1
|
Starlard-Davenport A, Palani CD, Zhu X, Pace BS. Innovations in Drug Discovery for Sickle Cell Disease Targeting Oxidative Stress and NRF2 Activation-A Short Review. Int J Mol Sci 2025; 26:4192. [PMID: 40362428 PMCID: PMC12071363 DOI: 10.3390/ijms26094192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Sickle cell disease (SCD) is a monogenic blood disorder characterized by abnormal hemoglobin S production, which polymerizes under hypoxia conditions to produce chronic red blood cell hemolysis, widespread organ damage, and vasculopathy. As a result of vaso-occlusion and ischemia-reperfusion injury, individuals with SCD have recurrent pain episodes, infection, pulmonary disease, and fall victim to early death. Oxidative stress due to chronic hemolysis and the release of hemoglobin and free heme is a key driver of the clinical manifestations of SCD. The net result is the generation of reactive oxygen species that consume nitric oxide and overwhelm the antioxidant system due to a reduction in enzymes such as superoxide dismutase and glutathione peroxidase. The primary mechanism for handling cellular oxidative stress is the activation of antioxidant proteins by the transcription factor NRF2, a promising target for treatment development, given the significant role of oxidative stress in the clinical severity of SCD. In this review, we discuss the role of oxidative stress in health and the clinical complications of SCD, and the potential of NRF2 as a treatment target, offering hope for developing effective therapies for SCD. This task requires our collective dedication and focus.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA;
| | - Chithra D. Palani
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.D.P.); (X.Z.)
| | - Xingguo Zhu
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.D.P.); (X.Z.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Betty S. Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.D.P.); (X.Z.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Department of Molecular and Cell Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Nainggolan I, Amanda N, Batubara I, Saepuloh U, Darusman H. Fetal Hemoglobin Inducer Activity of Moringa oleifera, Curcuma aueruginosa Roxb., and Artocarpus altilis Based on the Gamma Globin Expression. JOURNAL OF APPLIED HEMATOLOGY 2023. [DOI: 10.4103/joah.joah_74_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
3
|
WU JN, TU QK, XIANG XL, SHI QX, CHEN GY, DAI MX, ZHANG LJ, YANG M, SONG CW, HUANG RZ, JIN SN. Changes in curcuminoids between crude and processed turmeric based on UPLC-QTOF-MS/MS combining with multivariate statistical analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Hashemi Z, Ebrahimzadeh MA. Hemoglobin F (HbF) inducers; History, Structure and Efficacies. Mini Rev Med Chem 2021; 22:52-68. [PMID: 34036918 DOI: 10.2174/1389557521666210521221615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
Inherited beta-thalassemia is a major disease caused by irregular production of hemoglobin through reducing beta-globin chains. It has been observed that increasing fetal hemoglobin (HbF) production improves symptoms in the patients. Therefore, an increase in the level of HbF has been an operative approach for treating patients with beta-thalassemia. This review represents compounds with biological activities and pharmacological properties that can promote the HBF level and therefore used in the β-thalassemia patients' therapy. Various natural products with different mechanisms of action can be helpful in this medication cure. Clinical trials were efficient in improving the signs of patients. Association of in vivo, and in vitro studies of HbF induction and γ-globin mRNA growth displays that in vitro experiments could be an indicator of the in vivo response. The current study shows that; (a) HbF inducers can be grouped in several classes based on their chemical structures and mechanism of actions; b) According to several clinical trials, well-known drugs such as hydroxyurea and decitabine are useful HbF inducers; (c) The cellular biosensor K562 carrying genes under the control of the human γ-globin and β-globin gene promoters were applied during the researches; d) New natural products and lead compounds were found based on various studies as HbF inducers.
Collapse
Affiliation(s)
- Zahra Hashemi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Trienone analogs of curcuminoids induce fetal hemoglobin synthesis via demethylation at Gγ-globin gene promoter. Sci Rep 2021; 11:8552. [PMID: 33879818 PMCID: PMC8058333 DOI: 10.1038/s41598-021-87738-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
The reactivation of γ-globin chain synthesis to combine with excess free α-globin chains and form fetal hemoglobin (HbF) is an important alternative treatment for β-thalassemia. We had reported HbF induction property of natural curcuminoids, curcumin (Cur), demethoxycurcumin (DMC) and bis-demethoxycurcumin (BDMC), in erythroid progenitors. Herein, the HbF induction property of trienone analogs of the three curcuminoids in erythroleukemic K562 cell lines and primary human erythroid progenitor cells from β-thalassemia/HbE patients was examined. All three trienone analogs could induce HbF synthesis. The most potent HbF inducer in K562 cells was trienone analog of BDMC (T-BDMC) with 2.4 ± 0.2 fold increase. In addition, DNA methylation at CpG − 53, − 50 and + 6 of Gγ-globin gene promoter in K562 cells treated with the compounds including T-BDMC (9.3 ± 1.7%, 7.3 ± 1.7% and 5.3 ± 0.5%, respectively) was significantly lower than those obtained from the control cells (30.7 ± 3.8%, 25.0 ± 2.9% and 7.7 ± 0.9%, respectively P < 0.05). The trienone compounds also significantly induced HbF synthesis in β-thalassemia/HbE erythroid progenitor cells with significantly reduction in DNA methylation at CpG + 6 of Gγ-globin gene promoter. These results suggested that the curcuminoids and their three trienone analogs induced HbF synthesis by decreased DNA methylation at Gγ-globin promoter region, without effect on Aγ-globin promoter region.
Collapse
|
6
|
Hatairaktham S, Masaratana P, Hantaweepant C, Srisawat C, Sirivatanauksorn V, Siritanaratkul N, Panichkul N, Kalpravidh RW. Curcuminoids supplementation ameliorates iron overload, oxidative stress, hypercoagulability, and inflammation in non-transfusion-dependent β-thalassemia/Hb E patients. Ann Hematol 2021; 100:891-901. [PMID: 33388858 DOI: 10.1007/s00277-020-04379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Curcuminoids, polyphenol compounds in turmeric, possess several pharmacological properties including antioxidant, iron-chelating, and anti-inflammatory activities. Effects of curcuminoids in thalassemia patients have been explored in a limited number of studies using different doses of curcuminoids. The present study aims to evaluate the effects of 24-week curcuminoids supplementation at the dosage of 500 and 1000 mg/day on iron overload, oxidative stress, hypercoagulability, and inflammation in non-transfused β-thalassemia/Hb E patients. In general, both curcuminoids dosages significantly lowered the levels of oxidative stress, hypercoagulability, and inflammatory markers in the patients. In contrast, reductions in iron parameter levels were more remarkable in the 1000 mg/day group. Subgroup analysis revealed that a marker of hypercoagulability was significantly decreased only in patients with baseline ferritin ≤ 1000 ng/ml independently of curcuminoids dosage. Moreover, the alleviation of iron loading parameters was more remarkable in patients with baseline ferritin > 1000 ng/ml who receive 1000 mg/day curcuminoids. On the other hand, the responses of oxidative stress markers were higher with 500 mg/day curcuminoids regardless of baseline ferritin levels. Our study suggests that baseline ferritin levels should be considered in the supplementation of curcuminoids and the appropriate curcuminoids dosage might differ according to the required therapeutic effect. Thai Clinical Trials Registry (TCTR): TCTR20200731003; July 31, 2020 "retrospectively registered".
Collapse
Affiliation(s)
- Suneerat Hatairaktham
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Patarabutr Masaratana
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Chattree Hantaweepant
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Vorapan Sirivatanauksorn
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Noppadol Siritanaratkul
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Narumol Panichkul
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Ruchaneekorn W Kalpravidh
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| |
Collapse
|
7
|
Iftikhar F, Khan MBN, Musharraf SG. Monoterpenes as therapeutic candidates to induce fetal hemoglobin synthesis and up-regulation of gamma-globin gene: An in vitro and in vivo investigation. Eur J Pharmacol 2020; 891:173700. [PMID: 33137331 DOI: 10.1016/j.ejphar.2020.173700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/02/2023]
Abstract
Pharmacologically induced production of fetal hemoglobin (HbF) is a pragmatic therapeutic strategy for the reduction of globin chain imbalance and improving the clinical severities of patients with β-hemoglobinopathies. To identify highly desirable new therapeutic HbF-inducing agents, we screened functionally diverse ten monoterpenes, as molecular entities for their potent induction and erythroid differentiation ability in human erythroleukemia cell line (K562) and transgenic mice. Benzidine hemoglobin staining demonstrated six compounds to have significantly induced erythroid differentiation of K562 cells in a dose and time-dependent manner. This induction paralleled well with the optimal accumulated quantity of total hemoglobin in treated cultures. The cytotoxic studies revealed that three (carvacrol, 3-carene, and 1,4-cineole) of the six compounds with their maximal erythroid expansion ability did not affect cell proliferation and were found non-toxic. Four compounds were found to have high potency, with 4-8-fold induction of HbF at both transcriptional and protein levels in vitro. Subsequently, an in vivo study with the three active non-cytotoxic compounds showed significant overexpression of the γ-globin gene and HbF production. Carvacrol emerged as a lead HbF regulator suggested by the increase in expression of γ-globin mRNA content (5.762 ± 0.54-fold in K562 cells and 5.59 ± 0.20-fold increase in transgenic mice), accompanied by an increase in fetal hemoglobin (F-cells) levels (83.47% in K562 cells and 79.6% in mice model). This study implicates monoterpenes as new HbF inducing candidates but warrants mechanistic elucidation to develop them into potential therapeutic drugs in β-thalassemia and sickle cell anemia.
Collapse
Affiliation(s)
- Fizza Iftikhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Behroz Naeem Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
8
|
|
9
|
Voskou S, Phylactides M, Afantitis A, Melagraki G, Tsoumanis A, Koutentis PA, Mitsidi T, Mirallai SI, Kleanthous M. MS-275 Chemical Analogues Promote Hemoglobin Production and Erythroid Differentiation of K562 Cells. Hemoglobin 2019; 43:116-121. [PMID: 31280628 DOI: 10.1080/03630269.2019.1626740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
β-Thalassemia (β-thal) is a hemoglobinopathy characterized by reduced or absent β-globin production. Pharmacological reactivation of the γ-globin gene for the production of fetal hemoglobin (Hb F) presents an attractive treatment strategy. In an effort to identify promising therapeutic agents, we evaluated 80 analogues of the histone deacetylase inhibitor MS-275, a known Hb F inducer. The chemical analogues were identified via molecular modeling and targeted chemical modifications. Nine novel agents exhibited significant hemoglobin (Hb)-inducing and erythroid differentiation activities in the human K562 erythroleukemia cell line. Five of them appeared to be stronger inducers than the lead compound, MS-275, demonstrating the effectiveness of our method.
Collapse
Affiliation(s)
- Stella Voskou
- a Molecular Genetics Thalassaemia Department , The Cyprus Institute of Neurology and Genetics , Nicosia , Cyprus.,b Department of Biological Sciences , University of Cyprus , Nicosia , Cyprus
| | - Marios Phylactides
- a Molecular Genetics Thalassaemia Department , The Cyprus Institute of Neurology and Genetics , Nicosia , Cyprus
| | - Andreas Afantitis
- c Department of Chemoinformatics , NovaMechanics Ltd. , Nicosia , Cyprus
| | - Georgia Melagraki
- c Department of Chemoinformatics , NovaMechanics Ltd. , Nicosia , Cyprus
| | - Andreas Tsoumanis
- c Department of Chemoinformatics , NovaMechanics Ltd. , Nicosia , Cyprus
| | | | - Tina Mitsidi
- d Department of Chemistry , University of Cyprus , Nicosia , Cyprus
| | | | - Marina Kleanthous
- a Molecular Genetics Thalassaemia Department , The Cyprus Institute of Neurology and Genetics , Nicosia , Cyprus
| |
Collapse
|
10
|
Feriotto G, Marchetti N, Costa V, Torricelli P, Beninati S, Tagliati F, Mischiati C. Selected terpenes from leaves of Ocimum basilicum L. induce hemoglobin accumulation in human K562 cells. Fitoterapia 2018; 127:173-178. [DOI: 10.1016/j.fitote.2018.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 12/21/2022]
|
11
|
Pace BS, Liu L, Li B, Makala LH. Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease. Exp Biol Med (Maywood) 2015; 240:1050-64. [PMID: 26283707 DOI: 10.1177/1535370215596859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Fetal hemoglobin has been shown to block sickle hemoglobin S polymerization to improve symptoms of sickle cell disease; moreover, fetal hemoglobin functions to replace inadequate hemoglobin A synthesis in β-thalassemia thus serving as an effective therapeutic target. In the perinatal period, fetal hemoglobin is synthesized at high levels followed by a decline to adult levels by one year of age. It is known that naturally occurring mutations in the γ-globin gene promoters and distant cis-acting transcription factors produce persistent fetal hemoglobin synthesis after birth to ameliorate clinical symptoms. Major repressor proteins that silence γ-globin during development have been targeted for gene therapy in β-hemoglobinopathies patients. In parallel effort, several classes of pharmacological agents that induce fetal hemoglobin expression through molecular and cell signaling mechanisms have been identified. Herein, we reviewed the progress made in the discovery of signaling molecules targeted by pharmacologic agents that enhance γ-globin expression and have the potential for future drug development to treat the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75083, USA
| | - Biaoru Li
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| | - Levi H Makala
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
12
|
Kukreja A, Wadhwa N, Tiwari A. Therapeutic role of natural agents in beta-thalassemia: A review. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jopr.2013.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|