1
|
Wang G, Cao L, Jiang Y, Zhang T, Wang H, Wang Z, Xu J, Mao M, Hua Y, Cai Z, Ma X, Hu S, Zhou C. Anlotinib Reverses Multidrug Resistance (MDR) in Osteosarcoma by Inhibiting P-Glycoprotein (PGP1) Function In Vitro and In Vivo. Front Pharmacol 2022; 12:798837. [PMID: 35111065 PMCID: PMC8801797 DOI: 10.3389/fphar.2021.798837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022] Open
Abstract
Overexpression of the multidrug resistance (MDR)-related protein P-glycoprotein (PGP1), which actively extrudes chemotherapeutic agents from cells and significantly decreases the efficacy of chemotherapy, is viewed as a major obstacle in osteosarcoma chemotherapy. Anlotinib, a novel tyrosine kinase inhibitor (TKI), has good anti-tumor effects in a variety of solid tumors. However, there are few studies on the mechanism of anlotinib reversing chemotherapy resistance in osteosarcoma. In this study, cellular assays were performed in vitro and in vivo to evaluate the MDR reversal effects of anlotinib on multidrug-resistant osteosarcoma cell lines. Drug efflux and intracellular drug accumulation were measured by flow cytometry. The vanadate-sensitive ATPase activity of PGP1 was measured in the presence of a range of anlotinib concentrations. The protein expression level of ABCB1 was detected by Western blotting and immunofluorescence analysis. Our results showed that anlotinib significantly increased the sensitivity of KHOSR2 and U2OSR2 cells (which overexpress PGP1) to chemotherapeutic agents in vitro and in a KHOSR2 xenograft nude mouse model in vivo. Mechanistically, anlotinib increases the intracellular accumulation of PGP1 substrates by inhibiting the efflux function of PGP1 in multidrug-resistant cell lines. Furthermore, anlotinib stimulated the ATPase activity of PGP1 but affected neither the protein expression level nor the localization of PGP1. In animal studies, anlotinib in combination with doxorubicin (DOX) significantly decreased the tumor growth rate and the tumor size in the KHOSR2 xenograft nude mouse model. Overall, our findings suggest that anlotinib may be useful for circumventing MDR to other conventional antineoplastic drugs.
Collapse
Affiliation(s)
- Gangyang Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Lingling Cao
- Department of Rehabilitation, Shanghai Fifth Rehabilitation Hospital, Shanghai, China
| | - Yafei Jiang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Tao Zhang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Hongsheng Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Jing Xu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Min Mao
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Xiaojun Ma
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Shuo Hu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| | - Chenghao Zhou
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institute, Shanghai, China
| |
Collapse
|
2
|
Enhanced Cytotoxic Effect of Doxorubicin Conjugated to Glutathione-Stabilized Gold Nanoparticles in Canine Osteosarcoma-In Vitro Studies. Molecules 2021; 26:molecules26123487. [PMID: 34201296 PMCID: PMC8227216 DOI: 10.3390/molecules26123487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OSA) is the most common malignant bone neoplasia in humans and dogs. In dogs, treatment consists of surgery in combination with chemotherapy (mostly carboplatin and/or doxorubicin (Dox)). Chemotherapy is often rendered ineffective by multidrug resistance. Previous studies have revealed that Dox conjugated with 4 nm glutathione-stabilized gold nanoparticles (Au-GSH-Dox) enhanced the anti-tumor activity and cytotoxicity of Dox in Dox-resistant feline fibrosarcoma cell lines exhibiting high P-glycoprotein (P-gp) activity. The present study investigated the influence of Au-GSH-Dox on the canine OSA cell line D17 and its relationship with P-gp activity. A human Dox-sensitive OSA cell line, U2OS, served as the negative control. Au-GSH-Dox, compared to free Dox, presented a greater cytotoxic effect on D17 (IC50 values for Au-GSH-Dox and Dox were 7.9 μg/mL and 15.2 μg/mL, respectively) but not on the U2OS cell line. All concentrations of Au-GSH (ranging from 10 to 1000 μg/mL) were non-toxic in both cell lines. Inhibition of the D17 cell line with 100 μM verapamil resulted in an increase in free Dox but not in intracellular Au-GSH-Dox. The results indicate that Au-GSH-Dox may act as an effective drug in canine OSA by bypassing P-gp.
Collapse
|
3
|
The modulatory effect of green tea catechin on drug resistance in human ovarian cancer cells. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02324-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Ye S, Zhang J, Shen J, Gao Y, Li Y, Choy E, Cote G, Harmon D, Mankin H, Gray NS, Hornicek FJ, Duan Z. NVP-TAE684 reverses multidrug resistance (MDR) in human osteosarcoma by inhibiting P-glycoprotein (PGP1) function. Br J Pharmacol 2016; 173:613-26. [PMID: 26603906 PMCID: PMC4728419 DOI: 10.1111/bph.13395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/23/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Increased expression of P-glycoprotein (PGP1) is one of the major causes of multidrug resistance (MDR) in cancer, including in osteosarcoma, which eventually leads to the failure of cancer chemotherapy. Thus, there is an urgent need to develop effective therapeutic strategies to override the expression and function of PGP1 to counter MDR in cancer patients. EXPERIMENTAL APPROACH In an effort to search for new chemical entities targeting PGP1-associated MDR in osteosarcoma, we screened a 500+ compound library of known kinase inhibitors with established kinase selectivity profiles. We aimed to discover potential drug synergistic effects among kinase inhibitors and general chemotherapeutics by combining inhibitors with chemotherapy drugs such as doxorubicin and paclitaxel. The human osteosarcoma MDR cell lines U2OSR2 and KHOSR2 were used for the initial screen and secondary mechanistic studies. KEY RESULTS After screening 500+ kinase inhibitors, we identified NVP-TAE684 as the most effective MDR reversing agent. NVP-TAE684 significantly reversed chemoresistance when used in combination with doxorubicin, paclitaxel, docetaxel, vincristine, ET-743 or mitoxantrone. NVP-TAE684 itself is not a PGP1 substrate competitive inhibitor, but it can increase the intracellular accumulation of PGP1 substrates in PGP1-overexpressing cell lines. NVP-TAE684 was found to inhibit the function of PGP1 by stimulating PGP1 ATPase activity, a phenomenon reported for other PGP1 inhibitors. CONCLUSIONS AND IMPLICATIONS The application of NVP-TAE684 to restore sensitivity of osteosarcoma MDR cells to the cytotoxic effects of chemotherapeutics will be useful for further study of PGP1-mediated MDR in human cancer and may ultimately benefit cancer patients.
Collapse
Affiliation(s)
- Shunan Ye
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Jianming Zhang
- Cutaneous Biology Research Center, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Jacson Shen
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Yan Gao
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Ying Li
- Cutaneous Biology Research Center, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Edwin Choy
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Gregory Cote
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - David Harmon
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Henry Mankin
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | | | - Francis J Hornicek
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
5
|
Yang X, Shen J, Gao Y, Feng Y, Guan Y, Zhang Z, Mankin H, Hornicek FJ, Duan Z. Nsc23925 prevents the development of paclitaxel resistance by inhibiting the introduction of P-glycoprotein and enhancing apoptosis. Int J Cancer 2015; 137:2029-39. [PMID: 25904021 DOI: 10.1002/ijc.29574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 12/12/2022]
Abstract
Strategies to prevent the emergence of drug resistance will increase the effectiveness of chemotherapy treatment and prolong survival of women with ovarian cancer. The aim of our study is to determine the effects of NSC23925 on preventing the development of paclitaxel resistance in ovarian cancer both in cultured cells in vitro and in mouse xenograft models in vivo, and to further elucidate these underlying mechanisms. We first developed a paclitaxel-resistant ovarian cancer cell line, and demonstrated that NSC23925 could prevent the introduction of paclitaxel resistance by specifically inhibiting the overexpression of P-glycoprotein (Pgp) in vitro. The paclitaxel-resistant ovarian cancer cells were then established in a mouse model by continuous paclitaxel treatment in combination with or without NSC23925 administration in the mice. The majority of mice continuously treated with paclitaxel alone eventually developed paclitaxel resistance with overexpression of Pgp and antiapoptotic proteins, whereas mice remained sensitivity to paclitaxel and displayed lower expression levels of Pgp and antiapoptotic proteins after administered continuously with combination of paclitaxel-NSC23925. Paclitaxel-NSC23925-treated mice experienced significantly longer overall survival time than paclitaxel-treated mice. Furthermore, the combination of paclitaxel and NSC23925 therapy did not induce obvious toxicity as measured by mice body weight changes, blood cell counts and histology of internal organs. Collectively, our observations provide evidence that NSC23925 in combination with paclitaxel may prevent the onset of Pgp or antiapoptotic-mediated paclitaxel resistance, and improve the long-term clinical outcome in patients with ovarian cancer.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jacson Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yan Gao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yong Feng
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yichun Guan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhan Zhang
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer. Sci Rep 2015; 5:8509. [PMID: 25687880 PMCID: PMC4330541 DOI: 10.1038/srep08509] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/22/2015] [Indexed: 01/08/2023] Open
Abstract
Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.
Collapse
|
7
|
Yang X, Feng Y, Gao Y, Shen J, Choy E, Cote G, Harmon D, Zhang Z, Mankin H, Hornicek FJ, Duan Z. NSC23925 prevents the emergence of multidrug resistance in ovarian cancer in vitro and in vivo. Gynecol Oncol 2015; 137:134-42. [PMID: 25677062 DOI: 10.1016/j.ygyno.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/03/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The development of multidrug resistance (MDR) remains the significant clinical challenge in ovarian cancer therapy; however, relatively little is known about how to prevent the emergence of MDR during chemotherapy treatment. NSC23925 previously has been shown to prevent the development of MDR in osteosarcoma cells in vitro. The purpose of this study was to evaluate the effects of NSC23925 on the prevention of MDR in ovarian cancer, especially in vivo. METHODS Human ovarian cancer cells were treated with paclitaxel alone or in combination with NSC23925 in vitro and in vivo. MDR ovarian cancer cells were established both in cultured cells and mouse models. The expression levels of Pgp and MDR1 were evaluated in various selected cell sublines by Western blot and real-time PCR. Pgp activity was also determined. RESULTS Paclitaxel treated cells eventually developed MDR with overexpression of Pgp and MDR1, and with high activity of Pgp, while paclitaxel-NSC23925 co-treated cells remained sensitive to chemotherapeutic agents in both in vitro and in vivo models. There was no observed increase in expression level and activity of Pgp in paclitaxel-NSC23925 co-treated cells. Additionally, there were no changes in the sensitivity to chemotherapeutic agents, nor expression of Pgp, in cells cultured with NSC23925. CONCLUSION Our findings suggest that NSC23925 can prevent the emergence of MDR in ovarian cancer both in vitro and in vivo. The clinical use of NSC2395 at the onset of chemotherapy may prevent the development of MDR and improve the clinical outcome of patients with ovarian cancer.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yong Feng
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yan Gao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Gregory Cote
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - David Harmon
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhan Zhang
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Prevention of multidrug resistance (MDR) in osteosarcoma by NSC23925. Br J Cancer 2014; 110:2896-904. [PMID: 24853187 PMCID: PMC4056062 DOI: 10.1038/bjc.2014.254] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/11/2022] Open
Abstract
Background: The major limitation to the success of chemotherapy in osteosarcoma is the development of multidrug resistance (MDR). Preventing the emergence of MDR during chemotherapy treatment has been a high priority of clinical and investigational oncology, but it remains an elusive goal. The NSC23925 has recently been identified as a novel and potent MDR reversal agent. However, whether NSC23925 can prevent the development of MDR in cancer is unknown. Therefore, this study aims to evaluate the effects of NSC23925 on prevention of the development of MDR in osteosarcoma. Methods: Human osteosarcoma cell lines U-2OS and Saos were exposed to increasing concentrations of paclitaxel alone or in combination with NSC23925 for 6 months. Cell sublines selected at different time points were evaluated for their drug sensitivity, drug transporter P-glycoprotein (Pgp) expression and activity. Results: We observed that tumour cells selected with increasing concentrations of paclitaxel alone developed MDR with resistance to paclitaxel and other Pgp substrates, whereas cells cultured with paclitaxel–NSC23925 did not develop MDR and cells remained sensitive to chemotherapeutic agents. Paclitaxel-resistant cells showed high expression and activity of the Pgp, whereas paclitaxel–NSC23925-treated cells did not express Pgp. No changes in IC50 and Pgp expression and activity were observed in cells grown with the NSC23925 alone. Conclusions: Our findings suggest that NSC23925 may prevent the development of MDR by specifically preventing the overexpression of Pgp. Given the significant incidence of MDR in osteosarcoma and the lack of effective agents for prevention of MDR, NSC23925 and derivatives hold the potential to improve the outcome of cancer patients with poor prognosis due to drug resistance.
Collapse
|
9
|
Moneo V, Serelde BG, Blanco-Aparicio C, Diaz-Uriarte R, Avilés P, Santamaría G, Tercero JC, Cuevas C, Carnero A. Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis. BMC Cancer 2014; 14:281. [PMID: 24758355 PMCID: PMC4023704 DOI: 10.1186/1471-2407-14-281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 04/08/2014] [Indexed: 11/28/2022] Open
Abstract
Background Zalypsis® is a marine compound in phase II clinical trials for multiple myeloma, cervical and endometrial cancer, and Ewing’s sarcoma. However, the determinants of the response to Zalypsis are not well known. The identification of biomarkers for Zalypsis activity would also contribute to broaden the spectrum of tumors by selecting those patients more likely to respond to this therapy. Methods Using in vitro drug sensitivity data coupled with a set of molecular data from a panel of sarcoma cell lines, we developed molecular signatures that predict sensitivity to Zalypsis. We verified these results in culture and in vivo xenograft studies. Results Zalypsis resistance was dependent on the expression levels of PDGFRα or constitutive phosphorylation of c-Kit, indicating that the activation of tyrosine kinase receptors (TKRs) may determine resistance to Zalypsis. To validate our observation, we measured the levels of total and active (phosphorylated) forms of the RTKs PDGFRα/β, c-Kit, and EGFR in a new panel of diverse solid tumor cell lines and found that the IC50 to the drug correlated with RTK activation in this new panel. We further tested our predictions about Zalypsis determinants for response in vivo in xenograft models. All cells lines expressing low levels of RTK signaling were sensitive to Zalypsis in vivo, whereas all cell lines except two with high levels of RTK signaling were resistant to the drug. Conclusions RTK activation might provide important signals to overcome the cytotoxicity of Zalypsis and should be taken into consideration in current and future clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
10
|
Population pharmacokinetics of PM00104 (Zalypsis(®)) in cancer patients. Cancer Chemother Pharmacol 2011; 69:15-24. [PMID: 21590449 DOI: 10.1007/s00280-011-1644-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aim of this study was to characterize the population pharmacokinetics of PM00104 (Zalypsis(®)) in cancer patients. METHODS A total of 135 patients included in four phase I clinical trials who receive intravenous PM00104 at doses ranging from 53 to 5,000 μg/m(2) and administered as 1-, 3-, or 24-h infusion every 3 weeks or as 1-h infusion on days 1, 8, and 15 of a 28-day cycle, or 1-h infusion daily during 5 consecutive days every 3 weeks were included in the analysis. Pharmacokinetic data were analyzed with non-linear mixed effect model using NONMEM VI software. The effect of selected patient covariates on PM00104 pharmacokinetics was investigated. Model evaluation was performed using predictive checks and non-parametric bootstrap. RESULTS An open four-compartment catenary linear model with first-order elimination was developed to best describe the data. Plasma clearance and its between-subject variability was 43.7 L/h (34%). Volume of distribution at steady state was 822 L (117%). Within the range of covariates studied, age, sex, body size variables, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, lactate dehydrogenase, creatinine clearance, albumin, total protein, hemoglobin, performance status, liver metastases, dose-limiting toxicity, and stable disease for 3 months were not statistically related to PM00104 pharmacokinetic parameters. Bootstrap and posterior predictive check evidenced the model was deemed appropriate to describe the time course of PM00104 plasma concentrations in cancer patients. CONCLUSIONS The integration of phase I pharmacokinetic data demonstrated PM00104 linear elimination from plasma, dose proportionality up to 5,000 μg/m(2), and time-independent pharmacokinetics. No clinically relevant covariates were identified as predictors of PM00104 pharmacokinetics.
Collapse
|
11
|
Ji N, Yuan J, Liu J, Tian S. Developing multidrug-resistant cells and exploring correlation between BCRP/ABCG2 over-expression and DNA methyltransferase. Acta Biochim Biophys Sin (Shanghai) 2010; 42:854-62. [PMID: 21106767 DOI: 10.1093/abbs/gmq097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Expression of breast cancer resistance protein/ATP-binding cassette sub-family G member 2 (BCRP/ABCG2) is the major cause of chemotherapy failure. It is important to establish and characterize the multidrug resistance cells and to investigate the mechanism of multidrug resistance. Multidrug-resistant cells expressing BCRP/ABCG2 based on human breast cancer MCF-7/wt cells were developed by gradually increasing application of low concentration of mitoxantrone. Real-time quantitative PCR, western blot, and immunofluorescence assay were employed to analyze BCRP mRNA and protein expression. Drug accumulation in the cells was measured by flow cytometry and DNA methyltransferases were analyzed by western blot. The results indicated that the inhibitory ratio of cell proliferative growth exhibited an exponential relation with the concentration of mitoxantrone. The IC₅₀ of MCF-7/wt cells to mitoxantrone was found to be 0.42 μM. 3-(4,5-Dimethylthlthiazol-2-YI)-2,5-Diphenyltetrazolium Bromide assay indicated that the mitoxantrone-resistant cells at different stages exhibited cross-resistance to adriamycin and taxol. BCRP/ABCG2 mRNA and protein levels in the mitoxantrone-resistant cells at different stages increased with increasing concentration of mitoxantrone. Intracellular accumulation of mitoxantrone in the cells decreased with the increase of the BCRP/ABCG2 expression levels. DNA methyltransferase 1 (DNMT1) and DNA methyltransferase 3a (DNMT3a) expressions in the cells at different stages decreased slightly, whereas DNA methyltransferase 3b (DNMT3b) expression decreases significantly. BCRP/ABCG2 overexpression and its drug-efflux function in the drug-resistant cells are the main factors to produce multidrug resistance. Our results suggest that multidrug resistance is related to overexpression of BCRP/ABCG2 and the decrease of DNA methyltransferases, especially DNMT3b.
Collapse
|
12
|
Vincenzi B, Napolitano A, Frezza AM, Schiavon G, Santini D, Tonini G. Wide-spectrum characterization of trabectedin: biology, clinical activity and future perspectives. Pharmacogenomics 2010; 11:865-78. [DOI: 10.2217/pgs.10.69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ecteinascidin-743 (trabectedin, Yondelis®; PharmaMar, Madrid, Spain), a 25-year-old antineoplastic alkylating agent, has recently shown unexpected and interesting mechanisms of action. Trabectedin causes perturbation in the transcription of inducible genes (e.g., the multidrug resistance gene MDR1) and interaction with DNA repair mechanisms (e.g., the nucleotide excision repair pathway) owing to drug-related DNA double strand breaks and adduct formation. Trabectedin was the first antineoplastic agent from a marine source (namely, the Caribbean tunicate Ecteinascidia turbinata) to receive marketing authorization. This article summarizes the mechanisms of action, the complex metabolism, the main toxicities, the preclinical and clinical evidences of its antineoplastic effects in different types of cancer and, finally, the future perspectives of this promising drug.
Collapse
Affiliation(s)
| | - Andrea Napolitano
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Maria Frezza
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Gaia Schiavon
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Daniele Santini
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Giuseppe Tonini
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
13
|
Susa M, Choy E, Yang C, Schwab J, Mankin H, Hornicek F, Duan Z. Multidrug Resistance Reversal Agent, NSC77037, Identified with a Cell-Based Screening Assay. ACTA ACUST UNITED AC 2010; 15:287-96. [DOI: 10.1177/1087057109359422] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of multidrug resistance (MDR) remains a significant obstacle in treating cancer patients with chemotherapy. To identify small-molecule compounds that can reverse MDR, the authors used a cell-based screening assay with an MDR ovarian cancer cell line. Incubating MDR cells with a sublethal concentration of paclitaxel in combination with each of 2000 small-molecule compounds from the National Cancer Institute Diversity Set Library, they identified NSC77037. The cytotoxic activity of NSC77037 and the duration of its effect were evaluated in vitro using a panel of cancer cell lines expressing permeability glycoprotein (Pgp), multiple drug resistance protein 1 (MRP 1), and breast cancer resistance protein (BCRP). The mechanism of its effects was further analyzed by assessing the retention of calcein and Pgp-ATPase activity. The relative potency of MDR reversal by NSC77037 was significantly higher than that of frequently used MDR reversal agents such as verapamil and cyclosporine A. NSC77037 reversed Pgp without reversing MRP or BCRP-mediated MDR. NSC77037, at a concentration of >10 µM, moderately inhibited the proliferation of both sensitive and resistant cell lines, but the inhibitory effect of NSC77037 was not altered by coincubation with the Pgp inhibitor verapamil, suggesting that NSC77037 itself is not a substrate of Pgp. NSC77037 directly inhibited the function of Pgp in a dose-dependent manner, but it did not alter the protein expression level of Pgp. The use of NSC77037 to restore sensitivity to chemotherapy or to prevent resistance could be a potential treatment strategy for cancer patients.
Collapse
Affiliation(s)
- Michiro Susa
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Edwin Choy
- Division of Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Cao Yang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Joseph Schwab
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
14
|
Duan Z, Choy E, Hornicek FJ. NSC23925, identified in a high-throughput cell-based screen, reverses multidrug resistance. PLoS One 2009; 4:e7415. [PMID: 19823672 PMCID: PMC2757897 DOI: 10.1371/journal.pone.0007415] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/22/2009] [Indexed: 11/24/2022] Open
Abstract
Background Multidrug resistance (MDR) is a major factor which contributes to the failure of cancer chemotherapy, and numerous efforts have been attempted to overcome MDR. To date, none of these attempts have yielded a tolerable and effective therapy to reverse MDR; thus, identification of new agents would be useful both clinically and scientifically. Methodology/Principal Findings To identify small molecule compounds that can reverse chemoresistance, we developed a 96-well plate high-throughput cell-based screening assay in a paclitaxel resistant ovarian cancer cell line. Coincubating cells with a sublethal concentration of paclitaxel in combination with each of 2,000 small molecule compounds from the National Cancer Institute Diversity Set Library, we identified a previously uncharacterized molecule, NSC23925, that inhibits Pgp1 and reverses MDR1 (Pgp1) but does not inhibit MRP or BCRP-mediated MDR. The cytotoxic activity of NSC23925 was further evaluated using a panel of cancer cell lines expressing Pgp1, MRP, and BCRP. We found that at a concentration of >10 µM NSC23925 moderately inhibits the proliferation of both sensitive and resistant cell lines with almost equal activity, but its inhibitory effect was not altered by co-incubation with the Pgp1 inhibitor, verapamil, suggesting that NSC23925 itself is not a substrate of Pgp1. Additionally, NSC23925 increases the intracellular accumulation of Pgp1 substrates: calcein AM, Rhodamine-123, paclitaxel, mitoxantrone, and doxorubicin. Interestingly, we further observed that, although NSC23925 directly inhibits the function of Pgp1 in a dose-dependent manner without altering the total expression level of Pgp1, NSC23925 actually stimulates ATPase activity of Pgp, a phenomenon seen in other Pgp inhibitors. Conclusions/Significance The ability of NSC23925 to restore sensitivity to the cytotoxic effects of chemotherapy or to prevent resistance could significantly benefit cancer patients.
Collapse
Affiliation(s)
- Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
15
|
Duan Z, Choy E, Harmon D, Yang C, Ryu K, Schwab J, Mankin H, Hornicek FJ. ZNF93 increases resistance to ET-743 (Trabectedin; Yondelis) and PM00104 (Zalypsis) in human cancer cell lines. PLoS One 2009; 4:e6967. [PMID: 19742314 PMCID: PMC2734182 DOI: 10.1371/journal.pone.0006967] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 08/10/2009] [Indexed: 11/18/2022] Open
Abstract
Background ET-743 (trabectedin, Yondelis®) and PM00104 (Zalypsis®) are marine derived compounds that have antitumor activity. ET-743 and PM00104 exposure over sustained periods of treatment will result in the development of drug resistance, but the mechanisms which lead to resistance are not yet understood. Methodology/Principal Findings Human chondrosarcoma cell lines resistant to ET-743 (CS-1/ER) or PM00104 (CS-1/PR) were established in this study. The CS-1/ER and CS-1/PR exhibited cross resistance to cisplatin and methotrexate but not to doxorubicin. Human Affymetrix Gene Chip arrays were used to examine relative gene expression in these cell lines. We found that a large number of genes have altered expression levels in CS-1/ER and CS-1/PR when compared to the parental cell line. 595 CS-1/ER and 498 CS-1/PR genes were identified as overexpressing; 856 CS-1/ER and 874 CS-1/PR transcripts were identified as underexpressing. Three zinc finger protein (ZNF) genes were on the top 10 overexpressed genes list. These genes have not been previously associated with drug resistance in tumor cells. Differential expressions of ZNF93 and ZNF43 genes were confirmed in both CS-1/ER and CS-1/PR resistant cell lines by real-time RT-PCR. ZNF93 was overexpressed in two ET-743 resistant Ewing sarcoma cell lines as well as in a cisplatin resistant ovarian cancer cell line, but was not overexpressed in paclitaxel resistant cell lines. ZNF93 knockdown by siRNA in CS-1/ER and CS-1/PR caused increased sensitivity for ET-743, PM00104, and cisplatin. Furthermore, ZNF93 transfected CS-1 cells are relatively resistant to ET-743, PM00104 and cisplatin. Conclusions/Significance This study suggests that zinc finger proteins, and ZNF93 in particular, are involved in resistance to ET-743 and PM00104.
Collapse
Affiliation(s)
- Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| | - Edwin Choy
- Cancer Center/Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - David Harmon
- Cancer Center/Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Cao Yang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Keinosuke Ryu
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Joseph Schwab
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|