the effect of ω phase weakened the mechanical properties, thereby leading to an increase in ductility, even with an increase in magnetic susceptibility. The minimum value of Young's modulus was obtained for Zr-20Nb, because this composition was the phase boundary between the β and ω phases. However, the magnetic susceptibility of the alloy was half that of Ti-6Al-4V alloys. Zr-Nb alloys consisting of α' or β phase have excellent mechanical properties with low magnetic susceptibility and, thus, these alloys could be useful for medical devices used in MRI.
Collapse
|
11
|
Abstract
OBJECTIVE The purpose of this article is to review some of the basic principles of imaging and how metal-induced susceptibility artifacts originate in MR images. We will describe common ways to reduce or modify artifacts using readily available imaging techniques, and we will discuss some advanced methods to correct readout-direction and slice-direction artifacts. CONCLUSION The presence of metallic implants in MRI can cause substantial image artifacts, including signal loss, failure of fat suppression, geometric distortion, and bright pile-up artifacts. These cause large resonant frequency changes and failure of many MRI mechanisms. Careful parameter and pulse sequence selections can avoid or reduce artifacts, although more advanced imaging methods offer further imaging improvements.
Collapse
|
12
|
Settecase F, Hetts SW, Martin AJ, Roberts TPL, Bernhardt AF, Evans L, Malba V, Saeed M, Arenson RL, Kucharzyk W, Wilson MW. RF Heating of MRI-Assisted Catheter Steering Coils for Interventional MRI. Acad Radiol 2011; 18:277-85. [PMID: 21075019 PMCID: PMC3034801 DOI: 10.1016/j.acra.2010.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/07/2010] [Accepted: 09/17/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was too assess magnetic resonance imaging (MRI) radiofrequency (RF)-related heating of conductive wire coils used in magnetically steerable endovascular catheters. MATERIALS AND METHODS A three-axis microcoil was fabricated onto a 1.8Fr catheter tip. In vitro testing was performed on a 1.5-T MRI system using an agarose gel-filled vessel phantom, a transmit-receive body RF coil, a steady-state free precession pulse sequence, and a fluoroptic thermometry system. Temperature was measured without simulated blood flow at varying distances from the magnet isocenter and at varying flip angles. Additional experiments were performed with laser-lithographed single-axis microcoil-tipped microcatheters in air and in a saline bath with varied grounding of the microcoil wires. Preliminary in vivo evaluation of RF heating was performed in pigs at 1.5 T with coil-tipped catheters in various positions in the common carotid arteries with steady-state free precession pulse sequence on and off and under physiologic-flow and zero-flow conditions. RESULTS In tissue-mimicking agarose gel, RF heating resulted in a maximal temperature increase of 0.35°C after 15 minutes of imaging, 15 cm from the magnet isocenter. For a single-axis microcoil, maximal temperature increases were 0.73°C to 1.91°C in air and 0.45°C to 0.55°C in saline. In vivo, delayed contrast-enhanced MRI revealed no evidence of vascular injury, and histopathologic sections from the common carotid arteries confirmed the lack of vascular damage. CONCLUSIONS Microcatheter tip microcoils for endovascular catheter steering in MRI experience minimal RF heating under the conditions tested. These data provide the basis for further in vivo testing of this promising technology for endovascular interventional MRI.
Collapse
Affiliation(s)
- Fabio Settecase
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Steven W. Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Alastair J. Martin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Timothy P. L. Roberts
- Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Lee Evans
- Lawrence Livermore Research Laboratory, Livermore, CA, USA
| | - Vincent Malba
- Lawrence Livermore Research Laboratory, Livermore, CA, USA
| | - Maythem Saeed
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Ronald L. Arenson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Walter Kucharzyk
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Mark W. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Dumoulin CL, Mallozzi RP, Darrow RD, Schmidt EJ. Phase-field dithering for active catheter tracking. Magn Reson Med 2010; 63:1398-403. [PMID: 20432311 DOI: 10.1002/mrm.22297] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A strategy to increase the robustness of active MR tracking of microcoils in low signal-to-noise ratio conditions was developed and tested. The method employs dephasing magnetic field gradient pulses that are applied orthogonal to the frequency-encoding gradient pulse used in conventional point-source MR tracking. In subsequent acquisitions, the orthogonal dephasing gradient pulse is rotated while maintaining a perpendicular orientation with respect to the frequency-encoding gradient. The effect of the dephasing gradient is to apply a spatially dependent phase shift in directions perpendicular to the frequency-encoding gradient. Since the desired MR signal for robust MR tracking comes from the small volume of nuclear spins near the small detection coil, the desired signal is not dramatically altered by the dephasing gradient. Undesired MR signals arising from larger volumes (e.g., due to coupling with the body coil or surface coils), on the other hand, are dephased and reduced in signal intensity. Since the approach requires no a priori knowledge of the microcoil orientation with respect to the main magnetic field, data from several orthogonal dephasing gradients are acquired and analyzed in real time. One of several selection algorithms is employed to identify the "best" data for use in the coil localization algorithm. This approach was tested in flow phantoms and animal models, with several multiplexing schemes, including the Hadamard and zero-phase reference approaches. It was found to provide improved MR tracking of untuned microcoils. It also dramatically improved MR tracking robustness in low signal-to-noise-ratio conditions and permitted tracking of microcoils that were inductively coupled to the body coil.
Collapse
Affiliation(s)
- Charles L Dumoulin
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | |
Collapse
|
14
|
Kos S, Huegli R, Hofmann E, Quick HH, Kuehl H, Aker S, Kaiser GM, Borm PJA, Jacob AL, Bilecen D. MR-compatible polyetheretherketone-based guide wire assisting MR-guided stenting of iliac and supraaortic arteries in swine: Feasibility study. MINIM INVASIV THER 2009; 18:181-8. [DOI: 10.1080/13645700902921971] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Feasibility of Real-Time Magnetic Resonance–Guided Angioplasty and Stenting of Renal Arteries in Vitro and in Swine, Using a New Polyetheretherketone-Based Magnetic Resonance–Compatible Guidewire. Invest Radiol 2009; 44:234-41. [DOI: 10.1097/rli.0b013e31819b00f1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Ratnayaka K, Faranesh AZ, Guttman MA, Kocaturk O, Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance: still tantalizing. J Cardiovasc Magn Reson 2008; 10:62. [PMID: 19114017 PMCID: PMC2637847 DOI: 10.1186/1532-429x-10-62] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/29/2008] [Indexed: 12/30/2022] Open
Abstract
The often touted advantages of MR guidance remain largely unrealized for cardiovascular interventional procedures in patients. Many procedures have been simulated in animal models. We argue these opportunities for clinical interventional MR will be met in the near future. This paper reviews technical and clinical considerations and offers advice on how to implement a clinical-grade interventional cardiovascular MR (iCMR) laboratory. We caution that this reflects our personal view of the "state of the art."
Collapse
Affiliation(s)
- Kanishka Ratnayaka
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cardiology Division, Children's National Medical Center, Washington, DC, USA
| | - Anthony Z Faranesh
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A Guttman
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ozgur Kocaturk
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina E Saikus
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lederman
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Moche M, Trampel R, Kahn T, Busse H. Navigation concepts for MR image-guided interventions. J Magn Reson Imaging 2008; 27:276-91. [DOI: 10.1002/jmri.21262] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
18
|
Kos S, Huegli R, Bongartz GM, Jacob AL, Bilecen D. MR-guided endovascular interventions: a comprehensive review on techniques and applications. Eur Radiol 2007; 18:645-57. [PMID: 18071710 DOI: 10.1007/s00330-007-0818-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 10/01/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
The magnetic resonance (MR) guidance of endovascular interventions is probably one of the greatest challenges of clinical MR research. MR angiography is not only an imaging tool for the vasculature but can also simultaneously depict high tissue contrast, including the differentiation of the vascular wall and perivascular tissues, as well as vascular function. Several hurdles had to be overcome to allow MR guidance for endovascular interventions. MR hardware and sequence design had to be developed to achieve acceptable patient access and to allow real-time or near real-time imaging. The development of interventional devices, both applicable and safe for MR imaging (MRI), was also mandatory. The subject of this review is to summarize the latest developments in real-time MRI hardware, MRI, visualization tools, interventional devices, endovascular tracking techniques, actual applications and safety issues.
Collapse
Affiliation(s)
- Sebastian Kos
- Institute of Radiology, Division of Interventional Radiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Raman VK, Lederman RJ. Advances in interventional cardiovascular MRI. CURRENT CARDIOVASCULAR RISK REPORTS 2007. [DOI: 10.1007/s12170-007-0050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Magnusson P, Johansson E, Månsson S, Petersson JS, Chai CM, Hansson G, Axelsson O, Golman K. Passive catheter tracking during interventional MRI using hyperpolarized 13C. Magn Reson Med 2007; 57:1140-7. [PMID: 17534914 DOI: 10.1002/mrm.21239] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interventional procedures in MRI can be performed preclinically using active or passive catheter-tracking methods. A novel passive nonproton technique is suggested that uses a catheter filled with a hyperpolarized (13)C contrast agent. A prototype three-lumen catheter was built with two closed lumens containing a flowing hyperpolarized (13)C contrast agent. Entire-length (13)C catheter projection visualization could be performed in vivo with a catheter SNR of approximately 80, one dual projection frame per approximately 700 ms, and an in-plane resolution of 2 x 2 mm(2) while traveling through the aorta of a pig. The traveling path of the (13)C catheter was visualized after back-projection catheter reconstruction and after image fusion with an anatomical offline proton road map. Catheter length visualization was aided by an oblique planar visualization mode. The high catheter signal demonstrated, together with the entire catheter length visualization and high surrounding soft-tissue contrast, warrants further development into a real-time technique.
Collapse
Affiliation(s)
- Peter Magnusson
- Amersham Health R&D AB (part of GE Healthcare), Medeon, Malmö, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Jacquier A, Higgins CB, Saeed M. MR imaging in assessing cardiovascular interventions and myocardial injury. CONTRAST MEDIA & MOLECULAR IMAGING 2007; 2:1-15. [PMID: 17326039 DOI: 10.1002/cmmi.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Performing an MR-guided endovascular intervention requires (1) real-time tracking and guidance of catheters/guide wires to the target, (2) high-resolution images of the target and its surroundings in order to define the extent of the target, (3) performing a therapeutic procedure (delivery of stent or injection of gene or cells) and (4) evaluating the outcome of the therapeutic procedure. The combination of X-ray and MR imaging (XMR) in a single suite was designed for new interventional procedures. MR contrast media can be used to delineate myocardial infarcts and microvascular obstruction, thereby defining the target for local delivery of therapeutic agents under MR-guidance. Iron particles, or gadolinium- or dysprosium-chelates are mixed with the soluble injectates or stem cells in order to track intramyocardial delivery and distribution. Preliminary results show that genes encoded for vascular endothelial and fibroblast growth factor and cells are effective in promoting angiogenesis, arteriogenesis, perfusion and LV function. Angiogenic growth factors, genes and cells administered under MR-guided minimally invasive catheter-based procedures will open up new avenues in treating end-stage ischemic heart disease. The optimum dose of the therapeutic agents, delivery devices and real-time imaging techniques to guide the delivery are currently the subject of ongoing research. The aim of this review is to (1) provide an updated review of experiences using MR imaging to guide transcatheter therapy, (2) address the potential of cardiovascular magnetic resonance (MR) imaging and MR contrast media in assessing myocardial injury at a molecular level and labeling cells and (3) illustrate the applicability of the non-invasive MR imaging in the field of angiogenic therapies through recent clinical and experimental publications.
Collapse
Affiliation(s)
- Alexis Jacquier
- Department of Radiology, University of California San Francisco, CA 94134-0628, USA
| | | | | |
Collapse
|
22
|
Busse H, Trampel R, Gründer W, Moche M, Kahn T. Method for automatic localization of MR-visible markers using morphological image processing and conventional pulse sequences: Feasibility for image-guided procedures. J Magn Reson Imaging 2007; 26:1087-96. [PMID: 17896386 DOI: 10.1002/jmri.21129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To evaluate the feasibility and accuracy of an automated method to determine the 3D position of MR-visible markers. MATERIALS AND METHODS Inductively coupled RF coils were imaged in a whole-body 1.5T scanner using the body coil and two conventional gradient echo sequences (FLASH and TrueFISP) and large imaging volumes up to (300 mm(3)). To minimize background signals, a flip angle of approximately 1 degrees was used. Morphological 2D image processing in orthogonal scan planes was used to determine the 3D positions of a configuration of three fiducial markers (FMC). The accuracies of the marker positions and of the orientation of the plane defined by the FMC were evaluated at various distances r(M) from the isocenter. RESULTS Fiducial marker detection with conventional equipment (pulse sequences, imaging coils) was very reliable and highly reproducible over a wide range of experimental conditions. For r(M) </= 100 mm, the estimated maximum errors in 3D position and angular orientation were 1.7 mm and 0.33 degrees , respectively. For r(M) </= 175 mm, the respective values were 2.9 mm and 0.44 degrees . CONCLUSIONS Detection and localization of MR-visible markers by morphological image processing is feasible, simple, and very accurate. In combination with safe wireless markers, the method is found to be useful for image-guided procedures.
Collapse
Affiliation(s)
- Harald Busse
- Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Because of its superior soft tissue imaging, MRI has become a valuable diagnostic tool in cardiovascular disease. These strengths make MRI attractive to guide therapeutic catheter-based procedures, both conventional and novel. We review how to configure an interventional MRI suite, how MRI catheter devices differ from conventional radiographic catheters, and finally developments in preclinical and investigational clinical applications.
Collapse
Affiliation(s)
- Venkatesh K Raman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1538, USA
| | | |
Collapse
|
24
|
Shmatukha AV, Bakker CJG. MRI temperature mapping during thermal balloon angioplasty. Phys Med Biol 2006; 51:N163-71. [PMID: 16585838 DOI: 10.1088/0031-9155/51/8/n04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Knowledge on the thermal dose delivered during thermal balloon angioplasty (TBA) is desirable to understand why TBA's outcome varies widely among patients and why it is subject to high restenosis rates. In its conventional implementation, TBA involves injection of a heated medium into a balloon positioned within a stenotic blood vessel. The medium injection causes flow, motion and susceptibility-redistribution artefacts that are devastating to the proton resonance frequency shift (PRFS) technique of MRI temperature mapping. Here, we propose to separate in time medium injection and heating by first inflating a balloon with a medium at an initial temperature, and then by heating the medium up using laser light. The separation is shown to eliminate all the mentioned artefacts and to enable real-time MRI temperature mapping using the PRFS technique. Accurate and reliable temperature maps were acquired in a TBA balloon itself and in the surrounding phantom tissue during heat application.
Collapse
Affiliation(s)
- Andriy V Shmatukha
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | |
Collapse
|
25
|
Draper JN, Lauzon ML, Frayne R. Passive catheter visualization in magnetic resonance–guided endovascular therapy using multicycle projection dephasers. J Magn Reson Imaging 2006; 24:160-7. [PMID: 16758467 DOI: 10.1002/jmri.20619] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To improve upon the conventional projection dephaser (PD) method of background suppression and evaluate the use of multicycle projection dephasers to improve catheter conspicuity in background-suppressed MR images. MATERIALS AND METHODS Passive visualization of endovascular catheters in MR images is compared using two background suppression techniques: 1) the conventional PD method and 2) the multicycle PD method. Contrast-filled 4-French (1.3 mm) catheters were imaged in homogeneous and heterogeneous phantoms, and in the common carotid artery of a canine using a modified spoiled gradient echo imaging sequence. We used catheter-to-background contrast (ranging from -100% to 100%) as the metric to compare background suppression techniques. RESULTS In the homogeneous and heterogeneous phantoms, the contrast was -6.9% (catheter darker than background) and 15.0%, respectively, using the conventional PD method, and 50.6% and 44.0%, respectively, using the multicycle PD method. In the canine carotid artery, the contrast was -3.1% using the conventional PD method and 53.0% using the multicycle PD method. CONCLUSION This work shows that multicycle projection dephasers improve catheter conspicuity over the conventional PD method. The multicycle PD method has potential for use in guiding endovascular procedures.
Collapse
Affiliation(s)
- Jonathan N Draper
- Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1538, USA.
| |
Collapse
|
27
|
Abstract
Magnetic resonance imaging (MRI), which provides superior soft-tissue imaging and no known harmful effects, has the potential as an alternative modality to guide various medical interventions. This review will focus on MR-guided endovascular interventions and present its current state and future outlook. In the first technical part, enabling technologies such as developments in fast imaging, catheter devices, and visualization techniques are examined. This is followed by a clinical survey that includes proof-of-concept procedures in animals and initial experience in human subjects. In preclinical experiments, MRI has already proven to be valuable. For example, MRI has been used to guide and track targeted cell delivery into or around myocardial infarctions, to guide atrial septal puncture, and to guide the connection of portal and systemic venous circulations. Several investigational MR-guided procedures have already been reported in patients, such as MR-guided cardiac catheterization, invasive imaging of peripheral artery atheromata, selective intraarterial MR angiography, and preliminary angioplasty and stent placement. In addition, MR-assisted transjugular intrahepatic portosystemic shunt procedures in patients have been shown in a novel hybrid double-doughnut x-ray/MRI system. Numerous additional investigational human MR-guided endovascular procedures are now underway in several medical centers around the world. There are also significant hurdles: availability of clinical-grade devices, device-related safety issues, challenges to patient monitoring, and acoustic noise during imaging. The potential of endovascular interventional MRI is great because as a single modality, it combines 3-dimensional anatomic imaging, device localization, hemodynamics, tissue composition, and function.
Collapse
Affiliation(s)
- Cengizhan Ozturk
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
28
|
Atalar E. Radiofrequency safety for interventional MRI procedures. Acad Radiol 2005; 12:1149-57. [PMID: 16112515 DOI: 10.1016/j.acra.2005.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 06/08/2005] [Accepted: 06/08/2005] [Indexed: 11/30/2022]
|
29
|
McVeigh ER, Guttman MA, Kellman P, Raval AN, Lederman RJ. Real-time, Interactive MRI for cardiovascular interventions. Acad Radiol 2005; 12:1121-7. [PMID: 16112512 PMCID: PMC2169205 DOI: 10.1016/j.acra.2005.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 05/29/2005] [Accepted: 02/15/2005] [Indexed: 11/25/2022]
Affiliation(s)
- Elliot R McVeigh
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room B1D416, Bethesda, MD 20892-106, USA.
| | | | | | | | | |
Collapse
|
30
|
Månsson S, Johansson E, Magnusson P, Chai CM, Hansson G, Petersson JS, Ståhlberg F, Golman K. 13C imaging—a new diagnostic platform. Eur Radiol 2005; 16:57-67. [PMID: 16402256 DOI: 10.1007/s00330-005-2806-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 04/14/2005] [Accepted: 05/03/2005] [Indexed: 11/29/2022]
Abstract
The evolution of magnetic resonance imaging (MRI) has been astounding since the early 1980s, and a broad range of applications has emerged. To date, clinical imaging of nuclei other than protons has been precluded for reasons of sensitivity. However, with the recent development of hyperpolarization techniques, the signal from a given number of nuclei can be increased as much as 100,000 times, sufficient to enable imaging of nonproton nuclei. Technically, imaging of hyperpolarized nuclei offers several unique properties, such as complete lack of background signal and possibility for local and permanent destruction of the signal by means of radio frequency (RF) pulses. These properties allow for improved as well as new techniques within several application areas. Diagnostically, the injected compounds can visualize information about flow, perfusion, excretory function, and metabolic status. In this review article, we explain the concept of hyperpolarization and the techniques to hyperpolarize 13C. An overview of results obtained within angiography, perfusion, and catheter tracking is given, together with a discussion of the particular advantages and limitations. Finally, possible future directions of hyperpolarized 13C MRI are pointed out.
Collapse
Affiliation(s)
- Sven Månsson
- Department of Experimental Research, Malmö University Hospital, 205 02, Malmö, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Quick HH, Zenge MO, Kuehl H, Kaiser G, Aker S, Massing S, Bosk S, Ladd ME. Interventional magnetic resonance angiography with no strings attached: wireless active catheter visualization. Magn Reson Med 2005; 53:446-55. [PMID: 15678524 DOI: 10.1002/mrm.20347] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Active instrument visualization strategies for interventional MR angiography (MRA) require vascular instruments to be equipped with some type of radiofrequency (RF) coil or dipole RF antenna for MR signal detection. Such visualization strategies traditionally necessitate a connection to the scanner with either coaxial cable or laser fibers. In order to eliminate any wire connection, RF resonators that inductively couple their signal to MR surface coils were implemented into catheters to enable wireless active instrument visualization. Instrument background to contrast-to-noise ratio was systematically investigated as a function of the excitation flip angle. Signal coupling between the catheter RF coil and surface RF coils was evaluated qualitatively and quantitatively as a function of the catheter position and orientation with regard to the static magnetic field B0 and to the surface coils. In vivo evaluation of the instruments was performed in interventional MRA procedures on five pigs under MR guidance. Cartesian and projection reconstruction TrueFISP imaging enabled simultaneous visualization of the instruments and vascular morphology in real time. The implementation of RF resonators enabled robust visualization of the catheter curvature to the very tip. Additionally, the active visualization strategy does not require any wire connection to the scanner and thus does not hamper the interventionalist during the course of an intervention.
Collapse
Affiliation(s)
- Harald H Quick
- Department of Diagnostic and Interventional Radiology, University Hospital Essen, MR-Center, Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Feng L, Dumoulin CL, Dashnaw S, Darrow RD, Guhde R, Delapaz RL, Bishop PL, Pile-Spellman J. Transfemoral catheterization of carotid arteries with real-time MR imaging guidance in pigs. Radiology 2004; 234:551-7. [PMID: 15591433 DOI: 10.1148/radiol.2341031951] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
All procedures and protocols were approved by the institutional animal care and use committee of Columbia University. To determine whether transfemoral catheterization of the carotid arteries can be performed entirely with real-time magnetic resonance (MR) imaging guidance, the authors catheterized the carotid arteries in six domestic pigs by using active-tracking catheters and guidewires and MR tracking software created for neurovascular procedures. The carotid arteries were successfully catheterized 24 times, on average within 5 minutes after insertion of the catheter into the femoral artery. Results demonstrated the feasibility of performing transfemoral catheterization of the carotid arteries with active MR tracking devices in a conventional MR imaging unit.
Collapse
Affiliation(s)
- Lei Feng
- Department of Radiology, Columbia University, 177 Fort Washington Ave, MHB 8SK, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Buecker A, Spuentrup E, Schmitz-Rode T, Kinzel S, Pfeffer J, Hohl C, van Vaals JJ, Günther RW. Use of a Nonmetallic Guide Wire for Magnetic Resonance-Guided Coronary Artery Catheterization. Invest Radiol 2004; 39:656-60. [PMID: 15486525 DOI: 10.1097/00004424-200411000-00002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES Metallic guide wires can be subject to substantial heating when used in the magnetic resonance (MR) environment. Therefore, animal experiments were performed to test the feasibility of a non-metallic and MR-safe guide wire with passive markers for catheterization of coronary arteries under MR guidance. MATERIALS AND METHODS Self-made guide wires consisting of a resin-microparticle compound covered by polytetrafluoroethylene were used to catheterize both coronary arteries of swine together with a non-braided catheter. Time needed for catheterization was recorded. RESULTS MR-guided coronary artery catheterization with passive visualization of a self-made non-metallic guide wire is possible. In average 141 seconds (SD 68) were needed to manipulate the guide wire together with a catheter from the carotid artery into the left or right coronary artery ostium. CONCLUSION Standard nitinol guide wires have to be considered unsafe for MR-guided interventions due to possible heating of electrical conducting structures in the MR environment. Passive visualization techniques allow MR-guided catheterization of small arteries like coronaries. However, there is the substantial disadvantage of obscuring the underlying anatomy of small vessels by the passive markers needed for real-time MR guidance.
Collapse
Affiliation(s)
- Arno Buecker
- Clinic of Diagnostic Radiology, University Hospital, Aachen, Germany. buecker@ rad.rwth-aachen.de
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hillenbrand CM, Elgort DR, Wong EY, Reykowski A, Wacker FK, Lewin JS, Duerk JL. Active device tracking and high-resolution intravascular MRI using a novel catheter-based, opposed-solenoid phased array coil. Magn Reson Med 2004; 51:668-75. [PMID: 15065238 DOI: 10.1002/mrm.20050] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel two-element, catheter-based phased array coil was designed and built for both active MR device tracking and high-resolution vessel wall imaging. The device consists of two independent solenoid coils that are wound in opposite directions, connected to separate receive channels, and mounted collinearly on an angiographic catheter. The elements were used independently or together for tracking or imaging applications, respectively. The array's dual functionality was tested on a clinical 1.5 T MRI scanner in vitro, in vivo, and in situ. During real-time catheter tracking, each element gave rise to a high-amplitude peak in the respective projection data, which enabled reliable and robust device tracking as well as automated slice positioning. In vivo microimaging with 240 microm in-plane resolution was achieved in 9 s using the device and TrueFISP imaging. Therefore, a single device was successfully implemented that met the combined requirements of intravascular device tracking and imaging.
Collapse
Affiliation(s)
- Claudia M Hillenbrand
- Department of Radiology, University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Minimally invasive interventional radiological procedures, such as balloon angioplasty, stent placement or coiling of aneurysms, play an increasingly important role in the treatment of patients suffering from vascular disease. The non-destructive nature of magnetic resonance imaging (MRI), its ability to combine the acquisition of high quality anatomical images and functional information, such as blood flow velocities, perfusion and diffusion, together with its inherent three dimensionality and tomographic imaging capacities, have been advocated as advantages of using the MRI technique for guidance of endovascular radiological interventions. Within this light, endovascular interventional MRI has emerged as an interesting and promising new branch of interventional radiology. In this review article, the authors will give an overview of the most important issues related to this field. In this context, we will focus on the prerequisites for endovascular interventional MRI to come to maturity. In particular, the various approaches for device tracking that were proposed will be discussed and categorized. Furthermore, dedicated MRI systems, safety and compatibility issues and promising applications that could become clinical practice in the future will be discussed.
Collapse
Affiliation(s)
- L W Bartels
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room E.01.335, 3584 CX Utrecht, The Netherlands.
| | | |
Collapse
|
36
|
Wentzel JJ, Aguiar SH, Fayad ZA. Vascular MRI in the diagnosis and therapy of the high risk atherosclerotic plaque. J Interv Cardiol 2003; 16:129-42. [PMID: 12768916 DOI: 10.1046/j.1540-8183.2003.08024.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of a high risk plaque is known as the primary cause of cardiovascular events. Characterization of arterial wall components has become an essential adjunct in the identification of patients with plaques prone to rupture. Magnetic Resonance Imaging (MRI) has been revealed as one of the noninvasive tools possibly capable of identifying and characterizing high risk atherosclerotic plaque. MRI may facilitate diagnosis, and guide and serially monitor interventional and pharmacological treatment of atherosclerotic disease. In addition, it permits the simultaneous assessment of the anatomy, morphology, and hemodynamics for the study of flow-induced atherogenesis. It possibly will identify asymptomatic patients with subclinical atherosclerosis. This has potential significance for the improvement of strategies in primary and secondary prevention.
Collapse
Affiliation(s)
- Jolanda J Wentzel
- Zena and Michael A. Wiener Cardiovascular Institute, Imaging Science Laboratories, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
37
|
Omary RA, Green JD, Fang WS, Viohl I, Finn JP, Li D. Use of internal coils for independent and direct MR imaging-guided endovascular device tracking. J Vasc Interv Radiol 2003; 14:247-54. [PMID: 12582194 DOI: 10.1097/01.rvi.0000058328.82956.15] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To test the hypotheses that a single internal guide wire coil (i) permits independent and direct depiction of guide wires and catheters and (ii) improves catheter-tracking accuracy and depiction compared to external receiver coils. MATERIALS AND METHODS Standard 5-6-F angiographic catheters were filled with dilute 4% gadolinium chelate. A single 0.030-inch-diameter internal guide wire coil was placed inside the catheter. True fast imaging with steady-state precession was used to directly visualize the guide wire. Inversion recovery-prepared fast low-angle shot technique was used to track catheters over a thick slice. In phantom experiments, we compared catheter signal-to-noise ratios (SNRs) with the internal coil and a phased-array surface coil with use of the Wilcoxon signed-rank test. Tip-tracking accuracy was assessed with use of linear regression. In pigs (n = 7), catheters and guide wires were independently tracked in real time. RESULTS In phantoms, catheter SNR with the internal coil (12.0) was significantly greater than that with the surface coil (4.0; P =.001). Tip-tracking accuracy was also improved with use of the internal coil (R(2) = 0.94 vs 0.50). In swine vasculature, catheters and guide wires could be directly and independently tracked at 1.7-2.0 frames per second. Catheters were clearly visualized with use of the internal coil, with a typical catheter background contrast-to-noise ratio of 6.6. Catheters were not visible with use of the external coil because of the small catheter size compared to the slice thickness. CONCLUSION Internal guide wire coils permit independent and direct depiction of guide wires and catheters in vivo for MR imaging-guided endovascular interventions. They also improve catheter tracking accuracy and depiction compared to external coils.
Collapse
Affiliation(s)
- Reed A Omary
- Department of Radiology, Northwestern University Medical School, 676 North St. Clair, Suite 800, Chicago, Illinois 60611, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Quick HH, Kuehl H, Kaiser G, Hornscheidt D, Mikolajczyk KP, Aker S, Debatin JF, Ladd ME. Interventional MRA using actively visualized catheters, TrueFISP, and real-time image fusion. Magn Reson Med 2003; 49:129-37. [PMID: 12509828 DOI: 10.1002/mrm.10334] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An integrated system for performing interventional magnetic resonance angiography (MRA) with actively visualized instruments and real-time image fusion was implemented on a 1.5 T scanner. True fast imaging with steady precession (TrueFISP) imaging provided high acquisition speed paired with high signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for the simultaneous visualization of active instruments and arterial morphology. The system enabled simultaneous image reconstruction and image postprocessing of multiple receiver channels, with subsequent image fusion display in real time. Optional interleaved image acquisition in two planes provided additional important information for biplanar instrument guidance. Various vascular interventions, including selective catheterization and subsequent selective MRA of the abdominal aorta, renal arteries, superior mesenteric artery (SMA), hepatic artery, and aortic arch, were performed on 10 pigs under MR guidance. In terms of instrument contrast, image acquisition, reconstruction, and fusion speed, the setup represents a powerful platform for performing interventional MRA procedures.
Collapse
Affiliation(s)
- Harald H Quick
- Department of Diagnostic and Interventional Radiology, University Hospital Essen, Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kahn T, Schulz T, Moche M, Prothmann S, Schneider JP. Klinischer Einsatz der interventionellen MRT (iMRT). Z Med Phys 2003; 13:151-6. [PMID: 14562536 DOI: 10.1078/0939-3889-00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The integration of diagnostic and therapeutic procedures by MRI is based on the combination of excellent morphologic and functional imaging. The spectrum of MR-guided interventions includes biopsies, thermal ablation procedures, vascular applications, and intraoperative MRI. In all these applications, different scientific groups have obtained convincing results in basic developments as well as in clinical use. Interventional MRI (iMRI) is expected to attain an important role in interventional radiology, minimal invasive therapy, and monitoring of surgical procedures.
Collapse
Affiliation(s)
- Thomas Kahn
- Klinik und Poliklinik für Diagnostische Radiologie, Universität Leipzig
| | | | | | | | | |
Collapse
|
40
|
Yeung CJ, Susil RC, Atalar E. RF heating due to conductive wires during MRI depends on the phase distribution of the transmit field. Magn Reson Med 2002; 48:1096-8. [PMID: 12465125 DOI: 10.1002/mrm.10310] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In many studies concerning wire heating during MR imaging, a "resonant wire length" that maximizes RF heating is determined. This may lead to the nonintuitive conclusion that adding more wire, so as to avoid this resonant length, will actually improve heating safety. Through a theoretical analysis using the method of moments, we show that this behavior depends on the phase distribution of the RF transmit field. If the RF transmit field has linear phase, with slope equal to the real part of the wavenumber in the tissue, long wires always heat more than short wires. In order to characterize the intrinsic safety of a device without reference to a specific body coil design, this maximum-tip heating phase distribution must be considered. Finally, adjusting the phase distribution of the electric field generated by an RF transmit coil may lead to an "implant-friendly" coil design.
Collapse
Affiliation(s)
- Christopher J Yeung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
41
|
Quick HH, Kuehl H, Kaiser G, Bosk S, Debatin JF, Ladd ME. Inductively coupled stent antennas in MRI. Magn Reson Med 2002; 48:781-90. [PMID: 12417992 DOI: 10.1002/mrm.10269] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of intimal hyperplasia following stent deployment can lead to narrowing or even occlusion of the stent lumen. The underlying mechanisms leading to neointimal proliferation within stents remain largely unknown. Long-term evaluation of stent patency requires a noninvasive means for assessing the stent lumen. MR angiography (MRA) has shown potential to provide noninvasive assessment of the vascular system. However, a detailed assessment of the stent lumen with MRI is often hampered by material-dependent susceptibility artifacts, as well as by radiofrequency (RF) eddy currents generated inside the electrically conducting stent mesh. In this study, stent prototypes were designed to act as active resonant structures at the Larmor frequency of the MR system. Employing the principle of inductive coupling, the B(1) fields of the stents were coupled to that of an outside surface coil. The stents thus acted as local RF signal amplifiers. Various stent designs were investigated regarding their coupling to an external coil, signal homogeneity, and suitability for mechanical expansion for implantation purposes. The dependency of flip angle amplification on the quality factor Q of the stents was systematically investigated. Phantom experiments revealed signal amplification in all stent prototypes. Signal enhancement inside and close to the surface of the stents enabled their localization with high contrast in MR images. In vivo imaging experiments in the iliac, renal, and splenic arteries of two pigs confirmed the in vitro findings. Wireless active visualization of stents allows for detailed analysis of the stent lumen with high contrast and spatial resolution. The proposed method could thus provide a powerful diagnostic means for the noninvasive long-term follow-up of stent patency, thereby enhancing our understanding of the mechanisms of restenosis.
Collapse
Affiliation(s)
- Harald H Quick
- MR Center, Department of Diagnostic Radiology, University Hospital Essen, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Pictet J, Meuli R, Wicky S, van der Klink JJ. Radiofrequency heating effects around resonant lengths of wire in MRI. Phys Med Biol 2002; 47:2973-85. [PMID: 12222860 DOI: 10.1088/0031-9155/47/16/312] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several recent reports agree that the potentially dangerous heating around extended wires or coaxial cables inside the bodycoil of a magnetic resonance imager is related to resonant effects. No quantitative description of this idea has been given so far. We analyse a simplified situation, where a straight metallic wire is completely surrounded by a large volume of homogeneous dielectric with a small conductivity. If it has the correct length, the wire acts as a receiving-and-retransmission antenna, changing the axial symmetry of the incoming electric field into a radially outgoing electric field near the wire ends. The latter field points into the conducting surroundings, causing dissipation. Some simple experiments on geometries related to this theoretical model provide support to the main conclusions. These suggest that under actual imaging conditions resonant effects might be avoided by choosing a wire length of about 2 m. However, more experimental work remains to be done to validate this suggestion.
Collapse
Affiliation(s)
- Jacqueline Pictet
- Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | | | | | | |
Collapse
|
43
|
Green JD, Omary RA, Finn JP, Tang R, Li Y, Carr J, Li D. Passive catheter tracking using MRI: comparison of conventional and magnetization-prepared FLASH. J Magn Reson Imaging 2002; 16:104-9. [PMID: 12112510 DOI: 10.1002/jmri.10132] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To compare a magnetization-prepared gradient-echo (GRE) sequence with a conventional GRE sequence for visualizing contrast agent-filled catheters. MATERIALS AND METHODS Passive visualization of endovascular catheters using MRI was compared between two imaging sequences: 1) inversion recovery (IR)-fast low angle shot (FLASH), and 2) conventional FLASH. Two-dimensional projection images of the catheters filled with 4% diluted contrast agent in a phantom and the aorta of swine were obtained with each sequence with a temporal resolution of two frames per second. We compared background suppression and catheter visibility using the catheter-to-background signal ratio and the ratings of two radiologists. RESULTS In the phantom, IR-FLASH allowed for a 200% increase in catheter-to-background ratio (p < 0.01) and improved depiction of catheters over conventional FLASH. In swine, the IR-FLASH images showed a statistically significant improvement of 80% (p < 0.001) over conventional FLASH in all comparisons of the catheter-to-background signal ratio, and an improvement of 160% (p < 0.05) in comparison with the radiologists' observations. CONCLUSION This study shows that IR-FLASH is a better technique for passive tracking of contrast agent-filled catheters than conventional FLASH.
Collapse
Affiliation(s)
- Jordin D Green
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kandarpa K. MR Guidance for Interventions. J Vasc Interv Radiol 2002. [DOI: 10.1016/s1051-0443(02)70071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
45
|
Yeung CJ, Susil RC, Atalar E. RF safety of wires in interventional MRI: using a safety index. Magn Reson Med 2002; 47:187-93. [PMID: 11754458 DOI: 10.1002/mrm.10037] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the rapid growth of interventional MRI, radiofrequency (RF) heating at the tips of guidewires, catheters, and other wire-shaped devices has become an important safety issue. Previous studies have identified some of the variables that affect the relative magnitude of this heating but none could predict the absolute amount of heating to formulate safety margins. This study presents the first theoretical model of wire tip heating that can accurately predict its absolute value, assuming a straight wire, a homogeneous RF coil, and a wire that does not extend out of the tissue. The local specific absorption rate (SAR) amplification from induced currents on insulated and bare wires was calculated using the method of moments. This SAR gain was combined with a semianalytic solution to the bioheat transfer equation to generate a safety index. The safety index ( degrees C/(W/kg)) is a measure of the in vivo temperature change that can occur with the wire in place, normalized to the SAR of the pulse sequence. This index can be used to set limits on the spatial peak SAR of pulse sequences that are used with the interventional wire. For the case of a straight resonant wire in a tissue with very low perfusion, only about 100 mW/kg/ degrees C spatial peak SAR may be used at 1.5 T. But for < or =10-cm wires with an insulation thickness > or =30% of the wire radius that are placed in well-perfused tissues, normal operating conditions of 4 W/kg spatial peak SAR are possible at 1.5 T. Further model development to include the influence of inhomogeneous RF, curved wires, and wires that extend out of the sample are required to generate safety indices that are applicable to common clinical situations. We propose a simple way to ensure safety when using an interventional wire: set a limit on the SAR of allowable pulse sequences that is a factor of a safety index below the tolerable temperature increase.
Collapse
Affiliation(s)
- Christopher J Yeung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-0845, USA
| | | | | |
Collapse
|
46
|
Abstract
Current safety regulations for local radiofrequency (rf) heating, developed for externally positioned rf coils, may not be suitable for internal rf coils that are being increasingly used in interventional MRI. This work presents a two-step model for rf heating in an interventional MRI setting: (1) the spatial distribution of power in the sample from the rf pulse (Maxwell's equations); and (2) the transformation of that power to temperature change according to thermal conduction and tissue perfusion (tissue bioheat equation). The tissue bioheat equation is approximated as a linear, shift-invariant system in the case of local rf heating and is fully characterized by its Green's function. Expected temperature distributions are calculated by convolving (averaging) transmit coil specific absorption rate (SAR) distributions with the Green's function. When the input SAR distribution is relatively slowly varying in space, as is the case with excitation by external rf coils, the choice of averaging methods makes virtually no difference on the expected heating as measured by temperature change (deltaT). However, for highly localized SAR distributions, such as those encountered with internal coils in interventional MRI, the Green's function method predicts heating that is significantly different from the averaging method in current regulations. In our opinion, the Green's function method is a better predictor since it is based on a physiological model. The Green's function also elicits a time constant and scaling factor between SAR and deltaT that are both functions of the tissue perfusion rate. This emphasizes the critical importance of perfusion in the heating model. The assumptions made in this model are only valid for local rf heating and should not be applied to whole body heating.
Collapse
Affiliation(s)
- C J Yeung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
47
|
Manke C, Nitz WR, Djavidani B, Strotzer M, Lenhart M, Völk M, Feuerbach S, Link J. MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology 2001; 219:527-34. [PMID: 11323483 DOI: 10.1148/radiology.219.2.r01ma03527] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To assess the feasibility of magnetic resonance (MR) imaging-guided stent placement in iliac arterial stenoses. MATERIALS AND METHODS Thirteen patients with 14 iliac arterial stenoses were examined prospectively. Angioplasty was performed through a femoral sheath by using a conventional 1.5-T MR imaging system. Stents and catheters were visualized on the basis of their artifacts. Nitinol stents were placed with gradient-echo MR imaging guidance. Angioplasty balloons were inflated with gadolinium-based contrast material. Results were evaluated clinically and with both digital subtraction angiography (DSA) and contrast material-enhanced MR angiography. RESULTS Ten of 13 patients were treated with technical success by using MR imaging-guided intervention alone. Three patients were treated with additional fluoroscopic guidance, because complications (ie, panic attack, subintimal recanalization, and stent misplacement) occurred with MR guidance. The quality of the postinterventional contrast-enhanced MR angiograms of three of 12 lesions with stents was limited owing to stent-induced signal loss of the lumen. The mean stenosis degree after stent placement was significantly higher at contrast-enhanced MR angiography than at DSA (24.6% vs 6.2%). The mean MR imaging-guided procedure time was 74 minutes. CONCLUSION MR imaging-guided stent placement in iliac arteries is feasible in select patients. The presented technique has limitations-that is, long procedure times, lack of real-time monitoring, and stent artifacts-that necessitate further modifications before it can be recommended for clinical use.
Collapse
Affiliation(s)
- C Manke
- Department of Radiology, University of Regensburg, Klinikum der Universität, Franz-Josef-Strauss-Allee 11, D-93042 Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J. On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 2001; 13:105-14. [PMID: 11169811 DOI: 10.1002/1522-2586(200101)13:1<105::aid-jmri1016>3.0.co;2-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The interest in performing vascular interventions under magnetic resonance (MR) guidance has initiated the evaluation of the potential hazard of long conductive wires and catheters. The objective of this work is to present a simple analytical approach to address this concern and to demonstrate the agreement with experimental results. The first hypothesis is that a long conductive structure couples with the electric field of the radio frequency (RF) transmit coil. The second hypothesis is that this coupling induces high voltages near the wire ends. These voltages can cause tissue heating due to induced currents. The experimental results show an increase in coupling when moving a guide wire toward the wall of an RF transmit coil, documented with a temperature increase of a saline solution in close proximity to the tip of the guide wire. The coupling of the wire not only presents a potential hazard to the patient, but also interferes with the visualization of the wire. A safe alternative would be the use of nonconducting guide wires. J. Magn. Reson. Imaging 2001;13:105-114.
Collapse
Affiliation(s)
- W R Nitz
- Department of Radiology, University of Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J. On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 2001. [DOI: 10.1002/1522-2586(200101)13:1%3c105::aid-jmri1016%3e3.0.co;2-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
50
|
Buecker A, Neuerburg JM, Adam GB, Glowinski A, Schaeffter T, Rasche V, van Vaals JJ, Molgaard-Nielsen A, Guenther RW. Real-time MR fluoroscopy for MR-guided iliac artery stent placement. J Magn Reson Imaging 2000; 12:616-22. [PMID: 11042645 DOI: 10.1002/1522-2586(200010)12:4<616::aid-jmri15>3.0.co;2-f] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to test the feasibility of real-time magnetic resonance (MR) guidance of iliac artery stent placement. Radial scanning together with the sliding window reconstruction technique was implemented on a 1.5 T magnet, yielding a frame rate of 20 images per second. Seven prototype nitinol ZA stents were deployed in iliac arteries of living pigs under MR control. All stents were well visualized on the radial MR images, allowing depiction of the mounted stents as well as stent deployment without anatomy-obscuring artifacts. Stent placement was sucessful in all cases and took 6 minutes on average. The position of the stents was correctly visualized by real-time radial MR scanning, as proved by digital subtraction X-ray angiography. Combined radial scanning and the sliding window reconstruction technique allow real-time MR-guided stent placement in iliac arteries.
Collapse
Affiliation(s)
- A Buecker
- Clinic for Diagnostic Radiology, University of Technology, D-52057 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|