1
|
MacLean MR, Walker OL, Arun RP, Fernando W, Marcato P. Informed by Cancer Stem Cells of Solid Tumors: Advances in Treatments Targeting Tumor-Promoting Factors and Pathways. Int J Mol Sci 2024; 25:4102. [PMID: 38612911 PMCID: PMC11012648 DOI: 10.3390/ijms25074102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/β-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.
Collapse
Affiliation(s)
- Maya R. MacLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Olivia L. Walker
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Nova Scotia Health Authority, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Najafi S, Rahimi Z, Mansoori B, Mohammadi A, Mohammadnejad F, Amini M, Mokhtazadeh A, Asadzadeh Z, Chi-Shing Cho W, Baradaran B. CD44 Suppression Improved the Chemosensitivity of HT-29 Colorectal Cancer Cells to 5-Fluorouracil and Inhibited Cell Migration. Adv Pharm Bull 2023; 13:551-562. [PMID: 37646068 PMCID: PMC10460815 DOI: 10.34172/apb.2023.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/23/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose CD44 plays a pivotal role through tumorigenesis by regulating cancer cell metastasis, stemness, and chemosensitivity and is considered a promising therapeutic target for human cancers, including colorectal cancer (CRC). Therefore, the present research aimed to examine the simultaneous therapeutic effect of CD44 silencing and 5-fluorouracil (5-FU) on in vitro tumorigenesis of CRC cells. Methods CD44 expression was initially evaluated in TCGA datasets and CRC tissues. Furthermore, functional analysis was performed on HT-29 CRC cells overexpressing CD44. The cells were transfected with CD44 siRNA and then treated with 5-FU. Consequently, to explore the combination therapy effect on cell viability, migration, apoptosis, and chromatin fragmentation, we performed MTT assay, scratch assay, Annexin V/PI staining and DAPI staining assays, respectively. The spheroid and colony formation assays were further employed to investigate stemness features. The gene expression at protein and mRNA levels were explored using western blotting and qPCR. Results Our findings illustrated that CD44 was significantly overexpressed in CRC tissues compared to normal samples. The suppression of CD44 considerably promoted the chemosensitivity of HT-29 cells to 5-FU by apoptosis induction. Also, the combination therapy led to overexpression of apoptotic genes, including P53, caspase-3, and caspase-9, as well as downregulation of AKT1 expression. Furthermore, CD44 suppression, separately or combined with 5-FU, hindered stemness properties in HT-29 cells via downregulation of Sox2 and Nanog expression. Besides, the combination therapy remarkably downregulated MMPs and suppressed CRC cell migration. Conclusion Considering its involvement in chemosensitivity to 5-FU, CD44 could be suggested as a potential target for improving the efficiency of CRC chemotherapy.
Collapse
Affiliation(s)
- Souzan Najafi
- Student Research Committee, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Rahimi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Puluhulawa LE, Joni IM, Elamin KM, Mohammed AFA, Muchtaridi M, Wathoni N. Chitosan-Hyaluronic Acid Nanoparticles for Active Targeting in Cancer Therapy. Polymers (Basel) 2022; 14:polym14163410. [PMID: 36015667 PMCID: PMC9416118 DOI: 10.3390/polym14163410] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the most common cause of death worldwide; therefore, there is a need to discover novel treatment modalities to combat it. One of the cancer treatments is nanoparticle technology. Currently, nanoparticles have been modified to have desirable pharmacological effects by using chemical ligands that bind with their specific receptors on the surface of malignant cells. Chemical grafting of chitosan nanoparticles with hyaluronic acid as a targeted ligand can become an attractive alternative for active targeting. Hence, these nanoparticles can control drug release with pH- responsive stimuli, and high selectivity of hyaluronic acid to CD44 receptors makes these nanoparticles accumulate more inside cells that overexpress these receptors (cancer cells). In this context, we discuss the benefits and recent findings of developing and utilizing chitosan–hyaluronic acid nanoparticles against distinct forms of cancer malignancy. From here we know that chitosan–hyaluronic acid nanoparticles (CHA-Np) can produce a nanoparticle system with good characteristics, effectiveness, and a good active targeting on various types of cancer cells. Therefore, this system is a good candidate for targeted drug delivery for cancer therapy, anticipating that CHA-Np could be further developed for various cancer therapy applications.
Collapse
Affiliation(s)
- Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | - Muchtaridi Muchtaridi
- Departement of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: ; Tel.: +62-22-824-888888
| |
Collapse
|
4
|
Activation of CD44/PAK1/AKT signaling promotes resistance to FGFR1 inhibition in squamous-cell lung cancer. NPJ Precis Oncol 2022; 6:52. [PMID: 35853934 PMCID: PMC9296622 DOI: 10.1038/s41698-022-00296-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Fibroblast growth factor receptor 1 (FGFR1) gene amplification is one of the most prominent and potentially targetable genetic alterations in squamous-cell lung cancer (SQCLC). Highly selective tyrosine kinase inhibitors have been developed to target FGFR1; however, resistance mechanisms originally existing in patients or acquired during treatment have so far led to limited treatment efficiency in clinical trials. In this study we performed a wide-scale phosphoproteomic mass-spectrometry analysis to explore signaling pathways that lead to resistance toward FGFR1 inhibition in lung cancer cells that display (i) intrinsic, (ii) pharmacologically induced and (iii) mutationally induced resistance. Additionally, we correlated AKT activation to CD44 expression in 175 lung cancer patient samples. We identified a CD44/PAK1/AKT signaling axis as a commonly occurring resistance mechanism to FGFR1 inhibition in lung cancer. Co-inhibition of AKT/FGFR1, CD44/FGFR1 or PAK1/FGFR1 sensitized ‘intrinsically resistant’ and ‘induced-resistant’ lung-cancer cells synergetically to FGFR1 inhibition. Furthermore, strong CD44 expression was significantly correlated with AKT activation in SQCLC patients. Collectively, our phosphoproteomic analysis of lung-cancer cells resistant to FGFR1 inhibitor provides a large data library of resistance-associated phosphorylation patterns and leads to the proposal of a common resistance pathway comprising CD44, PAK1 and AKT activation. Examination of CD44/PAK1/AKT activation could help to predict response to FGFR1 inhibition. Moreover, combination between AKT and FGFR1 inhibitors may pave the way for an effective therapy of patients with treatment-resistant FGFR1-dependent lung cancer.
Collapse
|
5
|
Nisha R, Kumar P, Kumar U, Mishra N, Maurya P, Singh P, Tabassum H, Alka, Singh S, Guleria A, Saraf SA. Assessment of hyaluronic acid-modified imatinib mesylate cubosomes through CD44 targeted drug delivery in NDEA-induced hepatic carcinoma. Int J Pharm 2022; 622:121848. [DOI: 10.1016/j.ijpharm.2022.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
|
6
|
Kumar V, Rahman M, Gahtori P, Al-Abbasi F, Anwar F, Kim HS. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine. Expert Opin Drug Deliv 2021; 18:673-694. [PMID: 33295218 DOI: 10.1080/17425247.2021.1860939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide. Conventional therapies covering either chemotherapy or combination therapy still have sub-optimal responses with significant adverse effects and toxicity. Moreover, tumor cells usually acquire resistance quickly for traditional approaches, limiting their use in HCC. Interest in nanomedicine due to minimal systemic toxicity and a high degree of target-specific drug-delivery have pulled the attention of health scientists in this area of therapeutics. AREA COVERED The review covers the incidence and epidemiology of HCC, proposed molecular drug targets, mechanistic approach and emergence of nanomedicines including nanoparticles, lipidic nanoparticles, vesicular-based nanocarrier, virus-like particles with momentous therapeutic aspects including biocompatibility, and toxicity of nanocarriers along with conclusions and future perspective, with an efficient approach to safely cross physiological barriers to reach the target site for treating liver cancer. EXPERT OPINION Remarkable outcomes have recently been observed for the therapeutic efficacy of nanocarriers with respect to a specific drug target against the treatment of HCC by existing under trial drugs.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University Dehradun 248002, Uttarakhand, India
| | - Fahad Al-Abbasi
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon 16419, 2066, Seobu-ro, Korea
| |
Collapse
|
7
|
Zhou C, Xia Y, Wei Y, Cheng L, Wei J, Guo B, Meng F, Cao S, van Hest JCM, Zhong Z. GE11 peptide-installed chimaeric polymersomes tailor-made for high-efficiency EGFR-targeted protein therapy of orthotopic hepatocellular carcinoma. Acta Biomater 2020; 113:512-521. [PMID: 32562803 DOI: 10.1016/j.actbio.2020.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a leading malignancy with a high mortality and little improvement in treatments. Protein drugs though known for their extraordinary potency and specificity have rarely been investigated for HCC therapy owing to lack of appropriate delivery systems. Here, we designed GE11 peptide-installed chimaeric polymersomes (GE11-CPs) for high-efficiency EGFR-targeted protein therapy of orthotopic SMMC-7721 HCC-bearing nude mice. GE11-CPs were assembled from poly(ethylene glycol)-b-poly(trimethylene carbonate-co-dithiolane trimethylene carbonate)-b-poly(aspartic acid) (PEG-P(TMC-DTC)-PAsp) and GE11-functionalized PEG-P(TMC-DTC), which allowed efficient loading and protection of proteins in the watery interior and fine-tuning of GE11 densities at the surface. CPs with short PAsp segments (degree of polymerization (DP) = 5, 10 and 15) exhibited a protein loading efficiency of 60%-72% and glutathione-responsive protein release. Saporin-loaded GE11-CPs had a size of 36 - 62 nm depending on GE11 densities and DP of PAsp. Notably, GE11-CPs with 10% GE11 revealed greatly enhanced uptake in SMMC-7721 cells, boosting the anticancer potency of saporin for over 3-folds compared with non-targeted control (half-maximal inhibitory concentration (IC50) = 11.0 versus 36.3 nM). The biodistribution studies using Cy5-labeled cytochrome C as a model protein demonstrated about 3-fold higher accumulation of GE11-CPs formulation than CPs counterpart in both subcutaneous and orthotopic SMMC-7721 tumor models. Notably, saporin-loaded GE11-CPs revealed low toxicity, effective tumor inhibition and significant improvement of survival rate compared with PBS and non-targeted groups (median survival time: 99 versus 37 and 42 days). EGFR-targeted chimaeric polymersomes carrying proteins appear an interesting HCC treatment modality.
Collapse
Affiliation(s)
- Cheng Zhou
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Yifeng Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Yaohua Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Liang Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China.
| | - Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China.
| | - Shoupeng Cao
- Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600MB Eindhoven, the Netherlands
| | - Jan C M van Hest
- Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600MB Eindhoven, the Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
8
|
Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin Cancer Biol 2019; 69:91-99. [PMID: 31421265 DOI: 10.1016/j.semcancer.2019.08.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
The effectiveness of chemotherapy in hepatocellular carcinoma (HCC) is restricted by chemo-resistance and systemic side effects. To improve the efficacy and safety of chemotherapeutics in HCC management, scientists have attempted to deliver these drugs to malignant tissues using targeted carriers as nanoparticles (NPs). Among the three types of NPs targeting (active, passive, and stimuli-responsive), active targeting is the most commonly investigated in HCC treatment. Despite the observed promising results so far, clinical research on nanomedicine targeting for HCC treatment still faces many challenges.These include batch-to-batch physicochemical properties' variations, limiting large scale production and insufficient data on human and environmental toxicities. This review summarized the characteristics of different nanocarriers, ligands, targeted receptors on HCC cells and provided recommendations to overcome the challenges, facing this novel line of treatment for HCC.
Collapse
|
9
|
Turato C, Balasso A, Carloni V, Tiribelli C, Mastrotto F, Mazzocca A, Pontisso P. New molecular targets for functionalized nanosized drug delivery systems in personalized therapy for hepatocellular carcinoma. J Control Release 2017; 268:184-197. [PMID: 29051062 DOI: 10.1016/j.jconrel.2017.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma, the most frequent solid tumor of the liver, has a very poor prognosis, being the second most common cause of death from cancer worldwide. The incidence and mortality of this liver tumor are increasing in most areas of the world as a consequence of aging and the emerging of new risk factors such as the metabolic syndrome, beside the recognized role of hepatitis B and C viral infections and alcohol abuse. Despite the increasing knowledge on the molecular mechanisms underlying hepatic carcinogenesis, effective therapeutic strategies are still an unmet clinical need. Efforts have been made to develop selective drugs as well as effective targeted drug delivery systems. The development of novel drug carriers for therapeutic molecules can indeed offer a valuable strategy to ameliorate the efficacy of HCC treatment. In this review, we discuss recent drug delivery strategies for HCC treatment based on the exploitation of targeted nanoparticles (NPs). Indeed, a few of these platforms have achieved an advanced stage of preclinical development. Here, we review the most promising drug nanovehicles based on both synthetic and natural polymers, including polysaccharides that have emerged for their biocompatibility and biodegradability. To maximize site-selectivity and therapeutic efficacy, drug delivery systems should be functionalized with ligands which can specifically recognize and bind targets expressed by HCC, namely cell membrane associated antigens, receptors or biotransporters. Cell surface and intracellular molecular targets are exploited either to selectively deliver drug-loaded nanovehicles or to design novel selective therapeutics. In conclusion, the combination of novel and safe drug delivery strategies based on site-specific targeted drug nanovehicles with therapeutic molecular targets may significantly improve the pharmacological efficacy for the treatment of HCC.
Collapse
Affiliation(s)
| | - Anna Balasso
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, Padova, Italy
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Francesca Mastrotto
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, Padova, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy.
| | | |
Collapse
|
10
|
Lai KP, Li JW, Cheung A, Li R, Billah MB, Chan TF, Wong CKC. Transcriptome sequencing reveals prenatal PFOS exposure on liver disorders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:416-425. [PMID: 28131474 DOI: 10.1016/j.envpol.2017.01.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 05/24/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a hepatic toxicant and a potential hepatocarcinogen, is commonly used in industrial products. The widespread contamination of PFOS in human maternal and cord blood has raised concerns about its potential risks to the fetus. It is believed that adverse environmental exposure during the critical period of embryo development can have long-lasting consequences in later life. In this report, we used transcriptome sequencing, followed by bioinformatics analysis, to elucidate the potential hepatotoxic and hepatocarcinogenic effects of prenatal PFOS exposure in the fetus. Our results demonstrated that prenatal PFOS exposure could activate the synthesis and metabolism of fatty acids and lipids, leading to liver damage and interference with liver development in the fetus. In addition, a number of cancer-promoting signaling pathways, including Wnt/β-catenin, Rac, and TGF-β, were found to be activated in the fetal liver. More importantly, hepatic transaminase activity, including aspartate aminotransferase and alanine transaminase activity, was induced in the liver of mice offspring after prenatal PFOS exposure. For the first time, our results demonstrate that the hepatotoxic effects of prenatal exposure to PFOS may predispose to a long-term liver disorder in the offspring.
Collapse
Affiliation(s)
- Keng Po Lai
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| | - Jing Woei Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Angela Cheung
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Rong Li
- Croucher Institute for Environmental Sciences, Department of Biology, Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Md Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
11
|
Lee JH, Hur W, Hong SW, Kim JH, Kim SM, Lee EB, Yoon SK. ELK3 promotes the migration and invasion of liver cancer stem cells by targeting HIF-1α. Oncol Rep 2016; 37:813-822. [PMID: 27959451 DOI: 10.3892/or.2016.5293] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common solid cancer and the third most common cause of cancer-related mortality. HCC develops via a multistep process associated with genetic aberrations that facilitate HCC invasion and migration and promote metastasis. A growing body of evidence indicates that cancer stem cells (CSCs) are responsible for tumorigenesis, cancer cell invasion and metastasis. Despite the extremely small proportion of cancer cells represented by this subpopulation of HCC cells, CSCs play a key role in cancer metastasis and poor prognosis. ELK3 (Net/SAP-2/Erp) is a transcription factor that is activated by the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. It plays several important roles in various physiological processes, including cell migration, invasion, wound healing, angiogenesis and tumorigenesis. In the present study, we investigated the role of ELK3 in cancer cell invasion and metastasis in CD133+/CD44+ liver cancer stem cells (LCSCs). We isolated LCSCs expressing CD133 and CD44 from Huh7 HCC cells and evaluated their metastatic potential using invasion and migration assays. We found that CD133+/CD44+ cells had increased metastatic potential compared with non-CD133+/CD44+ cells. We also demonstrated that ELK3 expression was upregulated in CD133+/CD44+ cells and that this aberration enhanced cell migration and invasion. In addition, we identified the molecular mechanism by which ELK3 promotes cancer cell migration and invasion. We found that silencing of ELK3 expression in CD133+/CD44+ LCSCs attenuated their metastatic potential by modulating the expression of heat shock-induced factor-1α (HIF-1α). Collectively, the results of the present study demonstrated that ELK3 overexpression promoted metastasis in CD133+/CD44+ cells by regulating HIF-1α expression and that silencing of ELK3 expression attenuated the metastatic potential of CD133+/CD44+ LCSCs. In conclusion, modulation of ELK3 expression may represent a novel therapeutic strategy for preventing HCC metastasis and invasion.
Collapse
Affiliation(s)
- Joon Ho Lee
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Wonhee Hur
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Woo Hong
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Min Kim
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Byul Lee
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
12
|
Shi Y, Wang SY, Yao M, Sai WL, Wu W, Yang JL, Cai Y, Zheng WJ, Yao DF. Chemosensitization of HepG2 cells by suppression of NF-κB/p65 gene transcription with specific-siRNA. World J Gastroenterol 2016. [PMID: 26668505 DOI: 10.3748/wjg.v21.i45.1281426668505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate small interfering RNA (siRNA)-mediated inhibition of nuclear factor-kappa B (NF-κB) activation and multidrug-resistant (MDR) phenotype formation in human HepG2 cells. METHODS Total RNA was extracted from human HepG2 or LO2 cells. NF-κB/p65 mRNA was amplified by nested reverse transcription polymerase chain reaction and confirmed by sequencing. NF-κB/p65 was analyzed by immunohistochemistry. Specific-siRNA was transfected to HepG2 cells to knock down NF-κB/p65 expression. The effects on cell proliferation, survival, and apoptosis were assessed, and the level of NF-κB/p65 or P-glycoprotein (P-gp) was quantitatively analyzed by enzyme-linked immunosorbent assay. RESULTS HepG2 cells express NF-κB/p65 and express relatively less phosphorylated p65 (P-p65) and little P-gp. After treatment of HepG2 cells with different doses of doxorubicin, the expression of NF-κB/p65, P-p65, and especially P-gp were dose-dependently upregulated. After HepG2 cells were transfected with NF-κB/p65 siRNA (100 nmol/L), the expression of NF-κB/p65, P-p65, and P-gp were downregulated significantly and dose-dependently. The viability of HepG2 cells was decreased to 23% in the combination NF-κB/p65 siRNA (100 nmol/L) and doxorubicin (0.5 μmol/L) group and 47% in the doxorubicin (0.5 μmol/L) group (t = 7.043, P < 0.001). CONCLUSION Knockdown of NF-κB/p65 with siRNA is an effective strategy for inhibiting HepG2 cell growth by downregulating P-gp expression associated chemosensitization and apoptosis induction.
Collapse
Affiliation(s)
- Yun Shi
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Si-Ye Wang
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wei Wu
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jun-Ling Yang
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yin Cai
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Jie Zheng
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
13
|
Zhang G, Li Z, Wan X, Zhang Y, Zhu R, Liu Z, Ji D, Zhang H, Wu F, Tian H, Liu K, Wu B. Repression of Human Hepatocellular Carcinoma Growth by Regulating Met/EGFR/VEGFR-Akt/NF-κB Pathways with Theanine and Its Derivative, (R)-2-(6,8-Dibromo-2-oxo-2H-chromene-3-carboxamido)-5-(ethylamino)-5-oxopentanoic Ethyl Ester (DTBrC). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7002-7013. [PMID: 27569455 DOI: 10.1021/acs.jafc.6b02509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To explore the potential of theanine against cancer, we have studied the anticancer activities of theanine from tea and its semisynthesized derivative, (R)-2-(6,8-dibromo-2-oxo-2H-chromene-3-carboxamido)-5-(ethylamino)-5-oxopentanoic ethyl ester (DTBrC), in in vitro, ex vivo, and in vivo models of human hepatocellular carcinoma (HHC). Theanine and DTBrC displayed inhibitory effects on the growth and migration of HHC cells in vitro, ex vivo, and in vivo. Theanine and DTBrC significantly enhanced the repression of HHC cell growth in combination with anticancer drug pirarubicin. Theanine and DTBrC completely suppressed HGF- and EGF+HGF-induced migration with a reduction of p53 tumor suppressor level and enhanced the p53 protein expression in HHC cells. The Akt and NF-κB knockdown greatly reduced cancer cell migration with a decrease in CD44 expression. DTBrC and theanine significantly repressed the protein expressions in the Met/EGFR/VEGFR-Akt/NF-κB pathways, which might be the mechanism for their biologic effects.
Collapse
Affiliation(s)
- Guoying Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai, 264005, People's Republic of China
| | - Zheng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai, 264005, People's Republic of China
| | - Xiaochun Wan
- Key Laboratory of Tea Biochemistry & Biotechnology, Ministry of Agriculture, Anhui Agricultural University , Hefei, Anhui Province 230036, People's Republic of China
| | - Ying Zhang
- Shandong Yingdong Yinghao Biotechnology Inc. , No. 101 Hangtianlu, Gaoxinqu, Yantai, Shandong Province 264670, People's Republic of China
| | - Rongqin Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai, 264005, People's Republic of China
| | - Zhenzhen Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai, 264005, People's Republic of China
| | - Dexin Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai, 264005, People's Republic of China
| | - Huarong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai, 264005, People's Republic of China
| | - Fei Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai, 264005, People's Republic of China
| | - Huihui Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai, 264005, People's Republic of China
| | - Kun Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai, 264005, People's Republic of China
| | - Benhao Wu
- Shandong Yingdong Yinghao Biotechnology Inc. , No. 101 Hangtianlu, Gaoxinqu, Yantai, Shandong Province 264670, People's Republic of China
| |
Collapse
|
14
|
Role of difucosylated Lewis Y antigen in outcome of locally advanced cervical squamous cell carcinoma treated with cisplatin regimen. Int J Biol Markers 2016; 31:e300-8. [PMID: 27197582 DOI: 10.5301/jbm.5000206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Several mechanisms are involved in the development of resistance to therapy in locally advanced cervical squamous cell carcinoma (LACSCC). Studies have shown that CD44 and Lewis Y antigen (LeY) form a complex that is associated with chemoresistance, tumor invasion and metastasis. We assessed the role of CD44 and LeY in the outcome of LACSCC patients treated with different chemotherapy regimens. METHODS 126 LACSCC patients at FIGO stages IIB-IVA were selected from the GOCS database: 74 patients included in 3 different prospective phase II trials in the neoadjuvant setting (vinorelbine, docetaxel, ifosfamide-vinorelbine-cisplatin) and 52 patients treated with standard radiochemotherapy based on cisplatin (RCBC). Clinical data at baseline, disease-free survival (DFS) and overall survival (OS) were recorded. Univariate and multivariate Cox models were employed. RESULTS Median age was 45.6 years (range: 24.9-80.5). Sixty-three and 47 tumors were CD44+ and LeY+, respectively. Tumors with expansive growth showed higher grade (p = 0.0024), mitotic index (p = 0.0505), tumor necrosis (p = 0.0191), LeY+ (p = 0.0034) and CD44+/LeY+ coexpression (p = 0.0334). CD44+ cells were present in 91.3% of patients with local recurrence (p = 0.0317). Advanced stage was associated with LeY+ tumors. Patients treated with RCBC had worse DFS and OS when their tumors expressed LeY (p = 0.0083 and p = 0.0137, respectively). Pre-treatment hemoglobin level, FIGO stage and tumor response remained the most significant prognostic factors in Cox regression. CONCLUSIONS In our cohort of LACSCC patients, the coexpression of CD44 and LeY was not associated with worse outcome. However, in the subgroup of patients receiving RCBC, LeY expression was correlated with shorter DFS and OS.
Collapse
|
15
|
Drug delivery system targeting advanced hepatocellular carcinoma: Current and future. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:853-869. [PMID: 26772424 DOI: 10.1016/j.nano.2015.12.381] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) has a fairly high morbidity and is notoriously difficult to treat due to long latent period before detection, multidrug resistance and severe drug-related adverse effects from chemotherapy. Targeted drug delivery systems (DDS) that can selectively deliver therapeutic drugs into tumor sites have demonstrated a great potential in cancer treatment, which could be utilized to resolve the limitations of conventional chemotherapy. Numerous preclinical studies of DDS have been published, but targeted DDS for HCC has yet to be made for practical clinical use. Since rational targeted DDS design should take cancer-specific properties into consideration, we have reviewed the biological and physicochemical properties of HCC extensively to provide a comprehensive understanding on HCC, and recent DDS studies on HCC, aiming to find some potential targeted DDSs for HCC treatment and a meaningful platform for further development of HCC treatments. FROM THE CLINICAL EDITOR Hepatocellular carcinoma has a high incidence worldwide and is known to be multidrug resistant. Thus, intensive research is being carried out to find better chemotherapeutic agents as well as new drug delivery systems. In this article, the authors reviewed in depth the current challenges facing new drug designs and also outlined novel targeted drug delivery systems (DDS) in the fight against HCC.
Collapse
|
16
|
Abstract
CD44 is a cellular protein that has been intensively studied in relation to carcinogenesis over the last decade. It is altered during inflammatory responses and cellular malfunctioning during tumor progression. Tumors of epithelial origin express CD44 in multiple isoforms called variants; some isoforms are related to specific cancer cells. An increase of CD44 specific isoforms is detected in certain leukemic proliferations. Most published data indicates a partial involvement of CD44 in cancer cells, either in invasiveness or self-renewability. However, there is still uncertainty regarding the exact mechanism by which CD44 participates in growth of cancer or the inflammatory response. This review focuses on CD44 prevalence in cancer cell. It considers tumorigenic behavior of cells that highly express CD44 as an early marker for neoplastic stem cell proliferation. We will discuss multiple examples of tumor in this paper, with an emphasis of 2 solid tumors; namely, breast and colon cancer.
Collapse
Affiliation(s)
- Nawwaf S Basakran
- Department of Molecular Biology, King Khalid National Guard Hospital, PO Box 9515, Jeddah 21423, Kingdom of Saudi Arabia. E-mail.
| |
Collapse
|
17
|
MONTALBANO MAURO, RASTELLINI CRISTIANA, WANG XIAOFU, CORSELLO TIZIANA, ELTORKY MAHMOUDA, VENTO RENZA, CICALESE LUCA. Transformation of primary human hepatocytes in hepatocellular carcinoma. Int J Oncol 2015; 48:1205-17. [DOI: 10.3892/ijo.2015.3312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022] Open
|
18
|
Shi Y, Wang SY, Yao M, Sai WL, Wu W, Yang JL, Cai Y, Zheng WJ, Yao DF. Chemosensitization of HepG2 cells by suppression of NF-κB/p65 gene transcription with specific-siRNA. World J Gastroenterol 2015; 21:12814-12821. [PMID: 26668505 PMCID: PMC4671036 DOI: 10.3748/wjg.v21.i45.12814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/04/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate small interfering RNA (siRNA)-mediated inhibition of nuclear factor-kappa B (NF-κB) activation and multidrug-resistant (MDR) phenotype formation in human HepG2 cells. METHODS Total RNA was extracted from human HepG2 or LO2 cells. NF-κB/p65 mRNA was amplified by nested reverse transcription polymerase chain reaction and confirmed by sequencing. NF-κB/p65 was analyzed by immunohistochemistry. Specific-siRNA was transfected to HepG2 cells to knock down NF-κB/p65 expression. The effects on cell proliferation, survival, and apoptosis were assessed, and the level of NF-κB/p65 or P-glycoprotein (P-gp) was quantitatively analyzed by enzyme-linked immunosorbent assay. RESULTS HepG2 cells express NF-κB/p65 and express relatively less phosphorylated p65 (P-p65) and little P-gp. After treatment of HepG2 cells with different doses of doxorubicin, the expression of NF-κB/p65, P-p65, and especially P-gp were dose-dependently upregulated. After HepG2 cells were transfected with NF-κB/p65 siRNA (100 nmol/L), the expression of NF-κB/p65, P-p65, and P-gp were downregulated significantly and dose-dependently. The viability of HepG2 cells was decreased to 23% in the combination NF-κB/p65 siRNA (100 nmol/L) and doxorubicin (0.5 μmol/L) group and 47% in the doxorubicin (0.5 μmol/L) group (t = 7.043, P < 0.001). CONCLUSION Knockdown of NF-κB/p65 with siRNA is an effective strategy for inhibiting HepG2 cell growth by downregulating P-gp expression associated chemosensitization and apoptosis induction.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Male
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNAi Therapeutics
- Time Factors
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Transcription, Genetic
- Transfection
Collapse
|
19
|
AbdElazeem MA, El-Sayed M. The pattern of CD44 and matrix metalloproteinase 9 expression is a useful predictor of ulcerative colitis–associated dysplasia and neoplasia. Ann Diagn Pathol 2015; 19:369-74. [PMID: 26420348 DOI: 10.1016/j.anndiagpath.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/13/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023]
|
20
|
MMSET regulates expression of IRF4 in t(4;14) myeloma and its silencing potentiates the effect of bortezomib. Leukemia 2015. [PMID: 26196464 DOI: 10.1038/leu.2015.169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is characterized by recurrent chromosomal translocations. In t(4;14) MM, the MM SET domain (MMSET) protein is universally overexpressed and has been suggested to have an important tumorigenic role. However, the exact molecular targets underlying MMSET activity are not well understood. Here, we found in t(4;14) MM cells that MMSET knockdown decreases interferon regulatory factor 4 (IRF4) expression, and ectopic MMSET increases IRF4 expression, suggesting that MMSET is an upstream regulator of IRF4. Further analyses indicated an interaction between MMSET and nuclear factor-κB, which both bind to the IRF4 promoter region. A luciferase reporter assay showed that MMSET is an important functional element for the IRF4 promoter. MMSET knockdown induces apoptosis and potentiates the effects of bortezomib in vitro and in vivo. Importantly, we found that bortezomib could reduce expression of MMSET and IRF4. This might partly explain the additive effect of combining MMSET knockdown and bortezomib treatment. These results identify MMSET as a key regulator involved in the regulatory network of transcription factor IRF4, which is critical for MM cell survival, suggesting that the combination of MMSET inhibition and bortezomib is likely to improve patient outcome in MM.
Collapse
|
21
|
Fernando J, Malfettone A, Cepeda EB, Vilarrasa-Blasi R, Bertran E, Raimondi G, Fabra À, Alvarez-Barrientos A, Fernández-Salguero P, Fernández-Rodríguez CM, Giannelli G, Sancho P, Fabregat I. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells. Int J Cancer 2015; 136:E161-E172. [PMID: 25053293 DOI: 10.1002/ijc.29097] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/18/2014] [Indexed: 12/11/2022]
Abstract
The multikinase inhibitor sorafenib is the only effective drug in advanced cases of hepatocellular carcinoma (HCC). However, response differs among patients and effectiveness only implies a delay. We have recently described that sorafenib sensitizes HCC cells to apoptosis. In this work, we have explored the response to this drug of six different liver tumor cell lines to define a phenotypic signature that may predict lack of response in HCC patients. Results have indicated that liver tumor cells that show a mesenchymal-like phenotype, resistance to the suppressor effects of transforming growth factor beta (TGF-β) and high expression of the stem cell marker CD44 were refractory to sorafenib-induced cell death in in vitro studies, which correlated with lack of response to sorafenib in nude mice xenograft models of human HCC. In contrast, epithelial-like cells expressing the stem-related proteins EpCAM or CD133 were sensitive to sorafenib-induced apoptosis both in vitro and in vivo. A cross-talk between the TGF-β pathway and the acquisition of a mesenchymal-like phenotype with up-regulation of CD44 expression was found in the HCC cell lines. Targeted CD44 knock-down in the mesenchymal-like cells indicated that CD44 plays an active role in protecting HCC cells from sorafenib-induced apoptosis. However, CD44 effect requires a TGF-β-induced mesenchymal background, since the only overexpression of CD44 in epithelial-like HCC cells is not sufficient to impair sorafenib-induced cell death. In conclusion, a mesenchymal profile and expression of CD44, linked to activation of the TGF-β pathway, may predict lack of response to sorafenib in HCC patients.
Collapse
Affiliation(s)
- Joan Fernando
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chatterjee A, Chattopadhyay D, Chakrabarti G. MiR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis. Cell Signal 2014; 27:189-203. [PMID: 25435430 DOI: 10.1016/j.cellsig.2014.11.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/12/2014] [Accepted: 11/21/2014] [Indexed: 01/07/2023]
Abstract
Non-small cell lung cancer is one of the most aggressive cancers as per as the mortality and occurrence is concerned. Paclitaxel based chemotherapeutic regimes are now used as an important option for the treatment of lung cancer. However, resistance of lung cancer cells to paclitaxel continues to be a major clinical problem nowadays. Despite impressive initial clinical response, most of the patients eventually develop some degree of paclitaxel resistance in the course of treatment. Previously, utilizing miRNA arrays we reported that downregulation of miR-17 is at least partly involved in the development of paclitaxel resistance in lung cancer cells by modulating Beclin-1 expression [1]. In this study, we showed that miR-16 was also significantly downregulated in paclitaxel resistant lung cancer cells. We demonstrated that anti-apoptotic protein Bcl-2 was directly targeted miR-16 in paclitaxel resistant lung cancer cells. Moreover, in this report we showed that the combined overexpression of miR-16 and miR-17 and subsequent paclitaxel treatment greatly sensitized paclitaxel resistant lung cancer cells to paclitaxel by inducing apoptosis via caspase-3 mediated pathway. Combined overexpression of miR-16 and miR-17 greatly reduced Beclin-1 and Bcl-2 expressions respectively. Our results indicated that though miR-17 and miR-16 had no common target, both miR-16 and miR-17 jointly played roles in the development of paclitaxel resistance in lung cancer. miR-17 overexpression reduced cytoprotective autophagy by targeting Beclin-1, whereas overexpression of miR-16 potentiated paclitaxel induced apoptotic cell death by inhibiting anti-apoptotic protein Bcl-2.
Collapse
Affiliation(s)
- Abhisek Chatterjee
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700019, India
| | - Dhrubajyoti Chattopadhyay
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700019, India
| | - Gopal Chakrabarti
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700019, India.
| |
Collapse
|
23
|
Ding J, Wang H. Multiple interactive factors in hepatocarcinogenesis. Cancer Lett 2013; 346:17-23. [PMID: 24374016 DOI: 10.1016/j.canlet.2013.12.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/08/2013] [Accepted: 12/10/2013] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the third most frequent cause of cancer mortality globally. Each year there are approximately 630,000 new cases of HCC in the world and more than half of the new cases occur in China. Major risk factors of HCC include HBV or HCV infection, alcoholic liver disease, and nonalcoholic fatty liver disease. Most of these risk factors lead to chronic hepatitis and cirrhosis, which is present in 80-90% of HCC patients. Hepatocarcinogenesis has been regarded as a multi-stage process involving multiple genetic or environmental factors. Interaction and cross-regulation of distinct factors synergistically contributes to HCC occurrence. A comprehensive knowledge on the multiple factors and their interaction in hepatocarcinogenesis is necessary to improve the effectiveness of HCC intervention. In this review, we will focus on the recent progress made in understanding the mechanisms of hepatocarcinogenesis and discuss some potential issues or challenges in this area.
Collapse
Affiliation(s)
- Jin Ding
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| |
Collapse
|
24
|
Bhattacharya S, Kumar NM, Ganguli A, Tantak MP, Kumar D, Chakrabarti G. NMK-TD-100, a novel microtubule modulating agent, blocks mitosis and induces apoptosis in HeLa cells by binding to tubulin. PLoS One 2013; 8:e76286. [PMID: 24116100 PMCID: PMC3792137 DOI: 10.1371/journal.pone.0076286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/22/2013] [Indexed: 11/19/2022] Open
Abstract
Thiadiazoles are one of the most widely utilized agents in medicinal chemistry, having a wide range of pharmacologic activity. Microtubules (MTs) have always remained a sought-after target in rapidly proliferating cancer cells. We screened for the growth inhibitory effect of synthetic 5-(3-indolyl)-2-substituted-1,3,4-thiadiazoles on cancer cells and identified NMK-TD-100, as the most potent agent. Cell viability experiments using human cervical carcinoma cell line (HeLa cells) indicated that the IC50 value was 1.42±0.11 µM for NMK-TD-100 for 48 h treatment. In further study, we examined the mode of interaction of NMK-TD-100 with tubulin and unraveled the cellular mechanism responsible for its anti-tumor activity. NMK-TD-100 induced arrest in mitotic phase of cell cycle, caused decline in mitochondrial membrane potential and induced apoptosis in HeLa cells. Immunofluorescence studies using an anti-α-tubulin antibody showed a significant depolymerization of the interphase microtubule network and spindle microtubule in HeLa cells in a concentration-dependent manner. However, the cytotoxicity of NMK-TD-100 towards human peripheral blood mononuclear cells (PBMC) was lower compared to that in cancer cells. Polymerization of tissue purified tubulin into microtubules was inhibited by NMK-TD-100 with an IC50 value of 17.5±0.35 µM. The binding of NMK-TD-100 with tubulin was studied using NMK-TD-100 fluorescence enhancement and intrinsic tryptophan fluorescence of tubulin. The stoichiometry of NMK-TD-100 binding to tubulin is 1:1 (molar ratio) with a dissociation constant of ~1 µM. Fluorescence spectroscopic and molecular modeling data showed that NMK-TD-100 binds to tubulin at a site which is very near to the colchicine binding site. The binding of NMK-TD-100 to tubulin was estimated to be ~10 times faster than that of colchicine. The results indicated that NMK-TD-100 exerted anti-proliferative activity by disrupting microtubule functions through tubulin binding and provided insights into its potential of being a chemotherapeutic agent.
Collapse
MESH Headings
- Amino Acids/chemistry
- Amino Acids/metabolism
- Apoptosis/drug effects
- Blotting, Western
- Caspase 3/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- HeLa Cells
- Humans
- Indoles/chemistry
- Indoles/metabolism
- Indoles/pharmacology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- M Phase Cell Cycle Checkpoints/drug effects
- Membrane Potential, Mitochondrial/drug effects
- Microscopy, Electron
- Microtubules/drug effects
- Microtubules/metabolism
- Mitosis/drug effects
- Models, Molecular
- Molecular Structure
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Thiadiazoles/chemistry
- Thiadiazoles/metabolism
- Thiadiazoles/pharmacology
- Tubulin/chemistry
- Tubulin/metabolism
- Tubulin/ultrastructure
- Tubulin Modulators/chemistry
- Tubulin Modulators/metabolism
- Tubulin Modulators/pharmacology
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Surela Bhattacharya
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| | - N. Maruthi Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Arnab Ganguli
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| | - Mukund P. Tantak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
- * E-mail: (GC); (DK)
| | - Gopal Chakrabarti
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
- * E-mail: (GC); (DK)
| |
Collapse
|
25
|
Hu Z, Gao J, Zhang D, Liu Q, Yan L, Gao L, Liu J, Liu D, Zhang S, Lin B. High expression of Lewis y antigen and CD44 is correlated with resistance to chemotherapy in epithelial ovarian cancers. PLoS One 2013; 8:e57250. [PMID: 23468946 PMCID: PMC3585297 DOI: 10.1371/journal.pone.0057250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/21/2013] [Indexed: 11/24/2022] Open
Abstract
Objectives To measure Lewis y antigen and CD44 antigen expression in epithelial ovarian carcinoma and to correlate the levels of these antigens with clinical response to chemotherapy. Methods The study cases included 34 cases of ovarian carcinoma with resistance to chemotherapeutic drugs, 6 partially drug-sensitive cases, and 52 drug-sensitive cases (92 total). Results The rates of expression of Lewis y antigen and CD44 antigen were significantly greater in the drug-resistant group than that in the partially-sensitive or sensitive groups. Surgical stage, residual tumor size and expression of CD44 and Lewis y antigen in ovarian carcinoma tissues were independent risk factors for chemotherapeutic drug resistance. Conclusions Over-expression of Lewis y and CD44 antigen are strong risk factors for chemotherapeutic drug resistance in ovarian carcinoma patients.
Collapse
Affiliation(s)
- Zhenhua Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Danye Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Qing Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Limei Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Lili Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
- * E-mail:
| |
Collapse
|
26
|
SONG KAI, WU JUNHUA, JIANG CHUNPING. Dysregulation of signaling pathways and putative biomarkers in liver cancer stem cells (Review). Oncol Rep 2012; 29:3-12. [DOI: 10.3892/or.2012.2082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/25/2012] [Indexed: 02/06/2023] Open
|
27
|
Majumdar A, Curley SA, Wu X, Brown P, Hwang JP, Shetty K, Yao ZX, He AR, Li S, Katz L, Farci P, Mishra L. Hepatic stem cells and transforming growth factor β in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2012; 9:530-8. [PMID: 22710573 PMCID: PMC3745216 DOI: 10.1038/nrgastro.2012.114] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. It arises from modulation of multiple genes by mutations, epigenetic regulation, noncoding RNAs and translational modifications of encoded proteins. Although >40% of HCCs are clonal and thought to arise from cancer stem cells (CSCs), the precise identification and mechanisms of CSC formation remain poorly understood. A functional role of transforming growth factor (TGF)-β signalling in liver and intestinal stem cell niches has been demonstrated through mouse genetics. These studies demonstrate that loss of TGF-β signalling yields a phenotype similar to a human CSC disorder, Beckwith-Wiedemann syndrome. Insights into this powerful pathway will be vital for developing new therapeutics in cancer. Current clinical approaches are aimed at establishing novel cancer drugs that target activated pathways when the TGF-β tumour suppressor pathway is lost, and TGF-β itself could potentially be targeted in metastases. Studies delineating key functional pathways in HCC and CSC formation could be important in preventing this disease and could lead to simple treatment strategies; for example, use of vitamin D might be effective when the TGF-β pathway is lost or when wnt signalling is activated.
Collapse
|
28
|
Lee TKW, Cheung VCH, Ng IOL. Liver tumor-initiating cells as a therapeutic target for hepatocellular carcinoma. Cancer Lett 2012; 338:101-9. [PMID: 22579789 DOI: 10.1016/j.canlet.2012.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide and has poor prognosis. Existing treatment modalities, including surgery, chemotherapy, and radiofrequency ablation, which target tumor bulk, have demonstrated limited therapeutic efficacy. In the past 10years, accumulating evidence has supported the existence of cancer stem cells (CSCs) or tumor initiating cells (T-ICs) within tumors including HCC. Identification of liver T-ICs and the signaling pathways that they are involved in may shed light on novel therapeutic strategies against this deadly disease. In this review, we will discuss recent progresses made in the research of liver T-ICs with regard to identification, functional characterization, regulation and therapeutic implications.
Collapse
Affiliation(s)
- Terence Kin Wah Lee
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
29
|
Van Pham P, Vu NB, Duong TT, Nguyen TT, Truong NH, Phan NLC, Vuong TG, Pham VQ, Nguyen HM, Nguyen KT, Nguyen NT, Nguyen KG, Khat LT, Van Le D, Truong KD, Phan NK. Suppression of human breast tumors in NOD/SCID mice by CD44 shRNA gene therapy combined with doxorubicin treatment. Onco Targets Ther 2012; 5:77-84. [PMID: 22649280 PMCID: PMC3358118 DOI: 10.2147/ott.s30609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Breast cancer stem cells with a CD44+CD24− phenotype are the origin of breast tumors. Strong CD44 expression in this population indicates its important role in maintaining the stem cell phenotype. Previous studies show that CD44 down-regulation causes CD44+CD24− breast cancer stem cells to differentiate into non-stem cells that are sensitive to antitumor drugs and lose many characteristics of the original cells. In this study, we determined tumor suppression in non-obese severe combined immunodeficiency mice using CD44 shRNA therapy combined with doxorubicin treatment. Methods Tumor-bearing non-obese severe combined immunodeficiency mice were established by injection of CD44+CD24− cells. To track CD44+CD24− cells, green fluorescence protein was stably transduced using a lentiviral vector prior to injection into mice. The amount of CD44 shRNA lentiviral vector used for transduction was based on CD44 down-regulation by in vitro CD44 shRNA transduction. Mice were treated with direct injection of CD44 shRNA lentiviral vector into tumors followed by doxorubicin administration after 48 hours. The effect was evaluated by changes in the size and weight of tumors compared with that of the control. Results The combination of CD44 down-regulation and doxorubicin strongly suppressed tumor growth with significant differences in tumor sizes and weights compared with that of CD44 down-regulation or doxorubicin treatment alone. In the combination of CD44 down-regulation and doxorubicin group, the tumor weight was significantly decreased by 4.38-fold compared with that of the control group. Conclusion These results support a new strategy for breast cancer treatment by combining gene therapy with chemotherapy.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, HCM City
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Miletti-González KE, Murphy K, Kumaran MN, Ravindranath AK, Wernyj RP, Kaur S, Miles GD, Lim E, Chan R, Chekmareva M, Heller DS, Foran D, Chen W, Reiss M, Bandera EV, Scotto K, Rodríguez-Rodríguez L. Identification of function for CD44 intracytoplasmic domain (CD44-ICD): modulation of matrix metalloproteinase 9 (MMP-9) transcription via novel promoter response element. J Biol Chem 2012; 287:18995-9007. [PMID: 22433859 DOI: 10.1074/jbc.m111.318774] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CD44 is a multifunctional cell receptor that conveys a cancer phenotype, regulates macrophage inflammatory gene expression and vascular gene activation in proatherogenic environments, and is also a marker of many cancer stem cells. CD44 undergoes sequential proteolytic cleavages that produce an intracytoplasmic domain called CD44-ICD. However, the role of CD44-ICD in cell function is unknown. We take a major step toward the elucidation of the CD44-ICD function by using a CD44-ICD-specific antibody, a modification of a ChIP assay to detect small molecules, and extensive computational analysis. We show that CD44-ICD translocates into the nucleus, where it then binds to a novel DNA consensus sequence in the promoter region of the MMP-9 gene to regulate its expression. We also show that the expression of many other genes that contain this novel response element in their promoters is up- or down-regulated by CD44-ICD. Furthermore, hypoxia-inducible factor-1α (Hif1α)-responsive genes also have the CD44-ICD consensus sequence and respond to CD44-ICD induction under normoxic conditions and therefore independent of Hif1α expression. Additionally, CD44-ICD early responsive genes encode for critical enzymes in the glycolytic pathway, revealing how CD44 could be a gatekeeper of the Warburg effect (aerobic glycolysis) in cancer cells and possibly cancer stem cells. The link of CD44 to metabolism is novel and opens a new area of research not previously considered, particularly in the study of obesity and cancer. In summary, our results finally give a function to the CD44-ICD and will accelerate the study of the regulation of many CD44-dependent genes.
Collapse
Affiliation(s)
- Karl E Miletti-González
- Department of Obstetrics and Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rountree CB, Mishra L, Willenbring H. Stem cells in liver diseases and cancer: recent advances on the path to new therapies. Hepatology 2012; 55:298-306. [PMID: 22030746 PMCID: PMC3245372 DOI: 10.1002/hep.24762] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells have potential for therapy of liver diseases, but may also be involved in the formation of liver cancer. Recently, the American Association for the Study of Liver Diseases Henry M. and Lillian Stratton Basic Research Single Topic Conference "Stem Cells in Liver Diseases and Cancer: Discovery and Promise" brought together a diverse group of investigators to define the status of research on stem cells and cancer stem cells in the liver and identify problems and solutions on the path to clinical translation. This report summarizes the outcomes of the conference and provides an update on recent research advances. Progress in liver stem cell research includes isolation of primary liver progenitor cells (LPCs), directed hepatocyte differentiation of primary LPCs and pluripotent stem cells, findings of transdifferentiation, disease-specific considerations for establishing a therapeutically effective cell mass, and disease modeling in cell culture. Tumor-initiating stem-like cells (TISCs) that emerge during chronic liver injury share the expression of signaling pathways, including those organized around transforming growth factor beta and β-catenin, and surface markers with normal LPCs. Recent investigations of the role of TISCs in hepatocellular carcinoma have provided insight into the transcriptional and post-transcriptional regulation of hepatocarcinogenesis. Targeted chemotherapies for TISC are in development as a means to overcome cellular resistance and mechanisms driving disease progression in liver cancer.
Collapse
Affiliation(s)
- C. Bart Rountree
- Department of Pediatrics and Pharmacology, Penn State College of Medicine, Hershey, PA,Corresponding authors: C. Bart Rountree, MD, Department of Pediatrics and Pharmacology, Penn State College of Medicine and Hershey Medical Center, 500 University Drive, H085, Hershey, PA 17033, Telephone: 717 531 5901, Fax: 717 531 0653, . Holger Willenbring, MD, PhD, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, Division of Transplantation, University of California San Francisco, 35 Medical Center Way, RMB-900C, Campus Box 0665, San Francisco, CA 94143, Telephone: 415 476 2417, Fax: 415 514 2346,
| | - Lopa Mishra
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, TX
| | - Holger Willenbring
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA,Department of Surgery, Division of Transplantation, University of California San Francisco, San Francisco, CA,Liver Center, University of California San Francisco, San Francisco, CA,Corresponding authors: C. Bart Rountree, MD, Department of Pediatrics and Pharmacology, Penn State College of Medicine and Hershey Medical Center, 500 University Drive, H085, Hershey, PA 17033, Telephone: 717 531 5901, Fax: 717 531 0653, . Holger Willenbring, MD, PhD, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, Division of Transplantation, University of California San Francisco, 35 Medical Center Way, RMB-900C, Campus Box 0665, San Francisco, CA 94143, Telephone: 415 476 2417, Fax: 415 514 2346,
| |
Collapse
|
32
|
Xie Z, Bi C, Cheong LL, Liu SC, Huang G, Zhou J, Yu Q, Chen CS, Chng WJ. Determinants of sensitivity to DZNep induced apoptosis in multiple myeloma cells. PLoS One 2011; 6:e21583. [PMID: 21720561 PMCID: PMC3123372 DOI: 10.1371/journal.pone.0021583] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 06/03/2011] [Indexed: 01/09/2023] Open
Abstract
The 3-Deazaneplanocin A (DZNep), one of S-adenosylhomocysteine (AdoHcy) hydrolase inhibitors, has shown antitumor activities in a broad range of solid tumors and acute myeloid leukemia. Here, we examined its effects on multiple myeloma (MM) cells and found that, at 500 nM, it potently inhibited growth and induced apoptosis in 2 of 8 MM cell lines. RNA from un-treated and DZNep treated cells was profiled by Affymetrix HG-U133 Plus 2.0 microarray and genes with a significant change in gene expression were determined by significance analysis of microarray (SAM) testing. ALOX5 was the most down-regulated gene (5.8-fold) in sensitive cells and was expressed at low level in resistant cells. The results were corroborated by quantitative RT-PCR. Western-blot analysis indicated ALOX5 was highly expressed only in sensitive cell line H929 and greatly decreased upon DZNep treatment. Ectopic expression of ALOX5 reduced sensitivity to DZNep in H929 cells. Furthermore, down-regulation of ALOX5 by RNA interference could also induce apoptosis in H929. Gene expression analysis on MM patient dataset indicated ALOX5 expression was significantly higher in MM patients compared to normal plasma cells. We also found that Bcl-2 was overexpressed in DZNep insensitive cells, and cotreatment with DZNep and ABT-737, a Bcl-2 family inhibitor, synergistically inhibited growth and induced apoptosis of DZNep insensitive MM cells. Taken together, this study shows one of mechanisms of the DZNep efficacy on MM correlates with its ability to down-regulate the ALOX5 levels. In addition, DZNep insensitivity might be associated with overexpression of Bcl-2, and the combination of ABT-737 and DZNep could synergistically induced apoptosis. These results suggest that DZNep may be exploited therapeutically for a subset of MM.
Collapse
Affiliation(s)
- Zhigang Xie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chonglei Bi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lip Lee Cheong
- Department of Medicine, National University Health System, Singapore, Singapore
| | - Shaw Cheng Liu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Gaofeng Huang
- Department of Haematology and Oncology, National University Health System, Singapore, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qiang Yu
- Molecular Pharmacology, Genome Institute of Singapore, Singapore, Singapore
| | - Chien-Shing Chen
- Department of Medicine, National University Health System, Singapore, Singapore
- Division of Hematology and Oncology, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, National University Health System, Singapore, Singapore
- Department of Haematology and Oncology, National University Health System, Singapore, Singapore
| |
Collapse
|
33
|
Van Phuc P, Nhan PLC, Nhung TH, Tam NT, Hoang NM, Tue VG, Thuy DT, Ngoc PK. Downregulation of CD44 reduces doxorubicin resistance of CD44CD24 breast cancer cells. Onco Targets Ther 2011; 4:71-8. [PMID: 21792314 PMCID: PMC3143907 DOI: 10.2147/ott.s21431] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cells within breast cancer stem cell populations have been confirmed to have a CD44(+)CD24(-) phenotype. Strong expression of CD44 plays a critical role in numerous types of human cancers. CD44 is involved in cell differentiation, adhesion, and metastasis of cancer cells. METHODS In this study, we reduced CD44 expression in CD44(+)CD24(-) breast cancer stem cells and investigated their sensitivity to an antitumor drug. The CD44(+)CD24(-) breast cancer stem cells were isolated from breast tumors; CD44 expression was downregulated with siRNAs followed by treatment with different concentrations of the antitumor drug. RESULTS The proliferation of CD44 downregulated CD44(+)CD24(-) breast cancer stem cells was decreased after drug treatment. We noticed treated cells were more sensitive to doxorubicin, even at low doses, compared with the control groups. CONCLUSIONS It would appear that expression of CD44 is integral among the CD44(+)CD24(-) cell population. Reducing the expression level of CD44, combined with doxorubicin treatment, yields promising results for eradicating breast cancer stem cells in vitro. This study opens a new direction in treating breast cancer through gene therapy in conjunction with chemotherapy.
Collapse
Affiliation(s)
- Pham Van Phuc
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh, Vietnam
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Xie Z, Chng WJ, Tay KG, Liu SC, Zhou J, Chen CS. Therapeutic potential of antisense oligodeoxynucleotides in downregulating p53 oncogenic mutations in cancers. Biotechnol Lett 2011; 33:221-228. [PMID: 20882314 DOI: 10.1007/s10529-010-0423-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/15/2010] [Indexed: 12/22/2022]
Abstract
mutation of the p53 gene is the most common genetic alteration in human cancers. Our study proposes to rationally design a p53 antisense oligonucleotide (ASO) repository, which contains a series of ASOs containing single nucleotide differences to discriminate between each mutant and wild type (WT) p53. The Sfold software was used to predict target-accessibility and we designed an initial series of antisense oligonucleotides (ASO) that target the p53 mutants A161T, R175H and R249S. Western-blot analysis indicated that ASOs strongly inhibited the expression of p53 mutants in a panel of human tumor cell lines (SNU-449, SK-BR-3 and PLC/PRF/5) while having little effect on the expression of WT p53 (HepG2 cells). In three cancer lines harboring each of the p53 mutations, mutant-specific ASO treatment led to a dose-dependent inhibition of cell growth, cell viability, colony formation and invasion, and expression of mutant p53-dependent survival proteins. Our preliminary results indicate that a single nucleotide difference in ASOs can discriminate between mutant and WT p53. These observations support the hypothesis that a p53 ASO repository can be a potentially valuable tool to knock down oncogenic mutant p53 and warrant the testing of a p53 ASO repository in in vivo settings.
Collapse
Affiliation(s)
- Zhigang Xie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117456, Singapore
| | | | | | | | | | | |
Collapse
|
35
|
Role of versican, hyaluronan and CD44 in ovarian cancer metastasis. Int J Mol Sci 2011; 12:1009-29. [PMID: 21541039 PMCID: PMC3083686 DOI: 10.3390/ijms12021009] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 12/18/2022] Open
Abstract
There is increasing evidence to suggest that extracellular matrix (ECM) components play an active role in tumor progression and are an important determinant for the growth and progression of solid tumors. Tumor cells interfere with the normal programming of ECM biosynthesis and can extensively modify the structure and composition of the matrix. In ovarian cancer alterations in the extracellular environment are critical for tumor initiation and progression and intra-peritoneal dissemination. ECM molecules including versican and hyaluronan (HA) which interacts with the HA receptor, CD44, have been shown to play critical roles in ovarian cancer metastasis. This review focuses on versican, HA, and CD44 and their potential as therapeutic targets for ovarian cancer.
Collapse
|
36
|
miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 2010; 403:120-5. [PMID: 21055388 DOI: 10.1016/j.bbrc.2010.10.130] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/28/2010] [Indexed: 12/25/2022]
Abstract
Previous work by us and others reported decreased expression of miR-199a-3p in hepatocellular carcinoma (HCC) tissues compared to adjacent benign tissue. We report here a significant reduction of miR-199a-3p expression in 7 HCC cell lines. To determine if miR-199a-3p has a tumor suppressive role, pre-miR-199a-3p oligonucleotides were transfected into the HCC cell lines. Pre-miR-199a-3p oligonucleotide reduced cell proliferation by approximately 60% compared to control oligonucleotide in only two cell lines (SNU449 and SNU423); the proliferation of the other 5 treated cell lines was similar to control oligonucleotide. A pre-miR-199a-3p oligonucleotide formulated with chemical modifications to enhance stability while preserving processing, reduced cell proliferation in SNU449 and SNU423 to the same extent as the commercially available pre-miR-199a-3p oligonucleotide. Furthermore, only the duplex miR-199a-3p oligonucleotide, and not the guide strand alone, was effective at reducing cell viability. Since a CD44 variant was essential for c-Met signaling [V. Orian-Rousseau, L. Chen, J.P. Sleeman, P. Herrlich, H. Ponta, CD44 is required for two consecutive steps in HGF/c-Met signaling, Genes Dev. 16 (2002) 3074-3086] and c-Met is a known miR-199a-3p target, we hypothesized that miR-199a-3p may also target CD44. Immunoblotting confirmed that only the two HCC lines that were sensitive to the effects of pre-miR-199a-3p were CD44+. Direct targeting of CD44 by miR-199a-3p was confirmed using luciferase reporter assays and immunoblotting. Transfection of miR-199a-3p into SNU449 cells reduced in vitro invasion and sensitized the cells to doxorubicin; both effects were enhanced when hyaluronic acid (HA) was added to the cell cultures. An inverse correlation between the expression of miR-199a-3p and CD44 protein was noted in primary HCC specimens. The ability of miR-199a-3p to selectively kill CD44+ HCC may be a useful targeted therapy for CD44+ HCC.
Collapse
|
37
|
Li SD, Howell SB. CD44-targeted microparticles for delivery of cisplatin to peritoneal metastases. Mol Pharm 2010; 7:280-90. [PMID: 19994852 DOI: 10.1021/mp900242f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intraperitoneal (ip) chemotherapy increases the survival of optimally debulked patients with ovarian cancer due to direct access of the drug to tumor nodules growing on the peritoneal surface. CD44 is overexpressed in many ovarian cancers. To further improve efficacy, we sought to develop a cisplatin-loaded microparticle that would target to CD44 on cancer cells when injected ip. Hyplat microparticles were produced by cross-linking hyaluronan via its carboxylate groups with cisplatin at a high temperature. Hyplat particles had an average diameter of 580 nm, and cisplatin was incorporated with an efficiency of approximately 50%. Drug release varied with chloride concentration but not pH. Flow cytometric analysis and confocal microscopy confirmed that CD44 positive cells (OV2008, A2780) internalized Hyplat more efficiently than CD44 negative cells (UCI101); uptake was compromised by knocking down CD44 expression. Clearance of Hyplat from the mouse peritoneum was reduced by 7-fold and tumor uptake was increased by 2- to 3-fold in CD44-positive but not CD44-negative tumor models compared to that attained with free cisplatin. Hyplat was more effective than cisplatin at slowing the growth of intraperitoneally inoculated A2780 ovarian cancer cells and improving survival thus demonstrating the potential of Hyplat to enhance the efficacy of ip chemotherapy.
Collapse
Affiliation(s)
- Shyh-Dar Li
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093-0819, USA
| | | |
Collapse
|
38
|
Cogliati B, Aloia TPA, Bosch RV, Alves VAF, Hernandez-Blazquez FJ, Dagli MLZ. Identification of hepatic stem/progenitor cells in canine hepatocellular and cholangiocellular carcinoma. Vet Comp Oncol 2010; 8:112-21. [DOI: 10.1111/j.1476-5829.2010.00210.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Tahir SK, Wass J, Joseph MK, Devanarayan V, Hessler P, Zhang H, Elmore SW, Kroeger PE, Tse C, Rosenberg SH, Anderson MG. Identification of expression signatures predictive of sensitivity to the Bcl-2 family member inhibitor ABT-263 in small cell lung carcinoma and leukemia/lymphoma cell lines. Mol Cancer Ther 2010; 9:545-57. [PMID: 20179162 DOI: 10.1158/1535-7163.mct-09-0651] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABT-263 inhibits the antiapoptotic proteins Bcl-2, Bcl-x(L), and Bcl-w and has single-agent efficacy in numerous small cell lung carcinoma (SCLC) and leukemia/lymphoma cell lines in vitro and in vivo. It is currently in clinical trials for treating patients with SCLC and various leukemia/lymphomas. Identification of predictive markers for response will benefit the clinical development of ABT-263. We identified the expression of Bcl-2 family genes that correlated best with sensitivity to ABT-263 in a panel of 36 SCLC and 31 leukemia/lymphoma cell lines. In cells sensitive to ABT-263, expression of Bcl-2 and Noxa is elevated, whereas expression of Mcl-1 is higher in resistant cells. We also examined global expression differences to identify gene signature sets that correlated with sensitivity to ABT-263 to generate optimal signature sets predictive of sensitivity to ABT-263. Independent cell lines were used to verify the predictive power of the gene sets and to refine the optimal gene signatures. When comparing normal lung tissue and SCLC primary tumors, the expression pattern of these genes in the tumor tissue is most similar to sensitive SCLC lines, whereas normal tissue is most similar to resistant SCLC lines. Most of the genes identified using global expression patterns are related to the apoptotic pathway; however, all but Bcl-rambo are distinct from the Bcl-2 family. This study leverages global expression data to identify key gene expression patterns for sensitivity to ABT-263 in SCLC and leukemia/lymphoma and may provide guidance in the selection of patients in future clinical trials.
Collapse
Affiliation(s)
- Stephen K Tahir
- Global Pharmaceutical Product Research Division, Abbott Laboratories, Abbott Park, Illinois 60064-6099, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jasinghe VJ, Xie Z, Zhou J, Khng J, Poon LF, Senthilnathan P, Glaser KB, Albert DH, Davidsen SK, Chen CS. ABT-869, a multi-targeted tyrosine kinase inhibitor, in combination with rapamycin is effective for subcutaneous hepatocellular carcinoma xenograft. J Hepatol 2008; 49:985-997. [PMID: 18930332 DOI: 10.1016/j.jhep.2008.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/25/2008] [Accepted: 08/18/2008] [Indexed: 01/13/2023]
Abstract
BACKGROUND/AIMS Receptor tyrosine kinase inhibitors (RTKIs) and mTOR inhibitors are potential novel anticancer therapies for HCC. We hypothesized that combination targeted on distinctive signal pathways would provide synergistic therapeutics. METHODS ABT-869, a novel RTKI, and rapamycin were investigated in HCC pre-clinical models. RESULTS Rapamycin, but not ABT-869, inhibited in vitro growth of Huh7 and SK-HEP-1 HCC cells in a dose dependant manner. However, in subcutaneous Huh7 and SK-HEP-1 xenograft models, either ABT-869 or rapamycin can significantly reduce tumor burden. Combination treatment reduced the tumors to the lowest volume (95+/-20mm(3)), and was significantly better than single agent treatment (p<0.05). Immunohistochemical staining of tumor shows that ABT-869 potently inhibits VEGF in HCC in vivo. In addition, the MAPK signaling pathway has been inhibited by significant inhibition of phosphorylation of p44/42 MAP kinase by ABT-869 in vivo. Rapamycin inhibits phosphorylation of p70 S6 kinase and 4E-BP-1, downstream targets of mTOR, and decreases VEGF. Combination treatment showed synergistic effect on expression levels of p27 in vivo. Dramatic inhibition of neo-angiogenesis by ABT-869 was also demonstrated. CONCLUSIONS HCC could potentially be treated with the combination treatment of ABT-869 and rapamycin. Clinical trials on combination therapy are warranted.
Collapse
Affiliation(s)
- Viraj J Jasinghe
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|