1
|
Santos GPD, Rabi LT, Bezerra AA, da Cunha MR, Iatecola A, Fernandes VAR. Transcriptional regulators of fetal hemoglobin. Hematol Transfus Cell Ther 2024; 46 Suppl 5:S258-S268. [PMID: 39237431 PMCID: PMC11670590 DOI: 10.1016/j.htct.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024] Open
Abstract
Sickle cell anemia is a hereditary disease caused by sickle-shaped red blood cells that can lead to vaso-occlusive crises. Treatment options are currently limited, highlighting the need to develop new clinical approaches. Studies demonstrated that elevated levels of fetal hemoglobin (Hb F) are associated with a reduction of mortality and morbidity in sickle cell anemia patients. In light of this, researchers have been trying to elucidate the transcriptional regulation of Hb F to develop new therapeutic interventions. The present study aimed to present the main transcription factors of Hb F and discuss the clinical feasibility of these molecular targets. Two search strategies were used in the PubMed, SciELO, and LILACS databases between July and August 2023 to conduct this review. Manual searches were also conducted by checking references of potentially eligible studies. Eligibility criteria consisted of clinical trials and cohort studies from the last five years that investigated transcription factors associated with Hb F. The transcription factors investigated in at least four eligible studies were included in this review. As a result, 56 eligible studies provided data on the BCL11A, LRF, NF-Y, GATA1, KLF1, HRI, ATF4, and MYB factors. The studies demonstrated that Hb F is cooperatively regulated by transcription factors with the BCL11A factor appearing to be the most specific target gene for γ-globin induction. Although these data are promising, there are still significant gaps and intervention limitations due to the adverse functions of the target genes. New studies that clarify the aspects and functionalities of Hb F regulators may enable new clinical approaches for sickle cell anemia patients.
Collapse
Affiliation(s)
| | - Larissa Teodoro Rabi
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (UNICAMP), Campinas, SP, Brazil; Institute of Health Sciences, Paulista University (UNIP), Campinas, SP, Brazil
| | - André Alves Bezerra
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; College of Medicine of Jundiaí, Jundiaí, SP, Brazil
| | - Marcelo Rodrigues da Cunha
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; College of Medicine of Jundiaí, Jundiaí, SP, Brazil
| | - Amilton Iatecola
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; College of Medicine of Jundiaí, Jundiaí, SP, Brazil
| | | |
Collapse
|
2
|
Satthakarn S, Panyasai S. α-Globin mutations and Genetic Variants in γ-globin Promoters are Associated with Unelevated Hemoglobin F Expression of Atypical β 0-thalassemia/HbE. Arch Med Res 2024; 55:103055. [PMID: 39029212 DOI: 10.1016/j.arcmed.2024.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Excessive expression of hemoglobin F (HbF) is a characteristic feature and important diagnostic marker of β0-thalassemia/HbE disease. However, some patients may exhibit low-HbF levels, leading to misdiagnosis and precluding genetic counseling. The genetic factors influencing these differences in HbF expression in this atypical disease are not completely understood. AIMS To investigate determinants contributing to the non-elevation of HbF expression in β0-thalassemia/HbE disease. METHODS We studied 231 patients with β0-thalassemia/HbE confirmed by DNA analysis; classified them into the low-HbF (n = 62) and high-HbF (n = 169) groups; analyzed hematological parameters and hemoglobin levels in both groups; and characterized mutations in β- and α-globin genes and genetic variants in γ-globin promoters. RESULTS Both groups showed similar rates of type β0-thalassemia mutations but significantly different proportions of α-globin mutations: approximately 88.7% (95% confidence interval [CI] = 66.8-115.5) and 39.1% (95% CI = 30.2-49.7) in the low- and high-HbF groups, respectively. The results revealed single-nucleotide polymorphisms (SNPs) at -158 (C>T) in the Gγ-globin promoters and novel SNPs at the 5' untranslated region position 25 (G>A) in Aγ-globin promoters. The distribution of CC genotypes of the Gγ-globin promoter in the low-HbF group was significantly higher than that in the high-HbF group. CONCLUSIONS Cases with HbE predominance with low-HbF levels and undetectable HbA may not be as conclusive as those with homozygous HbE until DNA analysis is performed. Concomitant inheritance of α-thalassemia is an important inherent factor modifying HbF expression in a typical β0-thalassemia/HbE, and SNPs with the CC genotype in the Gγ-globin promoter may indicate unelevated HbF expression in patients with this disease.
Collapse
Affiliation(s)
- Surada Satthakarn
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Sitthichai Panyasai
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand.
| |
Collapse
|
3
|
Nemkov T, Stephenson D, Earley EJ, Keele GR, Hay A, Key A, Haiman Z, Erickson C, Dzieciatkowska M, Reisz JA, Moore A, Stone M, Deng X, Kleinman S, Spitalnik SL, Hod EA, Hudson KE, Hansen KC, Palsson BO, Churchill GA, Roubinian N, Norris PJ, Busch MP, Zimring JC, Page GP, D'Alessandro A. Biological and Genetic Determinants of Glycolysis: Phosphofructokinase Isoforms Boost Energy Status of Stored Red Blood Cells and Transfusion Outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557250. [PMID: 38260479 PMCID: PMC10802247 DOI: 10.1101/2023.09.11.557250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mature red blood cells (RBCs) lack mitochondria, and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in the blood bank. Here we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify an association between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs), hexokinase 1, ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice, and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine levels - and the genetic traits linked to them - were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes. eTOC and Highlights Highlights Blood donor age and sex affect glycolysis in stored RBCs from 13,029 volunteers;Ancestry, genetic polymorphisms in PFKP, HK1, CD38/BST1 influence RBC glycolysis;Modeled PFKP effects relate to preventing loss of the total AXP pool in stored RBCs;ATP and hypoxanthine are biomarkers of hemolysis in vitro and in vivo.
Collapse
|
4
|
Kirkham JK, Estepp JH, Weiss MJ, Rashkin SR. Genetic Variation and Sickle Cell Disease Severity: A Systematic Review and Meta-Analysis. JAMA Netw Open 2023; 6:e2337484. [PMID: 37851445 PMCID: PMC10585422 DOI: 10.1001/jamanetworkopen.2023.37484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 10/19/2023] Open
Abstract
Importance Sickle cell disease (SCD) is a monogenic disorder, yet clinical outcomes are influenced by additional genetic factors. Despite decades of research, the genetics of SCD remain poorly understood. Objective To assess all reported genetic modifiers of SCD, evaluate the design of associated studies, and provide guidelines for future analyses according to modern genetic study recommendations. Data Sources PubMed, Web of Science, and Scopus were searched through May 16, 2023, identifying 5290 publications. Study Selection At least 2 reviewers identified 571 original, peer-reviewed English-language publications reporting genetic modifiers of human SCD phenotypes, wherein the outcome was not treatment response, and the comparison was not between SCD subtypes or including healthy controls. Data Extraction and Synthesis Data relevant to all genetic modifiers of SCD were extracted, evaluated, and presented following STREGA and PRISMA guidelines. Weighted z score meta-analyses and pathway analyses were conducted. Main Outcomes and Measures Outcomes were aggregated into 25 categories, grouped as acute complications, chronic conditions, hematologic parameters or biomarkers, and general or mixed measures of SCD severity. Results The 571 included studies reported on 29 670 unique individuals (50% ≤ 18 years of age) from 43 countries. Of the 17 757 extracted results (4890 significant) in 1552 genes, 3675 results met the study criteria for meta-analysis: reported phenotype and genotype, association size and direction, variability measure, sample size, and statistical test. Only 173 results for 62 associations could be cross-study combined. The remaining associations could not be aggregated because they were only reported once or methods (eg, study design, reporting practice) and genotype or phenotype definitions were insufficiently harmonized. Gene variants regulating fetal hemoglobin and α-thalassemia (important markers for SCD severity) were frequently identified: 19 single-nucleotide variants in BCL11A, HBS1L-MYB, and HBG2 were significantly associated with fetal hemoglobin (absolute value of Z = 4.00 to 20.66; P = 8.63 × 10-95 to 6.19 × 10-5), and α-thalassemia deletions were significantly associated with increased hemoglobin level and reduced risk of albuminuria, abnormal transcranial Doppler velocity, and stroke (absolute value of Z = 3.43 to 5.16; P = 2.42 × 10-7 to 6.00 × 10-4). However, other associations remain unconfirmed. Pathway analyses of significant genes highlighted the importance of cellular adhesion, inflammation, oxidative and toxic stress, and blood vessel regulation in SCD (23 of the top 25 Gene Ontology pathways involve these processes) and suggested future research areas. Conclusions and Relevance The findings of this comprehensive systematic review and meta-analysis of all published genetic modifiers of SCD indicated that implementation of standardized phenotypes, statistical methods, and reporting practices should accelerate discovery and validation of genetic modifiers and development of clinically actionable genetic profiles.
Collapse
Affiliation(s)
- Justin K. Kirkham
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jeremie H. Estepp
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Global Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, Tennessee
- Now with Agios Pharmaceuticals, Cambridge, Massachusetts
| | - Mitch J. Weiss
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sara R. Rashkin
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
5
|
Single Nucleotide Polymorphisms in XMN1-HBG2, HBS1L-MYB, and BCL11A and Their Relation to High Fetal Hemoglobin Levels That Alleviate Anemia. Diagnostics (Basel) 2022; 12:diagnostics12061374. [PMID: 35741184 PMCID: PMC9221560 DOI: 10.3390/diagnostics12061374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Anemia is a condition in which red blood cells and/or hemoglobin (Hb) concentrations are decreased below the normal range, resulting in a lack of oxygen being transported to tissues and organs. Those afflicted with this condition may feel lethargic and weak, which reduces their quality of life. The condition may be manifested in inherited blood disorders, such as thalassemia and sickle cell disease, whereas acquired disorders include aplastic anemia, chronic disease, drug toxicity, pregnancy, and nutritional deficiency. The augmentation of fetal hemoglobin (HbF) results in the reduction in clinical symptoms in beta-hemoglobinopathies. Several transcription factors as well as medications such as hydroxyurea may help red blood cells produce more HbF. HbF expression increases with the downregulation of three main quantitative trait loci, namely, the XMN1-HBG2, HBS1L-MYB, and BCL11A genes. These genes contain single nucleotide polymorphisms (SNPs) that modulate the expression of HbF differently in various populations. Allele discrimination is important in SNP genotyping and is widely applied in many assays. In conclusion, the expression of HbF with a genetic modifier is crucial in determining the severity of anemic diseases, and genetic modification of HbF expression may offer clinical benefits in diagnosis and disease management.
Collapse
|
6
|
Campello C, Lima-Silva M, de Lima E, Nunes G, Silva H, Dellalibera E, de Britto L, Lemos C, Muniz M. Genetic polymorphisms and protein levels in vocal fold leukoplakia: a systematic review. Braz J Med Biol Res 2022; 55:e11920. [PMID: 35293553 PMCID: PMC8922550 DOI: 10.1590/1414-431x2022e11920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Vocal fold leukoplakia (VFL) has a risk of malignant transformation. Therefore, patients can have symptoms such as dysphonia, vocal strain, difficulty breathing, and dysphagia. Additionally, there is a genetic predisposition that can be associated with genetic polymorphisms. We aimed to evaluate the influence of genetic polymorphisms and protein levels in the etiology of VFL. Our study followed the PRISMA checklist and was registered on PROSPERO database. The questions were: "Are genetic polymorphisms involved in the etiology of VFL? Are protein levels altered in patients with VFL?". Eligibility criteria were case control studies that compared the presence of polymorphisms or/and protein levels of subjects diagnosed with VFL and healthy controls. Of the 905 articles retrieved, five articles with a total of 1038 participants were included in this study. The C allele of the single nucleotide polymorphisms (SNP)-819 T/C IL-10, A allele of the SNP -592 A/C IL-10, CT genotype of the SNP rs11886868 C/T BCL11A, GG genotype of the SNP rs4671393 A/G BCL11A, LL genotype, and L allele of (GT)n repeat polymorphisms of the HO-1 were risk factors for VFL development. Nevertheless, there was a lack of association between VFL and the -1082 A/G IL-10, rs14024 CK-1, and -309 T/G Mdm2 SNPs. The concentrations of the MDM2, BCL11A, and HO-1 proteins were modified, while IL-10 levels were normally expressed in these subjects. In conclusion, most markers evaluated in this review could be potential indicators to develop effective therapies, avoiding a malignant transformation of the lesion.
Collapse
Affiliation(s)
- C.P. Campello
- Programa Associado de Pós-Graduação em Fonoaudiologia,
Universidade Federal da Paraíba, João Pessoa, PB, Brasil
- Laboratório de Biologia Molecular, Centro de Oncohematologia
Pediátrica, Hospital Universitário Oswaldo Cruz, Universidade de Pernambuco,
Recife, PE, Brasil
| | - M.F.B. Lima-Silva
- Programa Associado de Pós-Graduação em Fonoaudiologia,
Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - E.L.S. de Lima
- Laboratório de Biologia Molecular, Centro de Oncohematologia
Pediátrica, Hospital Universitário Oswaldo Cruz, Universidade de Pernambuco,
Recife, PE, Brasil
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de
Ciências Médicas, Universidade de Pernambuco, Recife, PE, Brasil
| | - G.R.S. Nunes
- Programa Associado de Pós-Graduação em Fonoaudiologia,
Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - H.A.M. Silva
- Laboratório de Biologia Molecular, Centro de Oncohematologia
Pediátrica, Hospital Universitário Oswaldo Cruz, Universidade de Pernambuco,
Recife, PE, Brasil
- Instituto de Ciências Biológicas, Universidade de Pernambuco,
Recife, PE, Brasil
| | - E. Dellalibera
- Laboratório de Biologia Molecular, Centro de Oncohematologia
Pediátrica, Hospital Universitário Oswaldo Cruz, Universidade de Pernambuco,
Recife, PE, Brasil
| | | | - C.A.A. Lemos
- Departamento de Odontologia, Universidade Federal de Juiz de
Fora, Governador Valadares, MG, Brasil
| | - M.T.C. Muniz
- Laboratório de Biologia Molecular, Centro de Oncohematologia
Pediátrica, Hospital Universitário Oswaldo Cruz, Universidade de Pernambuco,
Recife, PE, Brasil
- Instituto de Ciências Biológicas, Universidade de Pernambuco,
Recife, PE, Brasil
| |
Collapse
|
7
|
Delgadinho M, Ginete C, Santos B, Miranda A, Brito M. Genotypic Diversity among Angolan Children with Sickle Cell Anemia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105417. [PMID: 34069401 PMCID: PMC8158763 DOI: 10.3390/ijerph18105417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022]
Abstract
Background. Sickle cell anemia (SCA) is an inherited blood disorder that affects over 300,000 newborns worldwide every year, being particularly prevalent in Sub-Saharan Africa. Despite being a monogenic disease, SCA shows a remarkably high clinical heterogeneity. Several studies have already demonstrated the existence of some polymorphisms that can provide major clinical benefits, producing a mild phenotype. Moreover, the existence of distinct haplotypes can also influence the phenotype patterns of certain populations, leading to different clinical manifestations. Our aim was to assess the association between polymorphisms in genes previously related to SCA disease severity in an Angolan pediatric population. Methods. This study analyzed clinical and biological data collected from 192 Angolan children. Using NGS data, we classified the HBB haplotypes based on four previously described SNPs (rs3834466, rs28440105, rs10128556, and rs968857) and the genotype for the SNPs in HBG2 (rs7482144), BCL11A (rs4671393, rs11886868, rs1427407, rs7557939), HBS1L-MYB (rs66650371) and BGLT3 (rs7924684) genes. Results. The CAR haplotype was undoubtedly the most common HBB haplotype in our population. The HbF values and the ratio of gamma chains were statistically significant for almost all of the variants studied. We reported for the first time an association between rs7924684 in the BGLT3 gene and gamma chains ratio. Conclusions. The current findings emphasize the importance personalized medicine would have if applied to SCA patient care, since some of the variants studied might predict the phenotype and the overall response to treatment.
Collapse
Affiliation(s)
- Mariana Delgadinho
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.D.); (C.G.)
| | - Catarina Ginete
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.D.); (C.G.)
| | - Brígida Santos
- Centro de Investigação em Saúde de Angola (CISA), Caxito, Angola;
- Hospital Pediátrico David Bernardino (HPDB), Luanda 3067, Angola
| | - Armandina Miranda
- Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal;
| | - Miguel Brito
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.D.); (C.G.)
- Centro de Investigação em Saúde de Angola (CISA), Caxito, Angola;
- Correspondence: ; Tel.: +351-218980400
| |
Collapse
|