1
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
2
|
Liu J, Yang XF. Role of cyclooxygenase-2 in immune response in liver fibrosis and mechanisms involved. Shijie Huaren Xiaohua Zazhi 2017; 25:702-708. [DOI: 10.11569/wcjd.v25.i8.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cyclooxygenase-2 (COX-2), an inducible enzyme, is almost not expressed in normal human and rat liver tissues, but is highly expressed in liver tissues of patients with chronic hepatitis and cirrhosis. Inhibition or interference of COX-2 expression can significantly inhibit the formation of hepatic fibrosis in rats, suggesting that COX-2 is involved in the occurrence and development of hepatic fibrosis; however, the underlying mechanism is unclear. Recent studies have shown that the role of COX-2 in the development of hepatic fibrosis may be related to immune response. In this paper, we review the role of COX-2 and its metabolites in the immune response in liver fibrosis, with an aim to provide a theoretical basis for clinical prevention and treatment of hepatic fibrosis.
Collapse
|
3
|
From mice to men: Murine models of colorectal cancer for use in translational research. Crit Rev Oncol Hematol 2015; 98:94-105. [PMID: 26558688 DOI: 10.1016/j.critrevonc.2015.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/28/2015] [Accepted: 10/27/2015] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common carcinoma worldwide and despite advances in treatment, survival for patients with metastatic disease remains poor. With nearly 50% of patients developing metastases, in vivo investigation is essential to improve outcomes for these patients and numerous murine models of CRC have been developed to allow the study of chemoprevention and chemotherapy, in addition to improving our understanding of the pathogenesis of CRC. Selecting the most appropriate murine model for a specific application will maximize the conversion of potential therapies from the laboratory to clinical practice and requires an understanding of the various models available. This review will provide an overview of the murine models currently used in CRC research, discussing the limitations and merits of each and their most relevant application. It is aimed at the developing researcher, acting as a guide to prompt further reading in planning a specific study.
Collapse
|
4
|
Müller C, Tufa DM, Chatterjee D, Mühlradt PF, Schmidt RE, Jacobs R. The TLR-2/TLR-6 agonist macrophage-activating lipopeptide-2 augments human NK cell cytotoxicity when PGE2 production by monocytes is inhibited by a COX-2 blocker. Cancer Immunol Immunother 2015; 64:1175-84. [PMID: 26036909 PMCID: PMC11028474 DOI: 10.1007/s00262-015-1723-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/24/2015] [Indexed: 12/29/2022]
Abstract
Macrophage-activating lipopeptide-2 (MALP-2) is a potent inducer of proinflammatory cytokine secretion by macrophages, monocytes, and dendritic cells. MALP-2 was reported to be involved in natural killer (NK) cell activation and ensuing tumor rejection. However, the mechanism of MALP-2-mediated NK cell activation remained unclear. Therefore, we studied the effects of MALP-2 on cultured human NK cells. We found that MALP-2 had no direct effect on NK cells. Instead, MALP-2 acted on monocytes and triggered the release of different molecules such as interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-15, interferon gamma-induced protein (IP-10), and prostaglandin (PG)-E2. Our data show that monocyte-derived IP-10 could significantly induce NK cell cytotoxicity as long as the immunosuppression by PGE2 is specifically inhibited by cyclooxygenase (COX)-2 blockade. In summary, our results show that MALP-2-mediated stimulation of monocytes results in the production of several mediators which, depending on the prevailing conditions, affect the activity of NK cells in various ways. Hence, MALP-2 administration with concurrent blocking of COX-2 can be considered as a promising approach in MALP-2-based adjuvant tumor therapies.
Collapse
Affiliation(s)
- Christina Müller
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dejene M. Tufa
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Debanjana Chatterjee
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | - Reinhold E. Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
5
|
Du Y, Shi A, Han B, Li S, Wu D, Jia H, Zheng C, Ren L, Fan Z. COX-2 silencing enhances tamoxifen antitumor activity in breast cancer in vivo and in vitro. Int J Oncol 2014; 44:1385-93. [PMID: 24535190 DOI: 10.3892/ijo.2014.2299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/16/2014] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen (Tam), a selective estrogen receptor modulator, is in wide clinical use for the treatment and prevention of breast cancer. However, extended TAM administration for breast cancer induces increased VEGF levels in patients, promoting new blood vessel formation and thereby limiting its efficacy and highlighting the need for improved therapeutic strategies. Cyclooxygenase-2 (COX-2) silencing via a replication-incompetent lentivirus (LV-COX-2) induce cancer apoptosis and suppresses VEGF gene expression. In this study, the effect of LV-COX-2 infection, either alone or in combination with TAM, was analyzed in a breast cell lines for suppressing VEGF expression and simultaneously reducing doses of TAM. Cell proliferation, apoptosis, angiogenesis, metastasis, cell cycle distribution, an receptor signaling were determined after LV-COX-2 combination with TAM treatment. In addition, tumor growth ability in nude mice was detected to define the combination treatment effect in tumorigenesis in vivo. It is found that LV-COX-2 combination with TAM treatment in breast cancer cell significantly suppressed the proliferation and metastasis, and induced tumor apoptosis in vitro, and tumor growth also was suppressed in vivo. In addition, we also found that LV-COX-2 combination with TAM treatment could inhibit angiogenesis and VEGF expression. Taken together, our experimental results indicate that LV-COX-2 combination with TAM has promising outcome in anti-metastatic and apoptotic studies. Furthermore, these results showed that LV-COX-2 combination with TAM is a potential drug candidate for treatment of breast tumors expressing high levels of VEGF.
Collapse
Affiliation(s)
- Ye Du
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Bing Han
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Di Wu
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Hongyao Jia
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Chao Zheng
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| |
Collapse
|
6
|
Fernandes JC, Sereno J, Garrido P, Parada B, Cunha MFX, Reis F, Pintado ME, Santos-Silva A. Inhibition of bladder tumor growth by chitooligosaccharides in an experimental carcinogenesis model. Mar Drugs 2013; 10:2661-75. [PMID: 23342389 PMCID: PMC3528117 DOI: 10.3390/md10122661] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Urinary bladder cancer is one of the most common cancers worldwide, with the highest incidence in industrialized countries. Patients with cancer commonly use unconventional and complementary therapy including nutraceuticals. In this study we evaluated the efficacy of chitooligosaccharides (in orange juice) in rat bladder cancer chemoprevention and as therapeutic agent, on a rat model of urinary bladder carcinogenesis induced with N-butyl-N-(4-hydroxybutyl) nitrosamine. Results indicate that chitooligosaccharides may have a preventive effect on bladder cancer development and a curative effect upon established bladder tumors, dependent on the concentration ingested 500 mg/kg b.w., every three days, showed capacity to inhibit and prevent the proliferation of bladder cancer; however, this was associated with secondary effects such as hypercholesterolemia and hypertriglyceridemia. The use of lower doses (50 and 250 mg/kg b.w.) showed only therapeutic effects. It is further suggested that this antitumor effect might be due to its expected anti-inflammatory action, as well as by mechanisms not directly dependent of COX-2 inhibition, such as cellular proliferation control and improvement in antioxidant profile.
Collapse
Affiliation(s)
- João C. Fernandes
- Institute for Molecular and Cellular Biology, Porto University, Porto 4150-180, Portugal;
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, Coimbra University, Coimbra 3000-548, Portugal; (J.S.); (P.G.); (F.R.)
- CBQF/Biotechnology School, Portuguese Catholic University, Porto 4200-072, Portugal;
- Author to whom correspondence should be addressed; ; Tel.: +351-96-7892999; Fax: +351-22-6093390
| | - José Sereno
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, Coimbra University, Coimbra 3000-548, Portugal; (J.S.); (P.G.); (F.R.)
| | - Patricia Garrido
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, Coimbra University, Coimbra 3000-548, Portugal; (J.S.); (P.G.); (F.R.)
| | - Belmiro Parada
- Department of Urology & Renal Transplantation, Coimbra University Hospital, Coimbra 3000-075, Portugal;
| | - Maria F. X. Cunha
- Service of Anatomic Pathology, Coimbra University Hospital, Coimbra 3000-075, Portugal;
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, Coimbra University, Coimbra 3000-548, Portugal; (J.S.); (P.G.); (F.R.)
| | - Manuela E. Pintado
- CBQF/Biotechnology School, Portuguese Catholic University, Porto 4200-072, Portugal;
| | - Alice Santos-Silva
- Institute for Molecular and Cellular Biology, Porto University, Porto 4150-180, Portugal;
- Department of Biochemistry, Pharmacy Faculty, Porto University, Porto 4050-313, Portugal
| |
Collapse
|
7
|
Bronger H, Kraeft S, Schwarz-Boeger U, Cerny C, Stöckel A, Avril S, Kiechle M, Schmitt M. Modulation of CXCR3 ligand secretion by prostaglandin E2 and cyclooxygenase inhibitors in human breast cancer. Breast Cancer Res 2012; 14:R30. [PMID: 22333315 PMCID: PMC3496148 DOI: 10.1186/bcr3115] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 01/13/2012] [Accepted: 02/14/2012] [Indexed: 12/14/2022] Open
Abstract
Introduction In murine breast cancer models, the two interferon-gamma (IFN-γ) inducible chemokines and CXC-chemokine receptor 3 (CXCR3) receptor ligands, monokine induced by γ-interferon (CXCL9) and interferon-γ-inducible protein-10 (CXCL10) impair tumor growth and metastasis formation through recruitment of natural killer (NK) cells and tumor-suppressive T lymphocytes. In human breast cancer, CXCL9 mRNA overexpression correlates with the number of tumor infiltrating lymphocytes and predicts response to different chemotherapeutic regimens. Raising the intratumoral CXCR3 ligand concentration is therefore a possible way to enhance immune intervention in breast cancer. Little is known, however, about expression levels and regulation of these chemokines in human breast cancer. Since the inhibition of cyclooxygenases (COX) has been shown to reduce tumor growth and incidence of metastases in a lymphocytic and IFN-γ dependent manner, we argued that COX isoenzymes are a pharmacologic target to increase intratumoral CXCR3 ligand concentration in human breast cancer. Methods CXCL9 was visualized in breast cancer specimens by immunohistochemistry, expression levels of CXCL9 and cyclooxygenases were determined by ELISA and western blotting, respectively. For regulation studies, Michigan Cancer Foundation-7 (MCF-7) and M.D. Anderson - Metastatic Breast 231 (MDA-MB 231) breast cancer cells were stimulated with IFN-γ with or without prostaglandin E2 (PGE2) or COX inhibitors (indomethacin, acetylsalicylic acid (ASA), celecoxib). CXCR3 ligand release from cells was measured by ELISA. Results Within the tumor microenvironment, cancer cells are the major source of CXCL9. PGE2 impairs IFN-γ mediated CXCL9 and CXCL10 release from MCF-7 and MDA-MB 231 cells, and inhibition of endogenous cyclooxygenases by indomethacin or ASA correspondingly increases this secretion. Otherwise, high concentrations of the Cyclooxygenase-2 (COX-2) specific antagonist celecoxib have opposite effects and impair CXCL9 and CXCL10 release. In human breast cancer tissue specimens there is an inverse correlation between COX-2 overexpression and CXCL9 concentration, suggesting that the observed in vitro effects are of importance in vivo as well. Conclusions Suppressing endogenous PGE2 synthesis by cyclooxygenase inhibition increases CXCL9 and CXCL10 release from breast cancer cells and is therefore a pharmacologic candidate to enhance intratumoral immune infiltration. Yet, to this end the unselective COX inhibitors ASA and indomethacin seem preferable to celecoxib that at higher concentrations reduces CXCR3 ligand release most probably due to COX independent mechanisms.
Collapse
Affiliation(s)
- Holger Bronger
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Str, 22, 81675 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ghorab DM, Amin MM, Khowessah OM, Tadros MI. Colon-targeted celecoxib-loaded Eudragit®S100-coated poly-ϵ-caprolactone microparticles: Preparation, characterization andin vivoevaluation in rats. Drug Deliv 2011; 18:523-35. [DOI: 10.3109/10717544.2011.595841] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
9
|
Padillo FJ, Ruiz-Rabelo JF, Cruz A, Perea MD, Tasset I, Montilla P, Túnez I, Muntané J. Melatonin and celecoxib improve the outcomes in hamsters with experimental pancreatic cancer. J Pineal Res 2010; 49:264-70. [PMID: 20626589 DOI: 10.1111/j.1600-079x.2010.00791.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pancreatic cancer is a major health problem because of the aggressiveness of the disease and the lack of effective systemic therapies. Melatonin (MEL) has antioxidant activity and prevents experimental genotoxicity. The specific inhibitor of cyclooxygenase-2 (COX-2), celecoxib (CEL), increases the efficacy of chemoradiotherapy in advanced pancreatic cancer. The objective of the study was the comparison and synergic effect of MEL and CEL during either the induction or progression phases of the tumor process, measuring parameters of oxidative stress, number of tumor nodules and survival of animals with pancreatic cancer. Pancreatic cancer was induced by N-nitrosobis (2-oxopropyl)amine) (BOP) in Syrian hamsters. Melatonin and/or CEL were administered during the induction, postinduction as well as during both phases. The presence of tumor nodules were observed macroscopically in pancreatic and splenic areas, and the levels of lipoperoxides (LPO), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in pancreatic tissue were measured. The increases in tumor nodules and LPO as well as the reductions in GSH and enzymatic antioxidants in the pancreas induced by BOP were related to a lower survival rate of animals. The administration of MEL exerted a more potent beneficial effect than CEL treatment on the reduction in tumor nodules, oxidative stress and death of experimental BOP-treated animals. The combined treatment only exerted a synergistic beneficial effect when administered during the induction phase. Melatonin by itself had significant beneficial actions in improving the survival of hamsters.
Collapse
Affiliation(s)
- Francisco J Padillo
- Department of General Surgery, Virgen del Rocio University Hospital (IBiS), Seville, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen Q, Lou W, Shen J, Ma L, Yang Z, Liu L, Luo J, Qian C. Potent antitumor activity in experimental hepatocellular carcinoma by adenovirus-mediated coexpression of TRAIL and shRNA against COX-2. Clin Cancer Res 2010; 16:3696-705. [PMID: 20515870 DOI: 10.1158/1078-0432.ccr-09-3097] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent studies have indicated that short hairpin RNA (shRNA) driven by RNA polymerase (Pol) II promoters can be transcribed into precursor mRNAs together with transgenes. It remains unclear, however, whether coexpression of shRNA and transgene from a single promoter is feasible for cancer therapy. EXPERIMENTAL DESIGN In this study, we generated novel adenoviral vectors that permitted coexpression of shRNA against cyclooxygenase-2 (COX-2) and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapeutic gene from a cytomegalovirus promoter to evaluate whether silencing of COX-2 could increase the sensitivity of hepatocellular carcinoma to TRAIL. RESULTS Our data showed that adenovirus vector Ad-TM, in which the shRNA was inserted into the 3' untranslated region of the TRAIL gene, not only significantly suppressed COX-2 expression, but also expressed a high level of TRAIL. Moreover, infection with Ad-TM resulted in significant cytotoxicity in hepatocellular carcinoma cell lines. In contrast, it had no effect on normal liver cell line. Impressively, treatment of the established hepatocellular carcinoma tumors with Ad-TM resulted in complete tumor regression. This potent antitumor activity induced by Ad-TM was due to strong inhibition of COX-2 and high expression of TRAIL. Furthermore, using the shRNA and transgene coexpression adenovirus system, we showed that silencing of COX-2 increased the sensitivity of hepatocellular carcinoma to TRAIL through inhibition of Bcl-2 and Bcl-w. CONCLUSION This study indicated that adenovirus carrying shRNA and transgene expressed from a single promoter represented a potent approach for cancer therapy.
Collapse
Affiliation(s)
- Qing Chen
- Laboratory of Biotherapy of Cancer, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schrage Y, Machado I, Meijer D, Briaire-de Bruijn I, van den Akker B, Taminiau A, Kalinski T, Llombart-Bosch A, Bovée J. COX-2 expression in chondrosarcoma: A role for celecoxib treatment? Eur J Cancer 2010; 46:616-24. [DOI: 10.1016/j.ejca.2009.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 11/10/2009] [Indexed: 02/02/2023]
|
12
|
Celecoxib exacerbates hepatic fibrosis and induces hepatocellular necrosis in rats treated with porcine serum. Prostaglandins Other Lipid Mediat 2008; 88:63-7. [PMID: 19007904 DOI: 10.1016/j.prostaglandins.2008.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 10/06/2008] [Accepted: 10/10/2008] [Indexed: 11/24/2022]
Abstract
Inhibitors against cyclooxygenase-2 (COX-2), an inducible enzyme that catalyzes prostaglandin synthesis, are widely used in clinical. However, the potential hepatic toxicity of COX-2 inhibitors remains incompletely investigated. We report in this study that a clinically available COX-2 inhibitor, celecoxib, exacerbates porcine serum (PS)-induced hepatic fibrosis and induces hepatocellular necrosis in an experimental liver fibrosis model. Histological results revealed that although celecoxib by itself did not cause notable hepatic damages, it markedly enhanced hepatic fibrosis that had been initiated by PS. While PS alone did not cause any necrotic change in liver cells, the addition of celecoxib resulted in hepatocellular necrosis in PS-treated animals. Notably, celecoxib enhanced reduction of plasma prostaglandin E(2) (PGE(2)) levels induced by PS. Taken together, our results indicate that treatment with celecoxib may exacerbate liver fibrosis and cause hepatocellular necrosis. This may be associated with reduction in PGE(2) as an inheritance consequence of inhibition of COX-2.
Collapse
|
13
|
Gene expression profiling of liver metastases from colorectal cancer as potential basis for treatment choice. Br J Cancer 2008; 99:1729-34. [PMID: 18827815 PMCID: PMC2584956 DOI: 10.1038/sj.bjc.6604681] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
At present no reports on gene expression profiling of liver metastases from colorectal cancer are available. We identified two different signatures using Affymetrix platform: epidermal growth factor receptor pathway was upregulated in metachronous lesions, whereas the pathway mainly related to angiogenesis was in synchronous lesions. Synchronous or metachronous liver metastases could be treated differently on the basis of different molecular pathways.
Collapse
|