1
|
Gill H. Chemotherapy-free approaches to newly-diagnosed acute promyelocytic leukaemia: is oral-arsenic trioxide/all-trans retinoic acid/ascorbic acid the answer? Expert Rev Hematol 2024; 17:661-667. [PMID: 39120131 DOI: 10.1080/17474086.2024.2391098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Acute promyelocytic leukemia (APL) is a distinct form of acute myeloid leukemia characterized by the presence of t(15;17)(q24;21) and the PML:RARA gene fusion. Frontline use of intravenous arsenic trioxide (i.v.-ATO) and all-trans retinoic acid (ATRA) has vastly improved cure rates in APL. Researchers in Hong Kong invented the oral formulation of ATO (oral-ATO) and have confirmed a bioavailability comparable to i.v.-ATO. A plethora of studies have confirmed the safety and efficacy of oral-ATO-based regimens in the frontline and relapsed setting. AREAS COVERED Aspects on the development of oral-ATO-based regimens for APL in the frontline and relapsed setting are discussed. The short-term and long-term safety and efficacy of oral-ATO-based regimens are discussed. The frontline use of oral-ATO in combination with ATRA and ascorbic acid (AAA) induction in a 'chemotherapy-free' is highlighted. EXPERT OPINION Current and ongoing data on the use of oral-ATO-based regimens in APL support the use of oral-ATO as an alternative to i.v.-ATO allowing a more convenient and economical approach to the management of APL.
Collapse
Affiliation(s)
- Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Cui H, Xu W, Liu L, Hong Y, Lou H, Tang P, Lin Y, Xu H, Xie M, Du M, Tang X, Wang Z, Wang Q, Zhang Y. Diosgenin alleviates arsenic trioxide induced cardiac fibrosis by inhibiting endothelial mesenchymal transition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155891. [PMID: 39059093 DOI: 10.1016/j.phymed.2024.155891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUD Arsenic trioxide (ATO), the first-line drug in treating acute premyelogenous leukemia, has the profound side effect of inducing endothelial mesenchymal transition (EndMT) and causing cardiac fibrosis. Diosgenin (DIO), a pharmaceutical compound found in Paris polyphylla, exhibits promising potential in safeguarding cardiovascular health by mitigating EndMT. PURPOSE This study aims to explore the role and mechanism of DIO in ATO-induced myocardial fibrosis to provide a novel therapeutic agent for ATO-induced cardiac fibrosis. METHODS Wistar rats were given DIO by gavage and ATO by tail vein. Cardiac function and fibrosis were evaluated by echocardiography and Masson's trichrome staining in rats. Human aortic endothelial cells (HAECs) were utilized to analyze ATO-induced EndMT in vitro. The cytoskeleton of HAECs was visualized using F-actin staining to observe cell morphology, while Dil-Ac-LDL staining was employed to assess cell functionality. EndMT-related factors (CD31 and α-SMA), glucocorticoid receptor (GR) and interleukin-6 (IL-6) were detected by immunofluorescence and Western blot in vivo and in vitro. Furthermore, GR was knocked down by si-GR, and IL-6 was blocked by IL-6 neutralizing antibody to verify their role in the effect of DIO on ATO-induced EndMT in HAECs. RESULTS DIO exhibited significant efficacy in ATO-induced damage to both cardiac diastolic and systolic function, along with mitigating cardiac fibrosis. Additionally, DIO alleviated the loss of cytoskeletal anisotropy and enhanced the uptake of Dil-Ac-LDL in HAECs. Furthermore, it reversed the ATO-induced downregulation of endothelial-specific markers CD31 and GR, while suppressing the upregulation of mesenchymal markers α-SMA and IL-6, both in vivo and in vitro. Notably, the protective effect of DIO was compromised upon knockdown of GR, which also led to a reversal of DIO-induced IL-6 downregulation. Furthermore, the neutralization of IL-6 with specific antibodies abolished the ATO-induced changes related to EndMT. CONCLUSION In this study, we clarified the protective effect of DIO on ATO-induced myocardial fibrosis against EndMT via the GR/IL-6 axis for the first time and provided a potential therapeutic agent for preventing heart damage caused by ATO.
Collapse
Affiliation(s)
- Hao Cui
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China; First Affiliated Hospital of Army Medical University, Chongqing, 400038, PR China
| | - Wanqing Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ling Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Yang Hong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Han Lou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Pingping Tang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Yuan Lin
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Henghui Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Minzhen Xie
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Menghan Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Xueqing Tang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Zhixia Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, PR China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, PR China.
| |
Collapse
|
3
|
Fang Y, Bai Z, Cao J, Zhang G, Li X, Li S, Yan Y, Gao P, Kong X, Zhang Z. Low-intensity ultrasound combined with arsenic trioxide induced apoptosis of glioma via EGFR/AKT/mTOR. Life Sci 2023; 332:122103. [PMID: 37730111 DOI: 10.1016/j.lfs.2023.122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
AIMS This study aimed to explore whether low-intensity ultrasound (LIUS) combined with low-concentration arsenic trioxide (ATO) could inhibit the proliferation of glioma and, if so, to clarify the potential mechanism. MAIN METHODS The effects of ATO and LIUS alone or in combination on glioma were examined by CCK8, EdU, and flow cytometry assays. Western blot analysis was used to detect changes in expression of apoptosis-related proteins and their effects on the EGFR/AKT/mTOR pathway. The effects of ATO and LIUS were verified in vivo in orthotopic xenograft models, and tumor size, arsenic content in brain tissue, survival, and immunohistochemical changes were observed. KEY FINDINGS LIUS enhanced the inhibitory effect of ATO on the proliferation of glioma, and EGF reversed the proliferation inhibition and protein changes induced by ATO and LIUS. The anti-glioma effect of ATO combined with LIUS was related to downstream AKT/mTOR pathway changes caused by inhibition of EGFR activation, which enhanced apoptosis of U87MG and U373 cells. In vivo experiments showed significant increases in arsenic content in brain tissue, as well as decreased tumor sizes and longer survival times in the combined treatment group compared with other groups. The trends of immunohistochemical protein changes were consistent with the in vitro results. SIGNIFICANCE This study showed that LIUS enables ATO to exert anti-glioma effects at a safe dose by inhibiting the activation of EGFR and the downstream AKT/mTOR pathway to regulate apoptosis. LIUS in combination with ATO is a promising novel method for treating glioma and could improve patient prognosis.
Collapse
Affiliation(s)
- Yi Fang
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhiqun Bai
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Jibin Cao
- Department of Radiology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Gaosen Zhang
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xiang Li
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Shufeng Li
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yudie Yan
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Peirong Gao
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiangkai Kong
- Department of Ultrasound, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Zhen Zhang
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Klier K, Patel YJ, Schinköthe T, Harbeck N, Schmidt A. Corrected QT Interval (QTc) Diagnostic App for the Oncological Routine: Development Study. JMIR Cardio 2023; 7:e48096. [PMID: 37695655 PMCID: PMC10520775 DOI: 10.2196/48096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Numerous antineoplastic drugs such as chemotherapeutics have cardiotoxic side effects and can lead to long QT syndrome (LQTS). When diagnosed and treated in time, the potentially fatal outcomes of LQTS can be prevented. Therefore, regular electrocardiogram (ECG) assessments are critical to ensure patient safety. However, these assessments are associated with patient discomfort and require timely support of the attending oncologist by a cardiologist. OBJECTIVE This study aimed to examine whether this approach can be made more efficient and comfortable by a smartphone app (QTc Tracker), supporting single-lead ECG records on site and transferring to a tele-cardiologist for an immediate diagnosis. METHODS To evaluate the QTc Tracker, it was implemented in 54 cancer centers in Germany. In total, 266 corrected QT interval (QTc) diagnoses of 122 patients were recorded. Moreover, a questionnaire on routine ECG workflow, turnaround time, and satisfaction (1=best, 6=worst) was answered by the centers before and after the implementation of the QTc Tracker. RESULTS Compared to the routine ECG workflow, the QTc Tracker enabled a substantial turnaround time reduction of 98% (mean 2.67, 95% CI 1.72-2.67 h) and even further time efficiency in combination with a cardiologic on-call service (mean 12.10, 95% CI 5.67-18.67 min). Additionally, nurses and patients reported higher satisfaction when using the QTc Tracker. In particular, patients' satisfaction sharply improved from 2.59 (95% CI 2.41-2.88) for the routine ECG workflow to 1.25 (95% CI 0.99-1.51) for the QTc Tracker workflow. CONCLUSIONS These results reveal a significant improvement regarding reduced turnaround time and increased user satisfaction. Best patient care might be guaranteed as the exposure of patients with an uncontrolled risk of QTc prolongations can be avoided by using the fast and easy QTc Tracker. In particular, as regular side-effect monitoring, the QTc Tracker app promises more convenience for patients and their physicians. Finally, future studies are needed to empirically test the usability and validity of such mobile ECG assessment methods. TRIAL REGISTRATION ClinicalTrials.gov NCT04055493; https://classic.clinicaltrials.gov/ct2/show/NCT04055493.
Collapse
Affiliation(s)
- Kristina Klier
- Institute of Sport Science, University of the Bundeswehr Munich, Neubiberg, Germany
| | | | - Timo Schinköthe
- CANKADO GmbH, Ottobrunn, Germany
- Research Center for Smart Digital Health, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Nadia Harbeck
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center of the Ludwig-Maximilians-University, Munich, Germany
| | - Annette Schmidt
- Institute of Sport Science, University of the Bundeswehr Munich, Neubiberg, Germany
- Research Center for Smart Digital Health, University of the Bundeswehr Munich, Neubiberg, Germany
| |
Collapse
|
5
|
Li Y, Wan R, Liu J, Liu W, Ma L, Zhang H. In silico mechanisms of arsenic trioxide-induced cardiotoxicity. Front Physiol 2022; 13:1004605. [PMID: 36589437 PMCID: PMC9798418 DOI: 10.3389/fphys.2022.1004605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
It has been found that arsenic trioxide (ATO) is effective in treating acute promyelocytic leukemia (APL). However, long QT syndrome was reported in patients receiving therapy using ATO, which even led to sudden cardiac death. The underlying mechanisms of ATO-induced cardiotoxicity have been investigated in some biological experiments, showing that ATO affects human ether-à-go-go-related gene (hERG) channels, coding rapid delayed rectifier potassium current (I Kr ), as well as L-type calcium (I CaL ) channels. Nevertheless, the mechanism by which these channel reconstitutions induced the arrhythmia in ventricular tissue remains unsolved. In this study, a mathematical model was developed to simulate the effect of ATO on ventricular electrical excitation at cellular and tissue levels by considering ATO's effects on I Kr and I CaL . The ATO-dose-dependent pore block model was incorporated into the I Kr model, and the enhanced degree of ATO to I CaL was based on experimental data. Simulation results indicated that ATO extended the action potential duration of three types of ventricular myocytes (VMs), including endocardial cells (ENDO), midmyocardial cells (MCELL), and epicardial cells (EPI), and exacerbated the heterogeneity among them. ATO could also induce alternans in all three kinds of VMs. In a cable model of the intramural ventricular strand, the effects of ATO are reflected in a prolonged QT interval of simulated pseudo-ECG and a wide vulnerable window, thus increasing the possibility of spiral wave formation in ventricular tissue. In addition to showing that ATO prolonged QT, we revealed that the heterogeneity caused by ATO is also an essential hazard factor. Based on this, a pharmacological intervention of ATO toxicity by resveratrol was undertaken. This study provides a further understanding of ATO-induced cardiotoxicity, which may help to improve the treatment for APL patients.
Collapse
Affiliation(s)
- Yacong Li
- Beijing Academy of Artificial Intelligence, Beijing, China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| | - Weichao Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| | - Lei Ma
- Beijing Academy of Artificial Intelligence, Beijing, China,National Biomedical Imaging Center, Peking University, Beijing, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| |
Collapse
|
6
|
The Development and Clinical Applications of Oral Arsenic Trioxide for Acute Promyelocytic Leukaemia and Other Diseases. Pharmaceutics 2022; 14:pharmaceutics14091945. [PMID: 36145693 PMCID: PMC9504237 DOI: 10.3390/pharmaceutics14091945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Appreciation of the properties of arsenic trioxide (ATO) has redefined the treatment landscape for acute promyelocytic leukaemia (APL) and offers promise as a treatment for numerous other diseases. The benefits of ATO in patients with APL is related to its ability to counteract the effects of PML::RARA, an oncoprotein that is invariably detected in the blood or bone marrow of affected individuals. The PML::RARA oncoprotein is degraded specifically by binding to ATO. Thus ATO, in combination with all-trans retinoic acid, has become the curative treatment for ATO. The multiple mechanisms of action of ATO has also paved the way for application in various condition encompassing autoimmune or inflammatory disorders, solid organ tumours, lymphomas and other subtypes of AML. The development of oral formulation of ATO (oral ATO) has reduced costs of treatment and improved treatment convenience allowing widespread applicability. In this review, we discuss the mechanisms of action of ATO, the development of oral ATO, and the applications of oral ATO in APL and other diseases.
Collapse
|
7
|
Xue Y, Li M, Xue Y, Jin W, Han X, Zhang J, Chu X, Li Z, Chu L. Mechanisms underlying the protective effect of tannic acid against arsenic trioxide‑induced cardiotoxicity in rats: Potential involvement of mitochondrial apoptosis. Mol Med Rep 2020; 22:4663-4674. [PMID: 33173965 PMCID: PMC7646850 DOI: 10.3892/mmr.2020.11586] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Arsenic trioxide (ATO) is a frontline chemotherapy drug used in the therapy of acute promyelocytic leukemia. However, the clinical use of ATO is hindered by its cardiotoxicity. The present study aimed to observe the potential effects and underlying mechanisms of tannic acid (TA) against ATO-induced cardiotoxicity. Male rats were intraperitoneally injected with ATO (5 mg/kg/day) to induce cardiotoxicity. TA (20 and 40 mg/kg/day) was administered to evaluate its cardioprotective efficacy against ATO-induced heart injury in rats. Administration of ATO resulted in pathological damage in the heart and increased oxidative stress as well as levels of serum cardiac biomarkers creatine kinase and lactate dehydrogenase and the inflammatory marker NF-κB (p65). Conversely, TA markedly reversed this phenomenon. Additionally, TA treatment caused a notable decrease in the expression levels of cleaved caspase-3/caspase-3, Bax, p53 and Bad, while increasing Bcl-2 expression levels. Notably, the application of TA decreased the expression levels of cytochrome c, second mitochondria-derived activator of caspases and high-temperature requirement A2, which are apoptosis mitochondrial-associated proteins. The present findings indicated that TA protected against ATO-induced cardiotoxicity, which may be associated with oxidative stress, inflammation and mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yucong Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Mengying Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Yurun Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Weiyue Jin
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Jianping Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Ziliang Li
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
8
|
Fang Y, Zhang Z. Arsenic trioxide as a novel anti-glioma drug: a review. Cell Mol Biol Lett 2020; 25:44. [PMID: 32983240 PMCID: PMC7517624 DOI: 10.1186/s11658-020-00236-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
Arsenic trioxide has shown a strong anti-tumor effect with little toxicity when used in the treatment of acute promyelocytic leukemia (APL). An effect on glioma has also been shown. Its mechanisms include regulation of apoptosis and autophagy; promotion of the intracellular production of reactive oxygen species, causing oxidative damage; and inhibition of tumor stem cells. However, glioma cells and tissues from other sources show different responses to arsenic trioxide. Researchers are working to enhance its efficacy in anti-glioma treatments and reducing any adverse reactions. Here, we review recent research on the efficacy and mechanisms of action of arsenic trioxide in the treatment of gliomas to provide guidance for future studies.
Collapse
Affiliation(s)
- Yi Fang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning People's Republic of China
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning People's Republic of China
| |
Collapse
|
9
|
Kumana CR, Mak R, Kwong YL, Gill H. Resurrection of Oral Arsenic Trioxide for Treating Acute Promyelocytic Leukaemia: A Historical Account From Bedside to Bench to Bedside. Front Oncol 2020; 10:1294. [PMID: 32850403 PMCID: PMC7418518 DOI: 10.3389/fonc.2020.01294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Various forms of arsenic were used in China and elsewhere for over 5,000 years. Following the initial success of intravenous arsenic trioxide (i.v. As2O3), we revived an oral formulation of pure As2O3 in 1998 for the treatment of acute promyelocytic leukemia (APL). We were the first to produce a 1 mg/ml oral-As2O3 solution and showed that it had comparable bioavailability to i.v. As2O3. Moreover, we also reported that intracellular arsenic concentrations were considerably higher than the corresponding plasma values. Our oral-As2O3 was patented internationally and registered in Hong Kong for the treatment of APL. Safety, tolerability and clinical efficacy was confirmed in long-term follow-up studies. We have extended the use of oral-As2O3 to frontline induction of newly diagnosed APL. With these findings, we are moving toward an era of completely oral and chemotherapy-free management of APL.
Collapse
Affiliation(s)
- Cyrus R Kumana
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Raymond Mak
- Department of Pharmacy, Queen Mary Hospital, Hong Kong, China
| | - Yok-Lam Kwong
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Harinder Gill
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Li G, Zhou Z, Yang W, Yang H, Fan X, Yin Y, Luo L, Zhang J, Wu N, Liang Z, Ke J, Chen J. Long-term cardiac-specific mortality among 44,292 acute myeloid leukemia patients treated with chemotherapy: a population-based analysis. J Cancer 2019; 10:6161-6169. [PMID: 31762826 PMCID: PMC6856578 DOI: 10.7150/jca.36948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/21/2019] [Indexed: 02/01/2023] Open
Abstract
Background: Acute myeloid leukemia (AML) is a common hematological malignancy treated with regimens containing anthracycline, an agent with cardiotoxicity. However, the cardiac-specific mortality in AML patients receiving chemotherapy remains unknown. Methods: In this population-based study, patients diagnosed with AML between 1973 and 2015 were identified in the Surveillance, Epidemiology, and End Results database. Cumulative mortality by cause of death was calculated. To quantify the excessive cardiac-specific death compared with the general population, standardized mortality ratios (SMRs) were calculated. Multivariate Cox regression analyses were performed to identify risk factors associated with cardiac-specific death and AML-specific death. Results: A total of 64,679 AML patients were identified between 1973 and 2015; 68.48% of patients (44,292) received chemotherapy. Among all possible competing causes of death, AML was associated with the highest cumulative mortality. The AML patients who received chemotherapy showed excessive cardiac-specific mortality compared with the general population, with an SMR of 6.35 (95% CI: 5.89-6.82). Age, year of diagnosis, sex, and marital status were independently associated with patient prognosis. Conclusion: Cardiac-specific mortality in AML patients receiving chemotherapy is higher than that in the general population.
Collapse
Affiliation(s)
- Guangli Li
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zhijuan Zhou
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Wencong Yang
- Department of Cardiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, Guangdong, China
| | - Hao Yang
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Xiuwu Fan
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yuelan Yin
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Liyun Luo
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jinyou Zhang
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Niujian Wu
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zibin Liang
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jianting Ke
- Department of Nephrology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jian Chen
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
11
|
Carpenter RL, Ray H. Safety and Tolerability of Sonic Hedgehog Pathway Inhibitors in Cancer. Drug Saf 2019; 42:263-279. [PMID: 30649745 DOI: 10.1007/s40264-018-0777-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hedgehog pathway, for which sonic hedgehog (Shh) is the most prominent ligand, is highly conserved and is tightly associated with embryonic development in a number of species. This pathway is also tightly associated with the development of several types of cancer, including basal cell carcinoma (BCC) and acute promyelocytic leukemia, among many others. Inactivating mutations in Patched-1 (PTCH1), leading to ligand-independent pathway activation, are frequent in several cancer types, but most prominent in BCC. This has led to the development of several compounds targeting this pathway as a cancer therapeutic. These compounds target the inducers of this pathway in Smoothened (SMO) and the GLI transcription factors, although targeting SMO has had the most success. Despite the many attempts at targeting this pathway, only three US FDA-approved drugs for cancers affect the Shh pathway. Two of these compounds, vismodegib and sonidegib, target SMO to suppress signaling from either PTCH1 or SMO mutations that lead to upregulation of the pathway. The other approved compound is arsenic trioxide, which can suppress this pathway at the level of the GLI proteins, although current evidence suggests it also has other targets. This review focuses on the safety and tolerability of these clinically approved drugs targeting the Shh pathway, along with a discussion on other Shh pathway inhibitors being developed.
Collapse
Affiliation(s)
- Richard L Carpenter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr., Indianapolis, IN, 46202, USA.
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA
| |
Collapse
|
12
|
Yu X, Wang Z, Shu Z, Li Z, Ning Y, Yun K, Bai H, Liu R, Liu W. Effect and mechanism of Sorbus pohuashanensis (Hante) Hedl. flavonoids protect against arsenic trioxide-induced cardiotoxicity. Biomed Pharmacother 2017; 88:1-10. [DOI: 10.1016/j.biopha.2016.12.130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/26/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022] Open
|
13
|
Abstract
Patients with cancer can experience adverse cardiovascular events secondary to the malignant process itself or its treatment. Patients with cancer might also have underlying cardiovascular illness, the consequences of which are often exacerbated by the stress of the tumour growth or its treatment. With the advent of new treatments and subsequent prolonged survival time, late effects of cancer treatment can become clinically evident decades after completion of therapy. The heart's extensive energy reserve and its ability to compensate for reduced function add to the complexity of diagnosis and timely initiation of therapy. Additionally, modern oncological treatment regimens often incorporate multiple agents whose deleterious cardiac effects might be additive or synergistic. Treatment-related impairment of cardiac contractility can be either transient or irreversible. Furthermore, cancer treatment is associated with life-threatening arrhythmia, ischaemia, infarction, and damage to cardiac valves, the conduction system, or the pericardium. Awareness of these processes has gained prominence with the arrival of strategies to monitor and to prevent or to mitigate the effects of cardiovascular damage. A greater understanding of the mechanisms of injury can prolong the lives of those cured of their malignancy, but left with potentially devastating cardiac sequelae.
Collapse
Affiliation(s)
- Michael S Ewer
- Department of Cardiology, The University of Texas MD Anderson Cancer Centre, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Steven M Ewer
- School of Medicine &Public Health, Division of Cardiovascular Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| |
Collapse
|