1
|
Behroozaghdam M, Dehghani M, Zabolian A, Kamali D, Javanshir S, Hasani Sadi F, Hashemi M, Tabari T, Rashidi M, Mirzaei S, Zarepour A, Zarrabi A, De Greef D, Bishayee A. Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action. Cell Mol Life Sci 2022; 79:539. [PMID: 36194371 PMCID: PMC11802982 DOI: 10.1007/s00018-022-04551-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022]
Abstract
Breast cancer (BC) is one of the most common cancers in females and is responsible for the highest cancer-related deaths following lung cancer. The complex tumor microenvironment and the aggressive behavior, heterogenous nature, high proliferation rate, and ability to resist treatment are the most well-known features of BC. Accordingly, it is critical to find an effective therapeutic agent to overcome these deleterious features of BC. Resveratrol (RES) is a polyphenol and can be found in common foods, such as pistachios, peanuts, bilberries, blueberries, and grapes. It has been used as a therapeutic agent for various diseases, such as diabetes, cardiovascular diseases, inflammation, and cancer. The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis. In addition, the synergistic effects of RES in combination with other chemotherapeutic agents, such as docetaxel, paclitaxel, cisplatin, and/or doxorubicin may contribute to enhancing the anticancer properties of RES on BC cells. Although, it demonstrates promising therapeutic features, the low water solubility of RES limits its use, suggesting the use of delivery systems to improve its bioavailability. Several types of nano drug delivery systems have therefore been introduced as good candidates for RES delivery. Due to RES's promising potential as a chemopreventive and chemotherapeutic agent for BC, this review aims to explore the anticancer mechanisms of RES using the most up to date research and addresses the effects of using nanomaterials as delivery systems to improve the anticancer properties of RES.
Collapse
Affiliation(s)
- Mitra Behroozaghdam
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, 193951495, Iran
| | - Maryam Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, 193951495, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, 4913815739, Iran
| | - Davood Kamali
- School of Medicine, Tehran University of Medical Sciences, Tehran, 141556559, Iran
| | - Salar Javanshir
- School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, 193951495, Iran
| | - Farzaneh Hasani Sadi
- School of Medicine, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, 193951495, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417935840, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, 1477893855, Iran.
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Danielle De Greef
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
2
|
Bailly C. A world tour in the name of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154080. [PMID: 35405614 DOI: 10.1016/j.phymed.2022.154080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Names of natural products (NP) are usually given depending on the species of origin, be it a plant, a marine organism or a microbial species. In some cases, names have been given with reference to people, animals, music, foods or places. Many NP refer to countries, cities or specific places such as mountains, deserts, seas and oceans. PURPOSE On the basis of NP names, a world tour has been imagined referring to more than one hundred NP with names evocative of over 50 countries and regions. RESULTS The world tour goes from UK (britannin) to Italy (vaticanol) in Europe, from Uganda (ugandoside) to Senegal (senegalene, senegalenines) in Africa, from Brazil (brasilin) to Chile (santiaguine) in South America, from Utah (utahin) to Florida (floridanolide) in the US. It includes Central America (mexicanin, panamine) and the Caribbean islands (jamaicin, bahamaolides). It also crosses Alaska (alaskene) and Canada (quebecol, canadaline). The tour continues throughout Asia, from Thailand (thailandine) to China (Chinaldine) and Pakistan (pakistanamine), to finally reaches Oceania with Australia (australigenin) and Vanuatu (vanuatine), among other countries. This virtual journey, without bordure or wall, brings us to the highest mountains (himalayamine), the deepest oceans (pacificins) and the largest deserts (desertomycin). CONCLUSION In the current period of COVID-19 pandemia, with restricted opportunities for international travels, this NP name-based virtual journey offers a world tour to learn more from nature and to inspire scientists to contribute to the field of NP discovery and drug design. There are also limitations associated with the use of trivial names for NP. NP names can be further exploited for teaching and learning.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal) 59290, France.
| |
Collapse
|
3
|
Jin Z, Chen Y, Weng X, Huang A, Lin S, Li H. Cleavage of cyclic AMP-responsive element-binding protein H aggravates myocardial hypoxia reperfusion injury in a hepatocyte-myocardial cell co-culture system. J Int Med Res 2020; 48:300060520904835. [PMID: 32389049 PMCID: PMC7221173 DOI: 10.1177/0300060520904835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE This study aimed to determine whether proinflammatory cytokines have an effect on myocardial cells (MCs) and hepatocytes during myocardial ischemia to induce cyclic AMP-responsive element-binding protein H (CREBH) cleavage, activate the acute phase response in the liver, and cause a superimposed injury in MCs. METHODS In this study, a hepatocyte-MC transwell co-culture system was used to investigate the relationship between myocardial hypoxia/reperfusion injury and CREBH cleavage. MCs and hepatocytes of neonatal rats were obtained from the ventricles and livers of Sprague-Dawley rats, respectively. MCs were inoculated into the lower chamber of transwell chambers for 12 hours under hypoxia. Levels of the endoplasmic reticulum stress protein glucose-regulated protein 78 in MCs, CREBH in hepatocytes, inflammatory factor (tumor necrosis factor-α and interleukin-6) levels, and cell viability were evaluated. The effect of CREBH knockdown was also studied using a CREBH-specific short hairpin RNA (Ad-CREBHi). RESULTS We found that proinflammatory cytokines affect MCs and hepatocytes during myocardial ischemia to induce CREBH cleavage, activate the acute phase response in the liver, and cause superimposed injury in MCs. CONCLUSIONS Expression of CREBH aggravates myocardial injury during myocardial ischemia.
Collapse
Affiliation(s)
- Zehao Jin
- Department of Cardiology, The First Affiliated Hospital of
Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Chen
- Department of Cardiology, The Second Affiliated Hospital of
Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaochun Weng
- Department of Cardiology, The First Affiliated Hospital of
Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anwu Huang
- Department of Cardiology, The First Affiliated Hospital of
Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuang Lin
- Department of Cardiology, The First Affiliated Hospital of
Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiying Li
- Department of Cardiology, The First Affiliated Hospital of
Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, Shenzhen University General Hospital,
Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Kanbara K, Otsuki Y, Watanabe M, Yokoe S, Mori Y, Asahi M, Neo M. GABA B receptor regulates proliferation in the high-grade chondrosarcoma cell line OUMS-27 via apoptotic pathways. BMC Cancer 2018. [PMID: 29514603 PMCID: PMC5842535 DOI: 10.1186/s12885-018-4149-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-grade chondrosarcoma, which has a high incidence of local recurrence and pulmonary metastasis despite surgical resection, is associated with poor prognosis. Therefore, new and effective adjuvant therapies are urgently required for this disease. Gamma-aminobutyric acid (GABA), which acts as a neurotrophic factor during nervous system development, is related to the proliferation and migration of certain cancer cells. The GABAergic system, which is composed of GABA, the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD), and GABA receptors, has an important function in nerve growth and development of neural crest. Therefore, the GABAergic system may play important functional roles in the proliferation of chondrosarcoma cells, which are derived from neural crest cells. We examined the anti-tumor effects of the GABAergic system on a chondrosarcoma cell line. METHODS We evaluated the underlying mechanisms of the anti-tumor effects of the GABAergic system, such as the involvement of different signaling pathways, apoptosis, and cell cycle arrest, in the high-grade chondrosarcoma cell line OUMS-27. In addition, we performed whole-cell patch-clamp recordings for Ca2+ currents and evaluated the changes in intracellular Ca2+ concentration via Ca2+ channels, which are related to the GABAB receptor in high-grade chondrosarcoma cells. RESULTS The GABAB receptor antagonist CGP had anti-tumor effects on high-grade chondrosarcoma cells in a dose-dependent manner. The activities of caspase 3 and caspase 9 were significantly elevated in CGP-treated cells compared to in untreated cells. The activity of caspase 8 did not differ significantly between untreated cells and CGP-treated cells. However, caspase 8 tended to be up-regulated in CGP-treated cells. The GABAB receptor antagonist exhibited anti-tumor effects at the G1/S cell cycle checkpoint and induced apoptosis via dual inhibition of the PI3/Akt/mTOR and MAPK signaling pathways. Furthermore, the changes in intracellular Ca2+ via GABAB receptor-related Ca2+ channels inhibited the proliferation of high-grade chondrosarcoma cells by inducing and modulating apoptotic pathways. CONCLUSIONS The GABAB receptor antagonist may improve the prognosis of high-grade chondrosarcoma by exerting anti-tumor effects via different signaling pathways, apoptosis, cell cycle arrest, and Ca2+ channels in high-grade chondrosarcoma cells.
Collapse
Affiliation(s)
- Kiyoto Kanbara
- Department of Orthopedics, Osaka Medical College Takatsuki, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan.
| | - Yoshinori Otsuki
- President of Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Masahito Watanabe
- Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences, Asahigaoka, Kashihara, Osaka, Japan
| | - Syunichi Yokoe
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Yoshiaki Mori
- Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences, Asahigaoka, Kashihara, Osaka, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Masashi Neo
- Department of Orthopedics, Osaka Medical College Takatsuki, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
5
|
Synergistic anti-proliferative effects of mTOR and MEK inhibitors in high-grade chondrosarcoma cell line OUMS-27. Acta Histochem 2018; 120:142-150. [PMID: 29397960 DOI: 10.1016/j.acthis.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
Chondrosarcoma is a malignant bone tumor that produces cartilaginous neoplastic tissue. Owing to the absence of an effective adjuvant therapy, high-grade chondrosarcoma has a poor prognosis. Therefore, it is important to develop an effective adjuvant therapy to prevent the recurrence and metastasis. Mammalian target of rapamycin (mTOR), a central regulator of cell growth, metabolism, proliferation, and survival, is considered an important target for anticancer drug development. The mitogen activated protein kinase (MAPK) pathway is another highly implicated cellular pathway in cancer and is thought to have compensatory effects in response to the inhibition of the phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR signaling pathway. We investigated the mechanism of anti-proliferative effect of the mTOR inhibitor rapamycin and MAPK/ERK (MEK) inhibitor PD 0325901, and the combined effect of rapamycin and PD 0325901 on human chondrosarcoma cell line (OUMS-27). Combination therapy with rapamycin and PD 0325901 showed a stronger anti-proliferative effect on OUMS-27 cells than rapamycin monotherapy. We confirmed that the dual inhibition of the PI3K/Akt/mTOR and RAF/MEK/ERK signaling pathways had synergistic anti-proliferative effects in OUMS-27. Our results suggest that combination therapy of mTOR and MEK inhibitor could be an effective therapeutic approach against chondrosarcoma.
Collapse
|
6
|
Espinoza JL, Inaoka PT. Gnetin-C and other resveratrol oligomers with cancer chemopreventive potential. Ann N Y Acad Sci 2017; 1403:5-14. [PMID: 28856688 DOI: 10.1111/nyas.13450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Resveratrol has been extensively studied to investigate its biological effects, including its chemopreventive potential against cancer. Over the past decade, various resveratrol oligomers, both naturally occurring and synthetic, have been described. These resveratrol oligomers result from the polymerization of two or more resveratrol units to form dimers, trimers, tetramers, or even more complex derivatives. Some oligomers appear to have antitumor activities that are similar or superior to monomeric resveratrol. In this review, we discuss resveratrol oligomers with anticancer potential, with emphasis on well-characterized compounds, such as the dimer gnetin-C and other oligomers from Gnetum gnemon, whose safety, pharmacokinetic, and biological activities have been studied in humans.
Collapse
Affiliation(s)
- J Luis Espinoza
- Department of Hematology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Pleiades T Inaoka
- Department of Physical Therapy, School of Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
7
|
Chen S, Tao J, Zhong F, Jiao Y, Xu J, Shen Q, Wang H, Fan S, Zhang Y. Polydatin down-regulates the phosphorylation level of Creb and induces apoptosis in human breast cancer cell. PLoS One 2017; 12:e0176501. [PMID: 28467448 PMCID: PMC5415055 DOI: 10.1371/journal.pone.0176501] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
Polydatin (PD), a component isolated from Polygonum cuspidatum, has a number of biological functions. However, the antitumor activity of PD has been poorly investigated. In this study, the effect of PD on cell proliferation was evaluated by thiazolyl blue tetrazolium bromide assay. Cell cycle distribution and apoptosis were investigated by flow cytometry. The phosphorylation levels of panel of phosphor-kinases were detected by human phospho-kinase arrays. The expression of several proteins associated with cell cycle and apoptosis were analyzed by Western blot analysis. Results showed that PD effectively inhibited the growth of MDA-MB-231 and MCF-7 breast cancer cell lines. Cell cycle analysis demonstrated that PD induced S-phase cell cycle arrest. Human phosphor-kinase arrays showed that the phosphorylation level of cAMP response element-bingding proteins(Creb) was down-regulated, and the results were further confirmed by Western blot analysis. Western blot analysis showed that the expression of protein of cyclin D1 decreased in a time- and dose- dependent manner. Results suggest that PD is a potential therapeutic natural compound.
Collapse
Affiliation(s)
- Sijia Chen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jialong Tao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Fengyun Zhong
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Yang Jiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jiaying Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Haichao Wang
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, United States of America
| | - Saijun Fan
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu, P.R. China
- * E-mail: (YZ); (SF)
| | - Yusong Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- * E-mail: (YZ); (SF)
| |
Collapse
|
8
|
Ci Y, Qiao J, Han M. Molecular Mechanisms and Metabolomics of Natural Polyphenols Interfering with Breast Cancer Metastasis. Molecules 2016; 21:E1634. [PMID: 27999314 PMCID: PMC6273039 DOI: 10.3390/molecules21121634] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 01/22/2023] Open
Abstract
Metastatic cancers are the main cause of cancer-related death. In breast primary cancer, the five-year survival rate is close to 100%; however, for metastatic breast cancer, that rate drops to a mere 25%, due in part to the paucity of effective therapeutic options for treating metastases. Several in vitro and in vivo studies have indicated that consumption of natural polyphenols significantly reduces the risk of cancer metastasis. Therefore, this review summarizes the research findings involving the molecular mechanisms and metabolomics of natural polyphenols and how they may be blocking breast cancer metastasis. Most natural polyphenols are thought to impair breast cancer metastasis through downregulation of MMPs expression, interference with the VEGF signaling pathway, modulation of EMT regulator, inhibition of NF-κB and mTOR expression, and other related mechanisms. Intake of natural polyphenols has been shown to impact endogenous metabolites and complex biological metabolic pathways in vivo. Breast cancer metastasis is a complicated process in which each step is modulated by a complex network of signaling pathways. We hope that by detailing the reported interactions between breast cancer metastasis and natural polyphenols, more attention will be directed to these promising candidates as effective adjunct therapies against metastatic breast cancer in the clinic.
Collapse
Affiliation(s)
- Yingqian Ci
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China.
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China.
| | - Mei Han
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China.
| |
Collapse
|
9
|
Kamaleddin MA. The paradoxical pro- and antiangiogenic actions of resveratrol: therapeutic applications in cancer and diabetes. Ann N Y Acad Sci 2016; 1386:3-15. [PMID: 27880855 DOI: 10.1111/nyas.13283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023]
Abstract
Resveratrol, a polyphenol found in grapes, peanuts, and red wine, plays different roles in diseases such as cancer and diabetes. Existing information indicates that resveratrol provides cardioprotection, as evidenced by superior postischemic ventricular recovery, reduced myocardial infarct size, and decreased number of apoptotic cardiomyocytes associated with resveratrol treatment in animal models. Cardiovascular benefits are experienced in humans with routine but not acute consumption of red wine. In this concise review, the paradoxical pro- and antiangiogenic effects of resveratrol are described, and different roles for resveratrol in the formation of new blood vessels are explained through different mechanisms. It is hypothesized that the effects of resveratrol on different cell types are not only dependent on its concentration but also on the physical and chemical conditions surrounding cells. The findings discussed herein shed light on potential therapeutic proapoptotic and antiangiogenic applications of low-dose resveratrol treatment in the prevention and treatment of different diseases.
Collapse
|
10
|
Sirt1 Is Required for Resveratrol-Mediated Chemopreventive Effects in Colorectal Cancer Cells. Nutrients 2016; 8:145. [PMID: 26959057 PMCID: PMC4808874 DOI: 10.3390/nu8030145] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/05/2016] [Accepted: 02/18/2016] [Indexed: 01/25/2023] Open
Abstract
Sirt1 is a NAD+-dependent protein-modifying enzyme involved in regulating gene expression, DNA damage repair, metabolism and survival, as well as acts as an important subcellular target of resveratrol. The complex mechanisms underlying Sirt1 signaling during carcinogenesis remain controversial, as it can serve both as a tumor promoter and suppressor. Whether resveratrol-mediated chemopreventive effects are mediated via Sirt1 in CRC growth and metastasis remains unclear; which was the subject of this study. We found that resveratrol suppressed proliferation and invasion of two different human CRC cells in a dose-dependent manner, and interestingly, this was accompanied with a significant decrease in Ki-67 expression. By transient transfection of CRC cells with Sirt1-ASO, we demonstrated that the anti-tumor effects of resveratrol on cells was abolished, suggesting the essential role of this enzyme in the resveratrol signaling pathway. Moreover, resveratrol downregulated nuclear localization of NF-κB, NF-κB phosphorylation and its acetylation, causing attenuation of NF-κB-regulated gene products (MMP-9, CXCR4) involved in tumor-invasion and metastasis. Finally, Sirt1 was found to interact directly with NF-κB, and resveratrol did not suppress Sirt1-ASO-induced NF-κB phosphorylation, acetylation and NF-κB-regulated gene products. Overall, our results demonstrate that resveratrol can suppress tumorigenesis, at least in part by targeting Sirt1 and suppression of NF-κB activation.
Collapse
|
11
|
Sinha D, Sarkar N, Biswas J, Bishayee A. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin Cancer Biol 2016; 40-41:209-232. [PMID: 26774195 DOI: 10.1016/j.semcancer.2015.11.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/13/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
Abstract
Globally, breast cancer is the most frequently diagnosed cancer among women. The major unresolved problems with metastatic breast cancer is recurrence after receiving objective response to chemotherapy, drug-induced side effects of first line chemotherapy and delayed response to second line of treatment. Unfortunately, very few options are available as third line treatment. It is clear that under such circumstances there is an urgent need for new and effective drugs. Phytochemicals are among the most promising chemopreventive treatment options for the management of cancer. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a non-flavonoid polyphenol present in several dietary sources, including grapes, berries, soy beans, pomegranate and peanuts, has been shown to possess a wide range of health benefits through its effect on a plethora of molecular targets.The present review encompasses the role of resveratrol and its natural/synthetic analogue in the light of their efficacy against tumor cell proliferation, metastasis, epigenetic alterations and for induction of apoptosis as well as sensitization toward chemotherapeutic drugs in various in vitro and in vivo models of breast cancer. The roles of resveratrol as a phytoestrogen, an aromatase inhibitor and in stem cell therapy as well as adjuvent treatment are also discussed. This review explores the full potential of resveratrol in breast cancer prevention and treatment with current limitations, challenges and future directions of research.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India.
| | - Nivedita Sarkar
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Jaydip Biswas
- Clinical and Translational Research, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL 33169, USA.
| |
Collapse
|
12
|
Buhrmann C, Shayan P, Kraehe P, Popper B, Goel A, Shakibaei M. Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem Pharmacol 2015; 98:51-68. [PMID: 26310874 DOI: 10.1016/j.bcp.2015.08.105] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
Abstract
5-Fluorouracil (5-FU), a common chemotherapeutic agent used for the treatment of colorectal cancer (CRC), by itself has inadequate response rates; highlighting the need for novel and improved treatment regimens for these patients. Resveratrol, a naturally-occurring polyphenol, has been linked with chemosensitizing potential and anticancer properties; however, the underlying mechanisms for these effects remain poorly understood. The effect of resveratrol in parental CRC cell lines (HCT116, SW480) and their corresponding isogenic 5-FU-chemoresistant derived clones (HCT116R, SW480R) was examined by MTT assays, intercellular junction formation and apoptosis by electron- and immunoelectron microscopy, nuclear factor-kappaB (NF-κB) and NF-κB regulated gene products by western blot analysis in a 3D-alginate microenvironment. Resveratrol blocked the proliferation of all four CRC cell lines and synergized the invasion inhibitory effects of 5-FU. Interestingly, resveratrol induced a transition from 5-FU-induced formation of microvilli to a planar cell surface, which was concomitant with up-regulation of desmosomes, gap- and tight junctions (claudin-2) and adhesion molecules (E-cadherin) expression in HCT116 and HCT116R cells. Further, resveratrol significantly attenuated drug resistance through inhibition of epithelial-mesenchymal transition (EMT) factors (decreased vimentin and slug, increased E-cadherin) and down-regulation of NF-κB activation and its translocation to the nucleus and abolished NF-κB-regulated gene end-products (MMP-9, caspase-3). Moreover, this suppression was mediated through inhibition of IκBα kinase and IκBα phosphorylation and degradation. Our results demonstrate that resveratrol can potentiate the anti-tumor effects of 5-FU on CRC cells by chemosensitizing them, inhibiting an EMT phenotype via up-regulation of intercellular junctions and by down-regulation of NF-κB pathway.
Collapse
Affiliation(s)
- Constanze Buhrmann
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Parviz Shayan
- Investigating Institute of Molecular Biological System Transfer, Tehran 1417863171, Iran; Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran, 141556453, Iran
| | - Patricia Kraehe
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Biomedical Center, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany.
| |
Collapse
|
13
|
Keylor MH, Matsuura BS, Stephenson CRJ. Chemistry and Biology of Resveratrol-Derived Natural Products. Chem Rev 2015; 115:8976-9027. [PMID: 25835567 PMCID: PMC4566929 DOI: 10.1021/cr500689b] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell H Keylor
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Bryan S Matsuura
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corey R J Stephenson
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Resveratrol and its oligomers: modulation of sphingolipid metabolism and signaling in disease. Arch Toxicol 2014; 88:2213-32. [PMID: 25344023 DOI: 10.1007/s00204-014-1386-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/08/2014] [Indexed: 01/10/2023]
Abstract
Resveratrol, a natural compound endowed with multiple health-promoting effects, has received much attention given its potential for the treatment of cardiovascular, inflammatory, neurodegenerative, metabolic and age-related diseases. However, the translational potential of resveratrol has been limited by its specificity, poor bioavailability and uncertain toxicity. In recent years, there has been an accumulation of evidence demonstrating that resveratrol modulates sphingolipid metabolism. Moreover, resveratrol forms higher order oligomers that exhibit better selectivity and potency in modulating sphingolipid metabolism. This review evaluates the evidence supporting the modulation of sphingolipid metabolism and signaling as a mechanism of action underlying the therapeutic efficacy of resveratrol and oligomers in diseases, such as cancer.
Collapse
|
15
|
Resveratrol oligomers for the prevention and treatment of cancers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:765832. [PMID: 24799982 PMCID: PMC3988857 DOI: 10.1155/2014/765832] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/12/2014] [Indexed: 01/21/2023]
Abstract
Resveratrol (3,4′,5-trihydroxystilbene) is a naturally derived phytoalexin stilbene isolated from grapes and other plants, playing an important role in human health and is well known for its extensive bioactivities, such as antioxidation, anti-inflammatory, anticancer. In addition to resveratrol, scientists also pay attention to resveratrol oligomers, derivatives of resveratrol, which are characterized by the polymerization of two to eight, or even more resveratrol units, and are the largest group of oligomeric stilbenes. Resveratrol oligomers have multiple beneficial properties, of which some are superior in activity, stability, and selectivity compared with resveratrol. The complicated structures and diverse biological activities are of significant interest for drug research and development and may provide promising prospects as cancer preventive and therapeutical agents. This review presents an overview on preventive or anticancer properties of resveratrol oligomers.
Collapse
|
16
|
Cheng YQ, Jiang R, Huang W, Wei W, Chen CJ, Tan RX, Ge HM. Hopeachinols E–K, novel oligostilbenoids from the stem bark of Hopea chinensis. RSC Adv 2014. [DOI: 10.1039/c4ra03371j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Seven novel oligostilbenoids, isolated from Hopea chinensis, may biosynthetically derived from the common intermediate vaticanol A.
Collapse
Affiliation(s)
- Yi-Qing Cheng
- Institute of Functional Biomolecules
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, People's Republic of China
| | - Rong Jiang
- Institute of Functional Biomolecules
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, People's Republic of China
| | - Wei Huang
- Institute of Functional Biomolecules
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, People's Republic of China
| | - Wei Wei
- Institute of Functional Biomolecules
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, People's Republic of China
| | - Chao-Jun Chen
- Institute of Functional Biomolecules
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, People's Republic of China
| | - Ren-Xiang Tan
- Institute of Functional Biomolecules
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, People's Republic of China
| | - Hui-Ming Ge
- Institute of Functional Biomolecules
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, People's Republic of China
| |
Collapse
|
17
|
Zhang Y, Zhuang Z, Meng Q, Jiao Y, Xu J, Fan S. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest. Oncol Lett 2013; 7:295-301. [PMID: 24348867 PMCID: PMC3861602 DOI: 10.3892/ol.2013.1696] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 11/08/2013] [Indexed: 11/06/2022] Open
Abstract
Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yusong Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China ; School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qinghui Meng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Yang Jiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jiaying Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Saijun Fan
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
18
|
Shibata MA, Ambati J, Shibata E, Yoshidome K, Harada-Shiba M. Mammary cancer gene therapy targeting lymphangiogenesis: VEGF-C siRNA and soluble VEGF receptor-2, a splicing variant. Med Mol Morphol 2012; 45:179-84. [PMID: 23224595 DOI: 10.1007/s00795-012-0576-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/14/2012] [Indexed: 11/26/2022]
Abstract
Metastasis contributes significantly to cancer mortality, and the most common pathway of initial dissemination is via the afferent ducts of the lymphatics. Overexpression of vascular endothelial growth factor (VEGF)-C has been associated with lymphangiogenesis and lymph node metastasis in a multitude of human neoplasms, including breast cancers. We recently reported that both VEGF-C siRNA and endogenous soluble vascular endothelial growth factor receptor-2 (esVEGFR-2, a new splicing variant) inhibit VEGF-C function and metastasis in a mouse model of metastatic mammary cancer. Here we briefly review our previous experimental work, specifically targeting tumor lymphangiogenesis, in which metastatic mouse mammary cancers received direct intratumoral injections of either expression vectors VEGF-C siRNA or esVEGFR-2, or the empty plasmid vector, once a week for 6 or 8 weeks, followed by in vivo gene electrotransfer of the injected tumors. Throughout our study, both tumor lymphangiogenesis and the multiplicity of lymph node metastasis were significantly inhibited, with an overall reduction in tumor growth, by both VEGF-C siRNA and esVEGFR-2; further, a significant reduction in the number of dilated lymphatic vessels containing intraluminal cancer cells was observed with both treatments. Thus, therapeutic strategies targeting lymphangiogenesis may have great clinical significance for the treatment of metastatic human breast cancer.
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Laboratory of Anatomy and Histopathology, Faculty of Health Science, Osaka Health Science University, 1-9-27 Temma, Osaka 530-0043, Japan.
| | | | | | | | | |
Collapse
|
19
|
Abe N, Ito T, Oyama M, Sawa R, Takahashi Y, Iinuma M. Resveratrol derivatives from Vatica albiramis. Chem Pharm Bull (Tokyo) 2011; 59:452-7. [PMID: 21467673 DOI: 10.1248/cpb.59.452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three new stilbene derivatives, albiraminols A (1) (resveratrol hexamer), B (2) (resveratrol dimer), and vatalbinoside F (3) (mono-glucoside of resveratrol dimer), along with malibatol were isolated from acetone soluble portions of the stem of Vatica albiramis. The structures of the isolates were established on the basis of spectroscopic analyses, including a detailed NMR spectroscopic investigation. The biosynthetic aspects of the isolates are discussed in this paper. Compound 1 is composed of tetrameric resveratrol (vaticanol B (1A)) and dimeric resveratrol (1B) and is the first instance of the resveratrol derivative bearing a 5,6,11,12-tetrahydro-5,11-epoxydibenzo[a,e][8]annulene ring system. Compound 2 possesses a novel 4,5-dihydro-13-oxabenzo[3,4]azuleno[7,8,1-jkl]phenanthrene skeleton in the framework.
Collapse
Affiliation(s)
- Naohito Abe
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, 1–25–4 Daigaku-nishi, Gifu, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Shibata MA, Iinuma M, Morimoto J, Kurose H, Akamatsu K, Okuno Y, Akao Y, Otsuki Y. α-Mangostin extracted from the pericarp of the mangosteen (Garcinia mangostana Linn) reduces tumor growth and lymph node metastasis in an immunocompetent xenograft model of metastatic mammary cancer carrying a p53 mutation. BMC Med 2011; 9:69. [PMID: 21639868 PMCID: PMC3121600 DOI: 10.1186/1741-7015-9-69] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/03/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The mangosteen fruit has a long history of medicinal use in Chinese and Ayurvedic medicine. Recently, the compound α-mangostin, which is isolated from the pericarp of the fruit, was shown to induce cell death in various types of cancer cells in in vitro studies. This led us to investigate the antitumor growth and antimetastatic activities of α-mangostin in an immunocompetent xenograft model of mouse metastatic mammary cancer having a p53 mutation that induces a metastatic spectrum similar to that seen in human breast cancers. METHODS Mammary tumors, induced by inoculation of BALB/c mice syngeneic with metastatic BJMC3879luc2 cells, were subsequently treated with α-mangostin at 0, 10 and 20 mg/kg/day using mini-osmotic pumps and histopathologically examined. To investigate the mechanisms of antitumor ability by α-mangostin, in vitro studies were also conducted. RESULTS Not only were in vivo survival rates significantly higher in the 20 mg/kg/day α-mangostin group versus controls, but both tumor volume and the multiplicity of lymph node metastases were significantly suppressed. Apoptotic levels were significantly increased in the mammary tumors of mice receiving 20 mg/kg/day and were associated with increased expression of active caspase-3 and -9. Other significant effects noted at this dose level were decreased microvessel density and lower numbers of dilated lymphatic vessels containing intraluminal tumor cells in mammary carcinoma tissues. In vitro, α-mangostin induced mitochondria-mediated apoptosis and G1-phase arrest and S-phase suppression in the cell cycle. Since activation by Akt phosphorylation plays a central role in a variety of oncogenic processes, including cell proliferation, anti-apoptotic cell death, angiogenesis and metastasis, we also investigated alterations in Akt phosphorylation induced by α-mangostin treatment both in vitro and in vivo. Quantitative analysis and immunohistochemistry showed that α-mangostin significantly decreased the levels of phospho-Akt-threonine 308 (Thr308), but not serine 473 (Ser473), in both mammary carcinoma cell cultures and mammary carcinoma tissues in vivo. CONCLUSIONS Since lymph node involvement is the most important prognostic factor in breast cancer patients, the antimetastatic activity of α-mangostin as detected in mammary cancers carrying a p53 mutation in the present study may have specific clinical applications. In addition, α-mangostin may have chemopreventive benefits and/or prove useful as an adjuvant therapy, or as a complementary alternative medicine in the treatment of breast cancer.
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Laboratory of Anatomy and Histopathology, Faculty of Health Science, Osaka Health Science University, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ito T, Masuda Y, Abe N, Oyama M, Sawa R, Takahashi Y, Chelladurai V, Iinuma M. Chemical constituents in the leaves of Vateria indica. Chem Pharm Bull (Tokyo) 2011; 58:1369-78. [PMID: 20930407 DOI: 10.1248/cpb.58.1369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comprehensive re-investigation of the chemical constituents in the leaves of Vateria indica (Dipterocarpaceae) resulted in the isolation of a novel resveratrol dimeric dimer having a C(2)-symmetric structure, vateriaphenol F (1), and two new O-glucosides of resveratrol oligomers, vateriosides A (2) (resveratrol dimer) and B (4) (resveratrol tetramer), along with a new natural compound (3) and 33 known compounds including 26 resveratrol derivatives. The absolute structures were elucidated by spectroscopic analysis, including two dimensional NMR and circular dichroism (CD) spectra.
Collapse
Affiliation(s)
- Tetsuro Ito
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Iinuma M, Ito T, Abe N, Oyama M, Sawa R, Takahashi Y. Resveratrol Dimers with an Oxabicyclo Ring in Vatica albiramis. HETEROCYCLES 2011. [DOI: 10.3987/com-10-12116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Shibata MA, Morimoto J, Shibata E, Kurose H, Akamatsu K, Li ZL, Kusakabe M, Ohmichi M, Otsuki Y. Raloxifene inhibits tumor growth and lymph node metastasis in a xenograft model of metastatic mammary cancer. BMC Cancer 2010; 10:566. [PMID: 20958960 PMCID: PMC2978204 DOI: 10.1186/1471-2407-10-566] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effects of raloxifene, a novel selective estrogen receptor modulator, were studied in a mouse metastatic mammary cancer model expressing cytoplasmic ERα. METHODS Mammary tumors, induced by inoculation of syngeneic BALB/c mice with BJMC3879luc2 cells, were subsequently treated with raloxifene at 0, 18 and 27 mg/kg/day using mini-osmotic pumps. RESULTS In vitro study demonstrated that the ERα in BJMC3879luc2 cells was smaller (between 50 and 64 kDa) than the normal-sized ERα (66 kDa) and showed cytoplasmic localization. A statistically significant but weak estradiol response was observed in this cell line. When BJMC3879luc2 tumors were implanted into mice, the ERα mRNA levels were significantly higher in females than in males. In vitro studies showed that raloxifene induced mitochondria-mediated apoptosis and cell-cycle arrest in the G1-phase and a decrease in the cell population in the S-phase. In animal experiments, tumor volumes were significantly suppressed in the raloxifene-treated groups. The multiplicity of lymph node metastasis was significantly decreased in the 27 mg/kg group. Levels of apoptosis were significantly increased in the raloxifene-treated groups, whereas the levels of DNA synthesis were significantly decreased in these groups. No differences in microvessel density in tumors were observed between the control and raloxifene-treated groups. The numbers of dilated lymphatic vessels containing intraluminal tumor cells were significantly reduced in mammary tumors in the raloxifene-treated groups. The levels of ERα mRNA in mammary tumors tended to be decreased in the raloxifene-treated groups. CONCLUSION These results suggest that the antimetastatic activity of raloxifene in mammary cancer expressing cytoplasmic ERα may be a crucial finding with clinical applications and that raloxifene may be useful as an adjuvant therapy and for the chemoprevention of breast cancer development.
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Junji Morimoto
- Laboratory Animal Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Eiko Shibata
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
- Department of Bioscience, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Hitomi Kurose
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kanako Akamatsu
- Department of Systems Bioscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Zhong-Lian Li
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Moriaki Kusakabe
- Research Center for Food Safety, University of Tokyo Graduate School of Agricultural and Life Sciences, Tokyo, Japan
| | - Masahide Ohmichi
- Department of Gynecology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Yoshinori Otsuki
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
24
|
Abe N, Ito T, Ohguchi K, Nasu M, Masuda Y, Oyama M, Nozawa Y, Ito M, Iinuma M. Resveratrol oligomers from Vatica albiramis. JOURNAL OF NATURAL PRODUCTS 2010; 73:1499-1506. [PMID: 20735051 DOI: 10.1021/np1002675] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Five new stilbenoids, vatalbinosides A-E (1-5), and 13 known compounds (6-18) were isolated from the stem of Vatica albiramis. The effects of these new compounds on interleukin-1β-induced production of matrix metalloproteinase-1 (MMP-1) in human dermal fibroblasts were examined. Three resveratrol tetramers, (-)-hopeaphenol (6), vaticanol C (13), and stenophyllol C (14), were identified as strong inhibitors of MMP-1 production.
Collapse
Affiliation(s)
- Naohito Abe
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu Gifu 501-1196, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Harikumar KB, Kunnumakkara AB, Sethi G, Diagaradjane P, Anand P, Pandey MK, Gelovani J, Krishnan S, Guha S, Aggarwal BB. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int J Cancer 2010; 127:257-268. [PMID: 19908231 PMCID: PMC3090706 DOI: 10.1002/ijc.25041] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gemcitabine, while a standard treatment of advanced pancreatic cancer (PaCa), alone is not very effective. New agents that are safe and effective are highly needed. Resveratrol is one such agent which is safe and multitargeted; and has been linked with suppression of survival, proliferation, invasion and angiogenesis of cancer. Whether resveratrol can sensitize PaCa to gemcitabine in vitro and in vivo was investigated. We established PaCa xenografts in nude mice, randomized into 4 groups, and treated with vehicle, gemcitabine, resveratrol and with combination. Modulation of NF-kappaB and markers of proliferation, angiogenesis and invasion were ascertained using electrophoretic mobility shift assay (EMSA), immunohistochemistry and western blot analysis. Resveratrol inhibited the proliferation of 4 different human PaCa cell lines, synergized the apoptotic effects of gemcitabine, inhibited the constitutive activation of NF-kappaB and expression of bcl-2, bcl-xL, COX-2, cyclin D1 MMP-9 and VEGF. In an orthotopic model of human PaCa, we found that resveratrol significantly suppressed the growth of the tumor (p < 0.001) and this effect was further enhanced by gemcitabine (p < 0.001). Both the markers of proliferation index Ki-67 and the micro vessel density CD31 were significantly downregulated in tumor tissue by the combination of gemcitabine and resveratrol (p < 0.001 vs. control; p < 0.01 vs. gemcitabine). As compared to vehicle control, resveratrol also suppressed the NF-kappaB activation and expression of cyclin D1, COX-2, ICAM-1, MMP-9 and survivin. Overall our results demonstrate that resveratrol can potentiate the effects of gemcitabine through suppression of markers of proliferation, invasion, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Kuzhuvelil B. Harikumar
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Ajaikumar B. Kunnumakkara
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gautam Sethi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Parmeswaran Diagaradjane
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Preetha Anand
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Manoj K. Pandey
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Juri Gelovani
- Department of Experimental Diagnostic Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Sushovan Guha
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Bharat B. Aggarwal
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
26
|
Tsukamoto T, Nakata R, Tamura E, Kosuge Y, Kariya A, Katsukawa M, Mishima S, Ito T, Iinuma M, Akao Y, Nozawa Y, Arai Y, Namura S, Inoue H. Vaticanol C, a resveratrol tetramer, activates PPARalpha and PPARbeta/delta in vitro and in vivo. Nutr Metab (Lond) 2010; 7:46. [PMID: 20504373 PMCID: PMC2882917 DOI: 10.1186/1743-7075-7-46] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/27/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Appropriate long-term drinking of red wine is associated with a reduced risk of cardiovascular disease. Resveratrol, a well-known SIRT1 activator is considered to be one of the beneficial components contained in red wine, and also developed as a drug candidate. We previously demonstrated that resveratrol protects brain against ischemic stroke in mice through a PPARalpha-dependent mechanism. Here we report the different effects of the oligomers of resveratrol. METHODS We evaluated the activation of PPARs by epsilon-viniferin, a resveratrol dimer, and vaticanol C, a resveratrol tetramer, in cell-based reporter assays using bovine arterial endothelial cells, as well as the activation of SIRT1. Moreover, we tested the metabolic action by administering vaticanol C with the high fat diet to wild-type and PPARalpha-knockout male mice for eight weeks. RESULTS We show that vaticanol C activates PPARalpha and PPARbeta/delta in cell-based reporter assays, but does not activate SIRT1. epsilon-Viniferin shows a similar radical scavenging activity as resveratrol, but neither effects on PPARs and SIRT-1. Eight-week intake of vaticanol C with a high fat diet upregulates hepatic expression of PPARalpha-responsive genes such as cyp4a10, cyp4a14 and FABP1, and skeletal muscle expression of PPARbeta/delta-responsive genes, such as UCP3 and PDK4 (pyruvate dehydrogenase kinase, isoform 4), in wild-type, but not PPARalpha-knockout mice. CONCLUSION Vaticanol C, a resveratrol tetramer, activated PPARalpha and PPARbeta/delta in vitro and in vivo. These findings indicate that activation of PPARalpha and PPARbeta/delta by vaticanol C may be a novel mechanism, affording beneficial effects against lifestyle-related diseases.
Collapse
Affiliation(s)
- Tomoko Tsukamoto
- Department of Food Science and Nutrition, Nara Women's University, Nara, 630-8506, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara, 630-8506, Japan
| | - Emi Tamura
- Department of Food Science and Nutrition, Nara Women's University, Nara, 630-8506, Japan
| | - Yukiko Kosuge
- Department of Food Science and Nutrition, Nara Women's University, Nara, 630-8506, Japan
| | - Aya Kariya
- Department of Food Science and Nutrition, Nara Women's University, Nara, 630-8506, Japan
| | - Michiko Katsukawa
- Department of Food Science and Nutrition, Nara Women's University, Nara, 630-8506, Japan
| | | | - Tetsuro Ito
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Munekazu Iinuma
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Yukihiro Akao
- Gifu International Institute of Biotechnology, Gifu 504-0838, Japan
| | - Yoshinori Nozawa
- Gifu International Institute of Biotechnology, Gifu 504-0838, Japan
| | - Yuji Arai
- Department of Bioscience, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Shobu Namura
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA30310-1495, USA
| | - Hiroyasu Inoue
- Department of Food Science and Nutrition, Nara Women's University, Nara, 630-8506, Japan
| |
Collapse
|
27
|
Bishayee A, Politis T, Darvesh AS. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat Rev 2009; 36:43-53. [PMID: 19910122 DOI: 10.1016/j.ctrv.2009.10.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and lethal diseases in the world. Although the majority of HCC cases occur in developing countries of Asia and Africa, the prevalence of liver cancer has risen considerably in Japan, Western Europe as well as the United States. HCC most commonly develops in patients with chronic liver disease, the etiology of which includes viral hepatitis (B and C), alcohol, obesity, iron overload and dietary carcinogens, including aflatoxins and nitrosamines. The current treatment modalities, including surgical resection and liver transplantation, have been found to be mostly ineffective. Hence, there is an obvious critical need to develop alternative strategies for the chemoprevention and treatment of HCC. Oxidative stress as well as inflammation has been implicated in the development and progression of hepatic neoplasia. Using naturally occurring phytochemicals and dietary compounds endowed with potent antioxidant and antiinflammatory properties is a novel approach to prevent and control HCC. One such compound, resveratrol, present in grapes, berries, peanuts as well as red wine, has emerged as a promising molecule that inhibits carcinogenesis with a pleiotropic mode of action. This review examines the current knowledge on mechanism-based in vitro and in vivo studies on the chemopreventive and chemotherapeutic potential of resveratrol in liver cancer. Pre-clinical and clinical toxicity studies as well as pharmacokinetic data of resveratrol have also been highlighted in this review. Future directions and challenges involved in the use of resveratrol for the prevention and treatment of HCC are also discussed.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, 44272, USA
| | | | | |
Collapse
|
28
|
Abstract
The polyphenolic phytoalexin resveratrol (RSV) and its analogues have received tremendous attention over the past couple of decades because of a number of reports highlighting their benefits in vitro and in vivo in a variety of human disease models, including cardio- and neuroprotection, immune regulation, and cancer chemoprevention. These studies have underscored the high degree of diversity in terms of the signaling networks and cellular effector mechanisms that are affected by RSV. The activity of RSV has been linked to cell-surface receptors, membrane signaling pathways, intracellular signal-transduction machinery, nuclear receptors, gene transcription, and metabolic pathways. The promise shown by RSV has prompted heightened interest in studies aimed at translating these observations to clinical settings. In this review, we present a comprehensive account of the basic chemistry of RSV, its bioavailability, and its multiple intracellular target proteins and signaling pathways.
Collapse
Affiliation(s)
- Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore.
| | | |
Collapse
|
29
|
Bishayee A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2009; 2:409-18. [PMID: 19401532 DOI: 10.1158/1940-6207.capr-08-0160] [Citation(s) in RCA: 353] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a dietary polyphenol derived from grapes, berries, peanuts, and other plant sources. During the last decade, resveratrol has been shown to possess a fascinating spectrum of pharmacologic properties. Multiple biochemical and molecular actions seem to contribute to resveratrol effects against precancerous or cancer cells. Resveratrol affects all three discrete stages of carcinogenesis (initiation, promotion, and progression) by modulating signal transduction pathways that control cell division and growth, apoptosis, inflammation, angiogenesis, and metastasis. The anticancer property of resveratrol has been supported by its ability to inhibit proliferation of a wide variety of human tumor cells in vitro. These in vitro data have led to numerous preclinical animal studies to evaluate the potential of this drug for cancer chemoprevention and chemotherapy. This review provides concise, comprehensive data from preclinical in vivo studies in various rodent models of human cancers, highlighting the related mechanisms of action. Bioavailability, pharmacokinetic, and potential toxicity studies of resveratrol in humans and ongoing interventional clinical trials are also presented. The conclusion describes directions for future resveratrol research to establish its activity and utility as a human cancer preventive and therapeutic drug.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
30
|
Morishima S, Shibata MA, Ohmichi M, Otsuki Y. Raloxifene, a selective estrogen receptor modulator, induces mitochondria-mediated apoptosis in human endometrial carcinoma cells. Med Mol Morphol 2008; 41:132-8. [PMID: 18807138 DOI: 10.1007/s00795-008-0403-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/15/2008] [Indexed: 10/21/2022]
Abstract
Raloxifene is a nonsteroidal benzothiophene that has also been classified as a selective estrogen receptor modulator (SERM) on the basis of studies in which it produced both estrogen-agonistic effects on bone and lipid metabolism and estrogen-antagonistic effects on uterine endometrium and breast tissue. We investigated apoptotic cell death and the apoptotic pathway in human endometrial carcinoma cells (Ishikawa cells) expressing estrogen receptor treated with raloxifene. Cell viability was significantly decreased in Ishikawa cells treated with raloxifene at 20 microM and higher levels. Raloxifene at 20 microM induced 54% inhibition of cell viability after 48 h treatment. Apoptotic parameters were analyzed for determination of apoptotic pathway in Ishikawa cells treated with 20 microM or 40 microM raloxifene for 48 h. The numbers of apoptotic cells were significantly increased in cells treated with raloxifene as compared with control cells. Activities of caspase-3,-8, and-9 were significantly elevated in Ishikawa cells treated with raloxifene. A significant decrease in mitochondrial membrane potential was observed in this treatment. In addition, the levels of cytosolic cytochrome c were significantly elevated in raloxifene-treated cells. Expression of Bid was detected in both control and raloxifene-treated cells, but Bid cleavage was not observed. In caspase inhibitor experiments, cell viability was significantly increased by the caspase-9 inhibitor z-LEHD-fmk and by the caspase-3 inhibitor z-DEVD-fmk. However, cell viability was unaffected by addition of the caspase-8 inhibitor z-IETD-fmk. Thus, raloxifene induced mitochondria-mediated apoptosis in endometrial cancer cells but not via the Bid-mitochondria pathway. It is possibly that raloxifene may be useful as an adjuvant to current chemotherapies for endometrial cancer and possibly is useful as a chemopreventive agent.
Collapse
Affiliation(s)
- Shoko Morishima
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | | | | | | |
Collapse
|
31
|
Bennett CN, Green JE. Unlocking the power of cross-species genomic analyses: identification of evolutionarily conserved breast cancer networks and validation of preclinical models. Breast Cancer Res 2008; 10:213. [PMID: 18828875 PMCID: PMC2614501 DOI: 10.1186/bcr2125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The application of high-throughput genomic technologies has revealed that individual breast tumors display a variety of molecular features that require more personalized approaches to treatment. Several recent studies have demonstrated that a cross-species analytic approach provides a powerful means to filter through genetic complexity by identifying evolutionarily conserved genetic networks that are fundamental to the oncogenic process. Mouse-human tumor comparisons will provide insights into cellular origins of tumor subtypes, define interactive oncogenetic networks, identify potential novel therapeutic targets, and further validate as well as guide the selection of genetically engineered mouse models for preclinical testing.
Collapse
Affiliation(s)
- Christina N Bennett
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Antimetastatic effect of suicide gene therapy for mouse mammary cancers requires T-cell-mediated immune responses. Med Mol Morphol 2008; 41:34-43. [PMID: 18470679 DOI: 10.1007/s00795-007-0388-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
Abstract
These experiments were conducted to investigate whether the antimetastatic effects of HSVtk/GCV therapy involve T-cell-mediated immune responses. In the first experiment, immunocompetent syngeneic mice were inoculated with metastatic mammary cancers, then given a direct intratumoral injection of a plasmid vector containing a suicide gene (pHSVtk) or control vector once a week for 8 weeks. Gene electrotransfer treatment was applied to the tumors, and mice were administered ganciclovir (GCV) using a mini-osmotic pump. At the end of the experiment, tumor volume was significantly lower in the pHSVtk/GCV group. Macrophage accumulations were frequently observed in the peripheries of the necrotic regions in pHSVtk-transfected mice. Levels of CD4 and CD8 proteins in tumors were higher in the pHSVtk/GCV group than in the control group. Interleukin (IL)-12 mRNA levels tended to be higher in tumors in the pHSVtk/GCV group, but there were large variations. Tumor microvessel density was significantly lower in the pHSVtk/GCV group. The numbers of dilated lymphatic vessels containing intraluminal tumor cells tended to be higher in the pHSVtk/GCV group. However, vascular endothelial growth factor (VEGF)-A and VEGF-C mRNA levels in tumors were similar in the control and pHSVtk/GCV groups. In the second experiment, tumor volume and metastatic parameters were compared for immunocompetent syngeneic mice and immunodeficient athymic mice (without an intact T-cell system) given pHSVtk/GCV therapy. Although tumor volumes were significantly smaller in both syngeneic and athymic mice given pHSVtk/GCV therapy, the inhibition ratios (relative to control mice) were much greater in syngeneic mice than in athymic mice. No suppression of metastasis to the lymph nodes and lungs was observed for athymic mice given pHSVtk/GCV therapy. Our data suggest that HSVtk/GCV suicide gene therapy exerts an antimetastatic effect via a T-cell-mediated immune response.
Collapse
|