1
|
Vaghari-Tabari M, Qujeq D, Hashemzadeh MS. Long noncoding RNAs as potential targets for overcoming chemoresistance in upper gastrointestinal cancers. Biomed Pharmacother 2024; 179:117368. [PMID: 39214010 DOI: 10.1016/j.biopha.2024.117368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
In the last decade, researchers have paid much attention to the role of noncoding RNA molecules in human diseases. Among the most important of these molecules are LncRNAs, which are RNA molecules with a length of more than 200 nucleotides. LncRNAs can regulate gene expression through various mechanisms, such as binding to DNA sequences and interacting with miRNAs. Studies have shown that LncRNAs may be valuable therapeutic targets in treating various cancers, including upper-gastrointestinal cancers. Upper gastrointestinal cancers, mainly referring to esophageal and gastric cancers, are among the deadliest gastrointestinal cancers. Despite notable advances, traditional chemotherapy remains a common strategy for treating these cancers. However, chemoresistance poses a significant obstacle to the effective treatment of upper gastrointestinal cancers, resulting in a low survival rate. Chemoresistance arises from various events, such as the enhancement of efflux and detoxification of chemotherapy agents, reduction of drug uptake, alteration of drug targeting, reduction of prodrug activation, strengthening of EMT and stemness, and the attenuation of apoptosis in cancerous cells. Tumor microenvironment also plays an important role in chemoresistance. Interestingly, a series of studies have revealed that LncRNAs can influence important mechanisms associated with some of the aforementioned events and may serve as promising targets for mitigating chemoresistance in upper gastrointestinal cancers. In this review paper, following a concise overview of chemoresistance mechanisms in upper gastrointestinal cancers, we will review the most intriguing findings of these investigations in detail.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
2
|
Tasaki Y, Suzuki M, Katsushima K, Shinjo K, Iijima K, Murofushi Y, Naiki-Ito A, Hayashi K, Qiu C, Takahashi A, Tanaka Y, Kawaguchi T, Sugawara M, Kataoka T, Naito M, Miyata K, Kataoka K, Noda T, Gao W, Kataoka H, Takahashi S, Kimura K, Kondo Y. Cancer-Specific Targeting of Taurine-Upregulated Gene 1 Enhances the Effects of Chemotherapy in Pancreatic Cancer. Cancer Res 2021; 81:1654-1666. [PMID: 33648930 DOI: 10.1158/0008-5472.can-20-3021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/13/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Overcoming drug resistance is one of the biggest challenges in cancer chemotherapy. In this study, we examine whether targeting the long noncoding RNA taurine upregulated gene 1 (TUG1) could be an effective therapeutic approach to overcome drug resistance in pancreatic ductal adenocarcinoma (PDAC). TUG1 was expressed at significantly higher levels across 197 PDAC tissues compared with normal pancreatic tissues. Overall survival of patients with PDAC who had undergone 5-FU-based chemotherapy was shorter in high TUG1 group than in low TUG1 group. Mechanistically, TUG1 antagonized miR-376b-3p and upregulated dihydropyrimidine dehydrogenase (DPD). TUG1 depletion induced susceptibility to 5-FU in BxPC-3 and PK-9 pancreatic cell lines. Consistently, the cellular concentration of 5-FU was significantly higher under TUG1-depleted conditions. In PDAC xenograft models, intravenous treatment with a cancer-specific drug delivery system (TUG1-DDS) and 5-FU significantly suppressed PDAC tumor growth compared with 5-FU treatment alone. This novel approach using TUG1-DDS in combination with 5-FU may serve as an effective therapeutic option to attenuate DPD activity and meet appropriate 5-FU dosage requirements in targeted PDAC cells, which can reduce the systemic adverse effects of chemotherapy. SIGNIFICANCE: Targeting TUG1 coupled with a cancer-specific drug delivery system effectively modulates 5-FU catabolism in TUG1-overexpressing PDAC cells, thus contributing to a new combinatorial strategy for cancer treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/7/1654/F1.large.jpg.
Collapse
Affiliation(s)
- Yoshihiko Tasaki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Miho Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keisuke Katsushima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenta Iijima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshiteru Murofushi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Kazuki Hayashi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Chenjie Qiu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P.R. China
| | - Akiko Takahashi
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Yoko Tanaka
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tokuichi Kawaguchi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Minoru Sugawara
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomoya Kataoka
- Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan.,Institute for Future Initiatives, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Wentao Gao
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P.R. China
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Kazunori Kimura
- Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
3
|
Park JB, Lee JS, Lee MS, Cha EY, Kim S, Sul JY. Corosolic acid reduces 5‑FU chemoresistance in human gastric cancer cells by activating AMPK. Mol Med Rep 2018; 18:2880-2888. [PMID: 30015846 PMCID: PMC6102703 DOI: 10.3892/mmr.2018.9244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022] Open
Abstract
5‑Fluorouracil (5‑FU) is one of the most commonly used chemotherapeutic agents for gastric cancer. Resistance to 5‑FU‑based chemotherapy remains the major obstacle in the treatment of gastric cancer. A growing body of evidence has suggested that adenosine monophosphate‑activated protein kinase (AMPK) is pivotal for chemoresistance. However, the mechanism by which AMPK regulates the chemosensitivity of gastric cancer remains unclear. In the present study, how corosolic acid enhanced the chemosensitivity of gastric cancer cells to 5‑FU via AMPK activation was investigated. A 5‑FU‑resistant gastric cancer cell line (SNU‑620/5‑FUR) was established, which had a marked increase in thymidine synthase (TS) expression but reduced AMPK phosphorylation when compared with the parental cell line, SNU‑620. AMPK regulation by 5‑aminoimidazole‑4‑carboxamide ribonucleotide or compound c was revealed to be markedly associated with TS expression and 5‑FU‑resistant cell viability. In addition, corosolic acid activated AMPK, and decreased TS expression and the phosphorylation of mammalian target of rapamycin/4E‑binding protein 1 in a dose‑dependent manner. Corosolic acid treatment significantly reduced cell viability while compound c reversed corosolic acid‑induced cell growth inhibition. The 5‑FU‑resistance sensitization effect of corosolic acid was determined by the synergistic reduction of TS expression and inhibition of cell viability in the presence of 5‑FU. The corosolic acid‑induced AMPK activation was markedly increased by additional 5‑FU treatment, while compound c reversed AMPK phosphorylation. In addition, compound c treatment reversed corosolic acid‑induced apoptotic markers such as capase‑3 and PARP cleavage, and cytochrome c translocation to cytosol, in the presence of 5‑FU. Corosolic acid treatment in the presence of 5‑FU induced an increase in the apoptotic cell population based on flow cytometry analysis. This increase was abolished by compound c. In conclusion, these results implied that corosolic acid may have therapeutic potential to sensitize the resistance of gastric cancer to 5‑FU by activating AMPK.
Collapse
Affiliation(s)
- Jun Beom Park
- Department of Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Jin Sun Lee
- Department of Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Myung Sun Lee
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Eun Young Cha
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Soyeon Kim
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Ji Young Sul
- Department of Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| |
Collapse
|
4
|
Wei B, Wang J, Zhang X, Qian Z, Wu J, Sun Y, Han Q, Wan L, Zhu J, Gao Y, Chen X. Combination of histoculture drug response assay and qPCR as an effective method to screen biomarkers for personalized chemotherapy in esophageal cancer. Oncol Lett 2017; 14:6915-6922. [PMID: 29163710 DOI: 10.3892/ol.2017.7069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Personalized chemotherapy with the use of biomarkers helps to maximize clinical efficiency. Therefore, the present study aimed to identify a potential method for identifying biomarkers in esophageal cancer. A total of 49 freshly resected tumor tissues and 72 paraffin-embedded specimens from patients with esophageal cancer were obtained. mRNA expression levels of ERCC1, BRCA1, TUBB3, FBW7, RRM1, MDM2, TS and TOP1 were measured quantitative reverse transcription polymerase chain reaction (RT-qPCR). In vitro chemosensitivity to cisplatin, docetaxel, gemcitabine, etoposide, fluorouracil and irinotecan were tested using histoculture drug response assay (HDRA). BRCA1 mRNA levels were positively correlated with resistance to cisplatin (P=0.027) and sensitivity to docetaxel (P=0.002). TS mRNA levels were inversely correlated with fluorouracil sensitivity (P=0.044), and TOP1 mRNA expression was positively correlated with irinotecan sensitivity (P=0.008). In addition, high BRCA1 mRNA levels correlated with decreased median overall survival (mOS; P<0.001) and response rate (RR; P=0.002) in cisplatin-fluorouracil chemotherapy group and also correlated with increased mOS (P<0.001) and RR (P=0.023) in docetaxel-fluorouracil chemotherapy group. Overall, these results suggested that HDRA combined with RT-qPCR may serve as an effective method for screening biomarkers in personalized chemotherapy for esophageal cancer.
Collapse
Affiliation(s)
- Bin Wei
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jiru Wang
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaohui Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Zhaoye Qian
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jingjing Wu
- Department of Hematology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yuan Sun
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Qin Han
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Li Wan
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jing Zhu
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yong Gao
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaofei Chen
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
5
|
The Impact of the Expression Level of Intratumoral Dihydropyrimidine Dehydrogenase on Chemotherapy Sensitivity and Survival of Patients in Gastric Cancer: A Meta-Analysis. DISEASE MARKERS 2017; 2017:9202676. [PMID: 28255193 PMCID: PMC5307138 DOI: 10.1155/2017/9202676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 01/19/2023]
Abstract
The potential impact that the intratumoral expression level of dihydropyrimidine dehydrogenase (DPD) has on chemotherapy sensitivity and long-term survival for gastric cancer (GC) patients remains controversial; therefore, this study seeks to clarify this issue. Our meta-analysis was performed using Review Manager (RevMan) 5.3 software. In vitro drug sensitivity tests, correlation coefficients between sensitivity to 5-fluorouracil (5-FU), and expression levels of intratumoral DPD were used as effective indexes to analyse. Overall survival (OS) and progression-free survival (PFS) were used as endpoints for patient outcome, and hazard ratios (HRs) and 95% confidence intervals (CIs) were noted as measures of effect. There were 15 eligible studies including 1805 patients for the final analysis. The analysis revealed a statistically significant difference between the expression level of intratumoral DPD activity, DPD mRNA levels, and sensitivity to 5-FU in GC patients, with high expression levels of intratumoral DPD resulting in low sensitivity to 5-FU. However, no matter what therapeutic regimens were used, there was no significant difference for patient outcomes between high and low DPD expression groups, either in OS or in PFS. In conclusion, high levels of intratumoral DPD expression have a negative impact on sensitivity to 5-FU in GC patients, but no prognostic value for long-term survival was uncovered.
Collapse
|
6
|
Nakamura A, Nakajima G, Okuyama R, Kuramochi H, Kondoh Y, Kanemura T, Takechi T, Yamamoto M, Hayashi K. Enhancement of 5-fluorouracil-induced cytotoxicity by leucovorin in 5-fluorouracil-resistant gastric cancer cells with upregulated expression of thymidylate synthase. Gastric Cancer 2014; 17:188-95. [PMID: 23494117 PMCID: PMC3889291 DOI: 10.1007/s10120-013-0249-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/19/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Elucidation of the mechanisms by which gastric cancer cells acquire resistance to 5-fluorouracil (5FU) may provide important clues to the development of effective chemotherapy for 5FU-resistant gastric cancer METHODS Four 5FU-resistant cell lines (MKN45/5FU, MKN74/5FU, NCI-N87/5FU, and KATOIII/5FU) were established by continuous exposure of the cells to progressively increasing concentrations of 5FU for about 1 year. Then, mRNA expression levels of four genes associated with 5FU metabolism, i.e., thymidylate synthase (TS), dihydropyrimidine dehydrogenase, thymidine phosphorylase, and orotate phosphoribosyltransferase, were quantitatively evaluated by real-time reverse transcriptase-polymerase chain reaction. In addition, TS protein expression was measured by Western blot analysis. RESULTS As compared with the parent cell lines, the 5FU-resistant cell lines showed 3.8- to 11.6-fold higher resistance to 5FU, as well as 1.9- to 3.5-fold higher TS mRNA expression and 1.6- to 7.1-fold higher TS protein expression. In contrast, the expressions of other genes did not differ significantly among the cell lines. The cytotoxicity of 5FU was enhanced 2.3- to 2.8 fold by leucovorin (LV) against three of the four 5FU-resistant cell lines. CONCLUSIONS Collectively, LV enhanced the cytotoxicity of 5FU not only against the parent gastric cancer cell lines, but also against the 5FU-resistant cell lines, even those with elevated TS expression levels. These results suggest that clinical studies of a combination of 5FU and LV are warranted in patients who have recurrent gastric cancer after 5FU-based therapy.
Collapse
Affiliation(s)
- Ayako Nakamura
- Field of Chemotherapy on Digestive Organs Division of Gastrointestinal Surgery, Tokyo Women’s Medical University Graduate School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan ,Oncology Medical Affairs Department, Taiho Pharmaceutical Co., Ltd, 1-2-4 Uchikanda, Chiyoda-ku, Tokyo, 101-0047 Japan
| | - Go Nakajima
- Department of Chemotherapy and Palliative Care, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Ryuji Okuyama
- Department of Chemotherapy and Palliative Care, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Hidekazu Kuramochi
- Department of Chemotherapy and Palliative Care, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Yurin Kondoh
- Department of Chemotherapy and Palliative Care, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Toshinori Kanemura
- Department of Chemotherapy and Palliative Care, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Teiji Takechi
- Laboratory for Oncology Medication Management and Development, Taiho Pharmaceutical Co., Ltd, 1-2-4 Uchikanda, Chiyoda-ku, Tokyo, 101-0047 Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Kazuhiko Hayashi
- Field of Chemotherapy on Digestive Organs Division of Gastrointestinal Surgery, Tokyo Women’s Medical University Graduate School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan ,Department of Chemotherapy and Palliative Care, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| |
Collapse
|
7
|
Differential effects of 5-fluorouracil on glucose transport and expressions of glucose transporter proteins in gastric cancer cells. Anticancer Drugs 2010; 21:270-6. [PMID: 20023572 DOI: 10.1097/cad.0b013e328334562c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although 5-fluorouracil (5-FU) is a widely used chemotherapeutic agent in the treatment of gastric cancer, the underlying mechanism for 5-FU resistant phenotype, has yet to be elucidated. We hypothesized that the sensitivity of gastric cancer to 5-FU treatment might be related to the rate of glucose transport (GLUT), and investigated the expressions of GLUT1, 2, 3, and 4 in two different gastric cancer cells (SNU-216, moderately differentiated gastric adenocarcinoma; and SNU-668, signet ring cell gastric carcinoma). Immunohistochemistry of GLUT1 and GLUT4 and immunoblot analysis of glycogen synthase kinase 3 were also performed. Hexokinase activity was measured. We found that 5-FU suppressed glucose uptake in SNU-216, while it stimulated GLUT in SNU-668. Further analysis revealed that 5-FU decreased the expression levels of GLUT1, 2, and 4 in SNU-216 cells and increased the expression levels of GLUT1, 2, and 4 in SNU-668 cells. Consistent with GLUT expression levels, immunohistochemistry analysis showed that 5-FU increased GLUT1 and GLUT4 levels in SNU-216 and decreased GLUT1 and GLUT4 levels in SNU-668. We also observed that glycogen synthase kinase 3 activity was decreased in SNU-216 and increased in SNU-668 with 5-FU treatment. No significant difference in hexokinase activities was observed with 5-FU treatment. Taken together, these results suggest that 5-FU exerts differential effects on GLUT depending on gastric cancer cell types, which may indicate a possible explanation, at least in part, for the differing responses to 5-FU chemotherapy in gastric cancer.
Collapse
|
8
|
Li R, Li X, Xie L, Ding D, Hu Y, Qian X, Yu L, Ding Y, Jiang X, Liu B. Preparation and evaluation of PEG–PCL nanoparticles for local tetradrine delivery. Int J Pharm 2009; 379:158-66. [DOI: 10.1016/j.ijpharm.2009.06.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/30/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
|
9
|
Kim JC, Kim DD, Lee YM, Kim TW, Cho DH, Kim MB, Ro SG, Kim SY, Kim YS, Lee JS. Evaluation of novel histone deacetylase inhibitors as therapeutic agents for colorectal adenocarcinomas compared to established regimens with the histoculture drug response assay. Int J Colorectal Dis 2009; 24:209-18. [PMID: 18830613 DOI: 10.1007/s00384-008-0590-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS This study was to evaluate the efficacy of histone deacetylase (HDAC) inhibitors in colorectal cancer together with other established regimens. MATERIALS AND METHODS Chemosensitivities of 114 colorectal cancer patients to established regimens (fluorouracil (5-FU with leucovorin (FL), capecitabine, FL with irinotecan (FLIRI), and FL with oxaliplatin (FLOX)) as well as five hydroxamic acid derivatives (suberoylanilide hydroxamic acid, PXD101, and three novel candidates of CG-1, CG-2, and CG-3) were comparatively evaluated using the histoculture drug response assay. RESULTS The chemosensitivity with established regimens was between 34.2% and 52.6%, when the cutoff value of the inhibition ratio was set at 30%, and between 54.5% and 84.1% with HDAC inhibitors. All HDAC inhibitors displayed synergistic effects in combination with established regimens of FLOX and FLIRI (P < or = 0.0001-0.002). Advanced T- and N-category tumors and patients with synchronous adenoma displayed higher chemosensitivity to CG-3, CG-2, and CG-1, respectively, on a multivariate analysis (P = 0.023, 0.044, and 0.045, respectively). Tumors with mismatch repair defects were closely correlated with chemosensitivities to combined regimens of PDX101 with FLOX and FLIRI (P = 0.044 and 0.048, respectively). CONCLUSIONS Our findings firstly demonstrated the chemo-responsiveness of colorectal cancers to HDAC inhibitors with therapeutic efficacy comparable to the established regimens. Additionally, tumor growth and heredity were significantly associated with specific regimens, supporting their possible role as chemosensitive predictors.
Collapse
Affiliation(s)
- Jin C Kim
- Department of Surgery and Institute of Innovative Cancer Research, University of Ulsan College of Medicine and Asan Medical Center, 388-1 Poongnap-2-Dong Songpa-Ku, Seoul, 138-736, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tateishi Y, Tatemoto Y, Ohno S, Morishita K, Ueta E, Yamamoto T. Combined evaluation of dihydropyrimidine dehydrogenase and thymidine phosphorylate mRNA levels in tumor predicts the histopathological effect of 5-fluorouracil-based chemoradiotherapy. Cancer Lett 2009; 274:187-93. [DOI: 10.1016/j.canlet.2008.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 07/15/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
|
11
|
Yu KH, Wang WX, Ding YM, Li H, Wang ZS. Polymorphism of thymidylate synthase gene associated with its protein expression in human colon cancer. World J Gastroenterol 2008; 14:617-21. [PMID: 18203297 PMCID: PMC2681156 DOI: 10.3748/wjg.14.617] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To correlate the polymorphisms in the 5’-untranslated region with thymidylate synthase (TS) protein expression in Han Chinese colonic neoplasms.
METHODS: Adenocarcinoma samples were from 68 patients who received no treatment before surgery. Tandem repeat length of TS gene was determined by PCR amplification of genomic DNA. Intratumoral TS protein expression was studied immunohistochemically in corresponding sections from paraffin-embedded primary foci. Immunoreactivity was semiquantitatively evaluated by immunoreactivity score (IRS).
RESULTS: Double-(2R) and triple-repeated (3R) sequences of the TS gene were found in the cancer tissues. Three genotypes of TS were found: 2R/2R (n = 6), 2R/3R (n = 22) and 3R/3R (n = 40). Patients who were homozygous for triple-repeated (3R/3R) sequences showed significantly higher IRS of TS than patients who were homozygous for double-repeated (2R/2R) sequences or heterozygous patients (2R/3R): 5.73 ± 3.25 vs 2.17 ± 1.47 or 3.77 ± 2.64, P = 0.008 or P = 0.015. But no statistical significance of IRS in cancer tissues was observed between 2R/3R genotype and 2R/2R genotype.
CONCLUSION: There is a relationship between TS genotype and TS protein expression in clinical specimens. The data might offer an advantage for selection of Chinese cancer patients to receive fluoropyrimidines treatment.
Collapse
|