1
|
Raguraman P, Balachandran AA, Chen S, Diermeier SD, Veedu RN. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation. Cancers (Basel) 2021; 13:5555. [PMID: 34771719 PMCID: PMC8583451 DOI: 10.3390/cancers13215555] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Splicing is an essential process wherein precursor messenger RNA (pre-mRNA) is reshaped into mature mRNA. In alternative splicing, exons of any pre-mRNA get rearranged to form mRNA variants and subsequently protein isoforms, which are distinct both by structure and function. On the other hand, aberrant splicing is the cause of many disorders, including cancer. In the past few decades, developments in the understanding of the underlying biological basis for cancer progression and therapeutic resistance have identified many oncogenes as well as carcinogenic splice variants of essential genes. These transcripts are involved in various cellular processes, such as apoptosis, cell signaling and proliferation. Strategies to inhibit these carcinogenic isoforms at the mRNA level are promising. Antisense oligonucleotides (AOs) have been developed to inhibit the production of alternatively spliced carcinogenic isoforms through splice modulation or mRNA degradation. AOs can also be used to induce splice switching, where the expression of an oncogenic protein can be inhibited by the induction of a premature stop codon. In general, AOs are modified chemically to increase their stability and binding affinity. One of the major concerns with AOs is efficient delivery. Strategies for the delivery of AOs are constantly being evolved to facilitate the entry of AOs into cells. In this review, the different chemical modifications employed and delivery strategies applied are discussed. In addition to that various AOs in clinical trials and their efficacy are discussed herein with a focus on six distinct studies that use AO-mediated exon skipping as a therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Akilandeswari Ashwini Balachandran
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
2
|
A phase I pharmacokinetic and pharmacodynamic study of GTI-2040 in combination with gemcitabine in patients with solid tumors. Cancer Chemother Pharmacol 2018; 82:533-539. [PMID: 30022224 DOI: 10.1007/s00280-018-3647-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE GTI-2040 is a novel antisense oligonucleotide inhibitor of the R2 subunit of ribonucleotide reductase. This phase I study assessed safety and maximum tolerated dose (MTD) of GTI-2040 in combination with weekly gemcitabine in patients with advanced solid tumors. METHODS GTI-2040 was given as a 14-day continuous intravenous infusion, while gemcitabine was administered on days 1, 8, and 15. This combination was repeated every 4 weeks and study followed a modified 3 + 3 Fibonacci schema. Incidence, severity of adverse events, pharmacokinetics (PK), and pharmacodynamics (PD) was assessed. Responses were assessed using RECIST criteria version 1.0 with CT scans performed after every other cycle. RESULTS A total of 16 patients received at least one dose of GTI-2040/gemcitabine and were included in the safety analysis. The MTD of this regimen is 100 mg/m2/day of GTI-2040 over 14 days combined with 400 mg/m2/day of gemcitabine administered weekly on days 1, 8, and 15. The dose-limiting toxicities (DLTs) included grade 3 fatigue and thrombocytopenia with hematemesis (both at 100/600 mg/m2/day). The most common adverse events were grade 1/2 fatigue, nausea, vomiting, diarrhea, and anorexia. There was no evidence of alteration in gemcitabine PKs. PD modulation of R2mRNA expression in peripheral blood mononuclear cells was observed. No objective tumor response was observed although stable disease was seen in 25% patients. CONCLUSIONS The combination of GTI-2040 and gemcitabine has an acceptable safety profile in a heavily pre-treated patient population with advanced solid tumors. No clear signal of anti-tumor activity was observed; however, several patients had prolonged stable disease.
Collapse
|
3
|
Mannargudi MB, Deb S. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: is it a viable cancer therapy? J Cancer Res Clin Oncol 2017; 143:1499-1529. [PMID: 28624910 DOI: 10.1007/s00432-017-2457-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Ribonucleotide reductase (RR) enzymes (RR1 and RR2) play an important role in the reduction of ribonucleotides to deoxyribonucleotides which is involved in DNA replication and repair. Augmented RR activity has been ascribed to uncontrolled cell growth and tumorigenic transformation. METHODS This review mainly focuses on several biological and chemical RR inhibitors (e.g., siRNA, GTI-2040, GTI-2501, triapine, gemcitabine, and clofarabine) that have been evaluated in clinical trials with promising anticancer activity from 1960's till 2016. A summary on whether their monotherapy or combination is still effective for further use is discussed. RESULTS Among the RR2 inhibitors evaluated, GTI-2040, siRNA, gallium nitrate and didox were more efficacious as a monotherapy, whereas triapine was found to be more efficacious as combination agent. Hydroxyurea is currently used more in combination therapy, even though it is efficacious as a monotherapy. Gallium nitrate showed mixed results in combination therapy, while the combination activity of didox is yet to be evaluated. RR1 inhibitors that have long been used in chemotherapy such as gemcitabine, cladribine, fludarabine and clofarabine are currently used mostly as a combination therapy, but are equally efficacious as a monotherapy, except tezacitabine which did not progress beyond phase I trials. CONCLUSIONS Based on the results of clinical trials, we conclude that RR inhibitors are viable treatment options, either as a monotherapy or as a combination in cancer chemotherapy. With the recent advances made in cancer biology, further development of RR inhibitors with improved efficacy and reduced toxicity is possible for treatment of variety of cancers.
Collapse
Affiliation(s)
- Mukundan Baskar Mannargudi
- Clinical Pharmacology Program, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Subrata Deb
- Department of Biopharmaceutical Sciences, Roosevelt University College of Pharmacy, 1400 N. Roosevelt Blvd., Schaumburg, IL, 60173, USA.
| |
Collapse
|
4
|
Barata P, Sood AK, Hong DS. RNA-targeted therapeutics in cancer clinical trials: Current status and future directions. Cancer Treat Rev 2016; 50:35-47. [PMID: 27612280 DOI: 10.1016/j.ctrv.2016.08.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022]
Abstract
Recent advances in RNA delivery and target selection provide unprecedented opportunities for cancer treatment, especially for cancers that are particularly hard to treat with existing drugs. Small interfering RNAs, microRNAs, and antisense oligonucleotides are the most widely used strategies for silencing gene expression. In this review, we summarize how these approaches were used to develop drugs targeting RNA in human cells. Then, we review the current state of clinical trials of these agents for different types of cancer and outcomes from published data. Finally, we discuss lessons learned from completed studies and future directions for this class of drugs.
Collapse
Affiliation(s)
- Pedro Barata
- Department of Solid Tumors, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Kirschbaum MH, Frankel P, Synold TW, Xie Z, Yen Y, Popplewell L, Chen R, Aljitawi O, Tuscano JM, Chan KK, Newman EM. A phase I pharmacodynamic study of GTI-2040, an antisense oligonucleotide against ribonuclotide reductase, in acute leukemias: a California Cancer Consortium study. Leuk Lymphoma 2016; 57:2307-14. [PMID: 26895565 DOI: 10.3109/10428194.2016.1146947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We performed a phase I study of GTI-2040, an antisense oligonucleotide against ribonucleotide reductase mRNA, on a novel dosing schedule of days 1-4 and 15-18 by continuous infusion to examine efficacy and tolerability in patients with leukemia. A dose of 11 mg/kg/d was safely reached. Dose-limiting toxicities (DLTs) at the higher levels included elevated troponin I and liver function enzymes. There were no objective responses to GTI-2040 in this study; 7/24 patients were able to complete the predetermined three infusion cycles. Pharmacokinetic and pharmacodynamic studies were performed, indicating a trend towards increasing intracellular drug levels and decreasing RRM2 gene expression with increasing doses. This dose schedule may be considered if appropriate combinations are identified in preclinical studies.
Collapse
Affiliation(s)
| | - Paul Frankel
- a City of Hope Comprehensive Cancer Center , Duarte , CA , USA
| | | | - Zhiliang Xie
- b Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Yun Yen
- a City of Hope Comprehensive Cancer Center , Duarte , CA , USA
| | | | - Robert Chen
- a City of Hope Comprehensive Cancer Center , Duarte , CA , USA
| | - Omar Aljitawi
- a City of Hope Comprehensive Cancer Center , Duarte , CA , USA
| | - Joseph M Tuscano
- c Davis Comprehensive Cancer Center, University of California , Sacramento , CA , USA
| | - Kenneth K Chan
- b Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Edward M Newman
- a City of Hope Comprehensive Cancer Center , Duarte , CA , USA
| |
Collapse
|
6
|
Wang J, Lon HK, Lee SL, Burckart GJ, Pisetsky DS. Oligonucleotide-Based Drug Development: Considerations for Clinical Pharmacology and Immunogenicity. Ther Innov Regul Sci 2015; 49:861-868. [PMID: 30222372 DOI: 10.1177/2168479015592195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The field of oligonucleotide (OGN)-based therapeutics has been growing dramatically in the past decade, providing innovative platforms to develop agents for the treatment of a wide variety of clinical conditions. OGN agents have unique physicochemical properties and pharmacokinetic/pharmacodynamic characteristics. This review considers findings from the literature and information on new molecular entities submitted to the US Food and Drug Administration as OGN-based therapeutics. In addition, the article discusses several challenging issues from the perspective of clinical pharmacology, emphasizing the potential of immunogenicity, the effect of renal impairment on OGN exposure, drug-drug interactions, and the utility of pharmacokinetic/pharmacodynamic modeling. The field of OGN-based therapeutics is in evolution and will benefit from further studies as well as clinical experience to formulate guidelines and promote the development of this class of agents.
Collapse
Affiliation(s)
- Jian Wang
- 1 Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hoi-Kei Lon
- 1 Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA.,2 Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Shwu-Luan Lee
- 3 Office of Hematology and Oncology Products, Office of New Drugs, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gilbert J Burckart
- 1 Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | - David S Pisetsky
- 4 Medical Research Service, Durham VA Medical Center and Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
7
|
Hsu NY, Lee H, Cheng YW, Yen Y. [Ribonucleotide reductase and non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 15:619-23. [PMID: 23092586 PMCID: PMC6000032 DOI: 10.3779/j.issn.1009-3419.2012.11.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nan-Yung Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, China
| | | | | | | |
Collapse
|
8
|
Lu AG, Feng H, Wang PXZ, Han DP, Chen XH, Zheng MH. Emerging roles of the ribonucleotide reductase M2 in colorectal cancer and ultraviolet-induced DNA damage repair. World J Gastroenterol 2012; 18:4704-13. [PMID: 23002339 PMCID: PMC3442208 DOI: 10.3748/wjg.v18.i34.4704] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 06/11/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the roles of the ribonucleotide reductase M2 (RRM2) subunit in colorectal cancer (CRC) and ultraviolet (UV)-induced DNA damage repair. METHODS Immunohistochemical staining of tissue microarray was performed to detect the expression of RRM2. Seven CRC cell lines were cultured and three human colon cancer cell lines, i.e., HCT116, SW480 and SW620, were used. Reverse transcription polymerase chain reaction and Western blotting were performed to determine the mRNA and protein expression levels of RRM2, respectively. Cell proliferation assay, cell cycle analysis were performed. Cell apoptosis was evaluated by double staining with fluorescein isothiocyanate-conjugated Annexin V and propidium iodide (PI) using Annexin V/PI apoptosis kit. The motility and invasion of CRC cells were assessed by the Transwell chamber assay. Cells were irradiated with a 254 nm UV-C lamp to detect the UV sensitivity after RRM2 depletion. RESULTS Immunohistochemical staining revealed elevated RRM2 levels in CRC tissues. RRM2 overexpression was positively correlated with invasion depth (P < 0.05), poorly differentiated type (P = 0.0051), and tumor node metastasis stage (P = 0.0015). The expression of RRM2 in HCT116 cells was downregulated after transfection, and HCT116 cell proliferation was obviously suppressed compared to control groups (P < 0.05). In the invasion test, the number of cells that passed through the chambers in the RRM2-siRNA group was 81 ± 3, which was lower than that in the negative control (289 ± 7) and blank control groups (301 ± 7.2). These differences were statistically significant (P < 0.01). Our data suggest that RRM2 overexpression may be associated with CRC progression. RRM2 silencing by siRNA may inhibit the hyperplasia and invasiveness of CRC cells, suggesting that RRM2 may play an important role in the infiltration and metastasis of CRC, which is a potential therapeutic strategy in CRC. In addition, RRM2 depletion increased UV sensitivity. CONCLUSION These findings suggest that RRM2 may be a facilitating factor in colorectal tumorigenesis and UV-induced DNA damage repair.
Collapse
|
9
|
Quantitative analysis of survivin protein expression and its therapeutic depletion by an antisense oligonucleotide in human lung tumors. MOLECULAR THERAPY-NUCLEIC ACIDS 2012; 1:e30. [PMID: 23344082 PMCID: PMC3390226 DOI: 10.1038/mtna.2012.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA-directed antisense and interference therapeutics are a promising treatment option for cancer. The demonstration of depletion of target proteins within human tumors in vivo using validated methodology will be a key to the application of this technology. Here, we present a flow cytometric-based approach to quantitatively determine protein levels in solid tumor material derived by fiber optic brushing (FOB) of non-small cell lung cancer (NSCLC) patients. Focusing upon the survivin protein, and its depletion by an antisense oligonucleotide (ASO) (LY2181308), we show that we can robustly identify a subpopulation of survivin positive tumor cells in FOB samples, and, moreover, detect survivin depletion in tumor samples from a patient treated with LY2181308. Survivin depletion appears to be a result of treatment with this ASO, because a tumor treated with conventional cytotoxic chemotherapy did not exhibit a decreased percentage of survivin positive cells. Our approach is likely to be broadly applicable to, and useful for, the quantification of protein levels in tumor samples obtained as part of clinical trials and studies, facilitating the proof-of-principle testing of novel targeted therapies.
Collapse
|
10
|
Morikawa T, Maeda D, Kume H, Homma Y, Fukayama M. Ribonucleotide reductase M2 subunit is a novel diagnostic marker and a potential therapeutic target in bladder cancer. Histopathology 2011; 57:885-92. [PMID: 21166702 DOI: 10.1111/j.1365-2559.2010.03725.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To examine the immunohistochemical expression and function of ribonucleotide reductase M2 subunit (RRM2), a gemcitabine-related molecule, in bladder cancer. METHODS AND RESULTS One hundred and seventeen bladder specimens on a tissue microarray were immunostained for RRM2. Positive RRM2 staining was observed in none of 14 examples of non-neoplastic urothelium, none of four low-grade urothelial carcinoma (UC), 69 of 83 (83%) high-grade UC, three of three (100%) squamous cell carcinoma and 12 of 13 (92%) lymph node metastasis of UC. RRM2 overexpression was associated significantly with muscularis propria invasion in UC patients who had undergone radical cystectomy (P=0.005). Immunohistochemistry for RRM2 was then applied to small biopsy specimens of 15 cystitis with reactive atypia cases and 25 urothelial carcinoma in-situ (CIS) cases. Positive RRM2 staining was found in one of 15 (6.7%) cystitis with reactive atypia cases and in 24 of 25 (96%) CIS cases. Finally, UM-UC-3 bladder cancer cells were transfected with RRM2 siRNAs and cell growth was evaluated. Knockdown of RRM2 protein markedly inhibited cell growth. CONCLUSIONS We have shown frequent overexpression of RRM2 protein and its possible role in bladder cancer. Our results suggest that RRM2 is a novel diagnostic marker and a potential therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|