1
|
Karajannis MA, Onar-Thomas A, Lin T, Baxter PA, Boué DR, Cole BL, Fuller C, Haque S, Jabado N, Lucas JT, MacDonald SM, Matsushima C, Patel N, Pierson CR, Souweidane MM, Thomas DL, Walsh MF, Zaky W, Leary SES, Gajjar A, Fouladi M, Cohen KJ. Phase 2 trial of veliparib, local irradiation, and temozolomide in patients with newly diagnosed high-grade glioma: a Children's Oncology Group study. Neuro Oncol 2025; 27:1092-1101. [PMID: 39560182 PMCID: PMC12083075 DOI: 10.1093/neuonc/noae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The outcome for pediatric patients with high-grade glioma (HGG) remains poor. Veliparib, a potent oral poly(adenosine diphosphate-ribose) polymerase (PARP) 1/2 inhibitor, enhances the activity of radiotherapy and DNA-damaging chemotherapy. METHODS We conducted a single-arm, non-randomized phase 2 clinical trial to determine whether treatment with veliparib and radiotherapy, followed by veliparib and temozolomide, improves progression-free survival in pediatric patients with newly diagnosed HGG without H3 K27M or BRAF mutations, compared to patient-level data from historical cohorts with closely matching clinical and molecular features. Following surgical resection, newly diagnosed children with non-metastatic HGG were screened by rapid central pathology review and molecular testing. Eligible patients were enrolled on Stratum 1 (IDH wild-type) or Stratum 2 (IDH mutant). RESULTS Both strata were closed to accrual for futility after planned interim analyses. Among the 23 eligible patients who enrolled on Stratum 1 and received protocol therapy, the 1-year event-free survival (EFS) was 23% (standard error, SE = 9%) and the 1-year overall survival (OS) was 64% (SE = 10%). Among the 14 eligible patients who enrolled on Stratum 2 and received protocol therapy, the 1-year EFS was 57% (SE = 13%) and 1-year OS was 93% (SE = 0.7%). CONCLUSIONS Rapid central pathology review and molecular testing for eligibility were feasible. The protocol therapy including radiation, veliparib, and temozolomide was well tolerated but failed to improve outcomes compared to clinically and molecularly matched historical control cohorts treated with higher doses of alkylator chemotherapy. CLINICALTRIALS.GOV IDENTIFIER NCT03581292 (first posted: July 10, 2018).
Collapse
Affiliation(s)
- Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Patricia A Baxter
- Department of Pediatrics, Texas Children’s Hospital/Baylor College of Medicine, Houston, Texas
| | - Daniel R Boué
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Bonnie L Cole
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Christine Fuller
- Department of Pathology, Upstate Medical University, Syracuse, New York, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nada Jabado
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - John T Lucas
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Celeste Matsushima
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Namrata Patel
- Department of Pharmacy, Stanford Medicine Children’s Health, Palo Alto, California, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Diana L Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Wafik Zaky
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah E S Leary
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Amar Gajjar
- Department of Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Maryam Fouladi
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Kenneth J Cohen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
2
|
Abstract
Leptomeningeal metastases represent an aggressive stage of cancer with few durable treatment options. Improved understanding of cancer biology, neoplastic reliance on oncogenic driver mutations, and complex immune system interactions have resulted in an explosion in cancer-directed therapy in the last two decades to include small molecule inhibitors and immune checkpoint inhibitors. Most of these therapeutics are underexplored in patients with leptomeningeal metastases, limiting extrapolation of extracranial and even intracranial efficacy outcomes to the unique leptomeningeal space. Further confounding our interpretation of drug activity in the leptomeninges is an incomplete understanding of drug penetration through the blood-cerebrospinal fluid barrier of the choroid plexus. Nevertheless, a number of retrospective studies and promising prospective trials provide evidence of leptomeningeal activity of several small molecule and immune checkpoint inhibitors and underscore potential areas of further therapeutic development for patients harboring leptomeningeal disease.
Collapse
Affiliation(s)
- Jessica A Wilcox
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Adrienne A Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Human Oncology and Pathogenesis Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Hastings L, Sokratian A, Apicco DJ, Stanhope CM, Smith L, Hirst WD, West AB, Kelly K. OUP accepted manuscript. Brain Commun 2022; 4:fcac042. [PMID: 35282165 PMCID: PMC8907490 DOI: 10.1093/braincomms/fcac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/05/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The accumulation of α-synuclein inclusions in vulnerable neuronal populations pathologically defines Lewy body diseases including Parkinson’s disease. Recent pre-clinical studies suggest poly(ADP-ribose) polymerase-1 activation and the subsequent generation of poly(ADP-ribose) polymer represent key steps in the formation of toxic α-synuclein aggregates and neurodegeneration. Several studies suggest that the inhibition of poly(ADP-ribose) polymerase-1 activity via the poly(ADP-ribose) polymerase-1/2 small molecule inhibitor ABT-888 (Veliparib), a drug in clinical trials for different cancers, may prevent or ameliorate α-synuclein fibril-induced aggregation, inclusion formation and dopaminergic neurodegeneration. Herein, we evaluated the effects of poly(ADP-ribose) polymer on α-synuclein fibrillization in vitro, the effects of ABT-888 on the formation of fibril-seeded α-synuclein inclusions in primary mouse cortical neurons and the effects of an in-diet ABT-888 dosage regimen with the intracranial injection of α-synuclein fibrils into the mouse dorsal striatum. We found that poly(ADP-ribose) polymer minimally but significantly increased the rate of spontaneously formed α-synuclein fibrils in vitro. Machine-learning algorithms that quantitatively assessed α-synuclein inclusion counts in neurons, both in primary cultures and in the brains of fibril-injected mice, did not reveal differences between ABT-888- and vehicle-treated groups. The in-diet administered ABT-888 molecule demonstrated outstanding brain penetration in mice; however, dopaminergic cell loss in the substantia nigra caused by α-synuclein fibril injections in the striatum was similar between ABT-888- and vehicle-treated groups. α-Synuclein fibril-induced loss of dopaminergic fibres in the dorsal striatum was also similar between ABT-888- and vehicle-treated groups. We conclude that additional pre-clinical evaluation of ABT-888 may be warranted to justify further exploration of ABT-888 for disease modification in Lewy body diseases.
Collapse
Affiliation(s)
- Lyndsay Hastings
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Arpine Sokratian
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Daniel J. Apicco
- Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, USA
| | - Christina M. Stanhope
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Warren D. Hirst
- Biogen Neurodegeneration Research Unit, Research and Early Discovery, Biogen, Cambridge, MA, USA
| | - Andrew B. West
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kaela Kelly
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Correspondence to: Kaela Kelly, PhD 3 Genome Ct, Durham NC 27710, USA E-mail:
| |
Collapse
|
4
|
Abstract
ABSTRACT Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed the therapeutic landscape for advanced ovarian cancer and expanded treatment options for other tumor types, including breast, pancreas, and prostate cancer. Yet, despite the success of PARP inhibitors in our current therapeutic armamentarium, not all patients benefit because of primary resistance, whereas different acquired resistance mechanisms can lead to disease progression on therapy. In addition, the toxicity profile of PARP inhibitors, primarily myelosuppression, has led to adverse events in a proportion of patients as monotherapy, and has limited the use of PARP inhibitors for certain rational combination strategies, such as chemotherapy and targeted therapy regimens. Currently approved PARP inhibitors are essentially equipotent against PARP1 and PARP2 enzymes. In this review, we describe the development of next-generation PARP1-selective inhibitors that have entered phase I clinical trials. These inhibitors have demonstrated increased PARP1 inhibitory potency and exquisitely high PARP1 selectivity in preclinical studies-features that may lead to improved clinical efficacy and a wider therapeutic window. First-in-human clinical trials seeking to establish the safety, tolerability, and recommended phase II dose, as well as antitumor activity of these novel agents, have commenced. If successful, this next-generation of PARP1-selective agents promises to build on the succeses of current PARP inhibitor treatment paradigms in cancer medicine.
Collapse
|
5
|
Xavier MA, Rezende F, Titze-de-Almeida R, Cornelissen B. BRCAness as a Biomarker of Susceptibility to PARP Inhibitors in Glioblastoma Multiforme. Biomolecules 2021; 11:1188. [PMID: 34439854 PMCID: PMC8394995 DOI: 10.3390/biom11081188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBMs commonly acquire resistance to standard-of-care therapies. Among the novel means to sensitize GBM to DNA-damaging therapies, a promising strategy is to combine them with inhibitors of the DNA damage repair (DDR) machinery, such as inhibitors for poly(ADP-ribose) polymerase (PARP). PARP inhibitors (PARPis) have already shown efficacy and have received regulatory approval for breast, ovarian, prostate, and pancreatic cancer treatment. In these cancer types, after PARPi administration, patients carrying specific mutations in the breast cancer 1 (BRCA1) and 2 (BRCA2) suppressor genes have shown better response when compared to wild-type carriers. Mutated BRCA genes are infrequent in GBM tumors, but their cells can carry other genetic alterations that lead to the same phenotype collectively referred to as 'BRCAness'. The most promising biomarkers of BRCAness in GBM are related to isocitrate dehydrogenases 1 and 2 (IDH1/2), epidermal growth factor receptor (EGFR), phosphatase and tensin homolog (PTEN), MYC proto-oncogene, and estrogen receptors beta (ERβ). BRCAness status identified by accurate biomarkers can ultimately predict responsiveness to PARPi therapy, thereby allowing patient selection for personalized treatment. This review discusses potential biomarkers of BRCAness for a 'precision medicine' of GBM patients.
Collapse
Affiliation(s)
- Mary-Ann Xavier
- Central Institute of Sciences, Technology for Gene Therapy Laboratory, University of Brasília—UnB/FAV, Brasília 70910-900, Brazil; (F.R.); (R.T.-d.-A.)
| | - Fernando Rezende
- Central Institute of Sciences, Technology for Gene Therapy Laboratory, University of Brasília—UnB/FAV, Brasília 70910-900, Brazil; (F.R.); (R.T.-d.-A.)
| | - Ricardo Titze-de-Almeida
- Central Institute of Sciences, Technology for Gene Therapy Laboratory, University of Brasília—UnB/FAV, Brasília 70910-900, Brazil; (F.R.); (R.T.-d.-A.)
| | - Bart Cornelissen
- Department of Oncology, Radiobiology Research Institute, University of Oxford, Oxford OX3 7LJ, UK;
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
6
|
Koehler RC, Dawson VL, Dawson TM. Targeting Parthanatos in Ischemic Stroke. Front Neurol 2021; 12:662034. [PMID: 34025565 PMCID: PMC8131834 DOI: 10.3389/fneur.2021.662034] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parthanatos is a cell death signaling pathway in which excessive oxidative damage to DNA leads to over-activation of poly(ADP-ribose) polymerase (PARP). PARP then generates the formation of large poly(ADP-ribose) polymers that induce the release of apoptosis-inducing factor from the outer mitochondrial membrane. In the cytosol, apoptosis-inducing factor forms a complex with macrophage migration inhibitory factor that translocates into the nucleus where it degrades DNA and produces cell death. In a review of the literature, we identified 24 publications from 13 laboratories that support a role for parthanatos in young male mice and rats subjected to transient and permanent middle cerebral artery occlusion (MCAO). Investigators base their conclusions on the use of nine different PARP inhibitors (19 studies) or PARP1-null mice (7 studies). Several studies indicate a therapeutic window of 4-6 h after MCAO. In young female rats, two studies using two different PARP inhibitors from two labs support a role for parthanatos, whereas two studies from one lab do not support a role in young female PARP1-null mice. In addition to parthanatos, a body of literature indicates that PARP inhibitors can reduce neuroinflammation by interfering with NF-κB transcription, suppressing matrix metaloproteinase-9 release, and limiting blood-brain barrier damage and hemorrhagic transformation. Overall, most of the literature strongly supports the scientific premise that a PARP inhibitor is neuroprotective, even when most did not report behavior outcomes or address the issue of randomization and treatment concealment. Several third-generation PARP inhibitors entered clinical oncology trials without major adverse effects and could be repurposed for stroke. Evaluation in aged animals or animals with comorbidities will be important before moving into clinical stroke trials.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Physiology, The Johns Hopkins University, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Baxter PA, Su JM, Onar-Thomas A, Billups CA, Li XN, Poussaint TY, Smith ER, Thompson P, Adesina A, Ansell P, Giranda V, Paulino A, Kilburn L, Quaddoumi I, Broniscer A, Blaney SM, Dunkel IJ, Fouladi M. A phase I/II study of veliparib (ABT-888) with radiation and temozolomide in newly diagnosed diffuse pontine glioma: a Pediatric Brain Tumor Consortium study. Neuro Oncol 2021; 22:875-885. [PMID: 32009149 DOI: 10.1093/neuonc/noaa016] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A Pediatric Brain Tumor Consortium (PBTC) phase I/II trial of veliparib and radiation followed by veliparib and temozolomide (TMZ) was conducted in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG). The objectives were to: (i) estimate the recommended phase II dose (RP2D) of veliparib with concurrent radiation; (ii) evaluate the pharmacokinetic parameters of veliparib during radiation; (iii) evaluate feasibility of intrapatient TMZ dose escalation; (iv) describe toxicities of protocol therapy; and (v) estimate the overall survival distribution compared with historical series. METHODS Veliparib was given Monday through Friday b.i.d. during radiation followed by a 4-week rest. Patients then received veliparib at 25 mg/m2 b.i.d. and TMZ 135 mg/m2 daily for 5 days every 28 days. Intrapatient dose escalation of TMZ was investigated for patients experiencing minimal toxicity. RESULTS Sixty-six patients (65 eligible) were enrolled. The RP2D of veliparib was 65 mg/m2 b.i.d. with radiation. Dose-limiting toxicities during radiation with veliparib therapy included: grade 2 intratumoral hemorrhage (n = 1), grade 3 maculopapular rash (n = 2), and grade 3 nervous system disorder (generalized neurologic deterioration) (n = 1). Intrapatient TMZ dose escalation during maintenance was not tolerated. Following a planned interim analysis, it was concluded that this treatment did not show a survival benefit compared with PBTC historical controls, and accrual was stopped for futility. The 1- and 2-year overall survival rates were 37.2% (SE 7%) and 5.3% (SE 3%), respectively. CONCLUSION Addition of veliparib to radiation followed by TMZ and veliparib was tolerated but did not improve survival for patients with newly diagnosed DIPG. TRIAL REGISTRATION NCT01514201.
Collapse
Affiliation(s)
- Patricia A Baxter
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Jack M Su
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | | | | | - Xiao-Nan Li
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | | | | | - Patrick Thompson
- University of North Carolina Children's Hospital, Chapel Hill, North Carolina
| | - Adekunle Adesina
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | | | | | - Arnold Paulino
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Susan M Blaney
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Ira J Dunkel
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
8
|
Kouzoukas DE, Schreiber JA, Tajuddin NF, Kaja S, Neafsey EJ, Kim HY, Collins MA. PARP inhibition in vivo blocks alcohol-induced brain neurodegeneration and neuroinflammatory cytosolic phospholipase A2 elevations. Neurochem Int 2019; 129:104497. [PMID: 31251945 DOI: 10.1016/j.neuint.2019.104497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022]
Abstract
Chronic alcoholism promotes brain damage that impairs memory and cognition. High binge alcohol levels in adult rats also cause substantial neurodamage to memory-linked regions, notably, the hippocampus (HC) and entorhinal cortex (ECX). Concurrent with neurodegeneration, alcohol elevates poly (ADP-ribose) polymerase-1 (PARP-1) and cytosolic phospholipase A2 (cPLA2) levels. PARP-1 triggers necrosis when excessively activated, while cPLA2 liberates neuroinflammatory ω-6 arachidonic acid. Inhibitors of PARP exert in vitro neuroprotection while suppressing cPLA2 elevations in alcohol-treated HC-ECX slice cultures. Here, we examined in vivo neuroprotection and cPLA2 suppression by the PARP inhibitor, veliparib, in a recognized adult rat model of alcohol-binging. Adult male rats received Vanilla Ensure containing alcohol (ethanol, 7.1 ± 0.3 g/kg/day), or control (dextrose) ± veliparib (25 mg/kg/day), by gavage 3x daily for 4 days. Rats were sacrificed on the morning after the final binge. HC and ECX neurodegeneration was assessed in fixed sections by Fluoro-Jade B (FJB) staining. Dorsal HC, ventral HC, and ECX cPLA2 levels were quantified by immunoblotting. Like other studies using this model, alcohol binges elevated FJB staining in the HC (dentate gyrus) and ECX, indicating neurodegeneration. Veliparib co-treatment significantly reduced dentate gyrus and ECX neurodegeneration by 79% and 66%, respectively. Alcohol binges increased cPLA2 in the ventral HC by 34% and ECX by 72%, which veliparib co-treatment largely prevented. Dorsal HC cPLA2 levels remained unaffected by alcohol binges, consistent with negligible FJB staining in this brain region. These in vivo results support an emerging key role for PARP in binge alcohol-induced neurodegeneration and cPLA2-related neuroinflammation.
Collapse
Affiliation(s)
- Dimitrios E Kouzoukas
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA; Alcohol Research Program, Loyola University Chicago, Maywood, IL, USA; Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA.
| | - Jennifer A Schreiber
- Neuroscience Graduate Program, Loyola University Chicago, Maywood, IL, USA; Alcohol Research Program, Loyola University Chicago, Maywood, IL, USA
| | - Nuzhath F Tajuddin
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Simon Kaja
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA; Neuroscience Graduate Program, Loyola University Chicago, Maywood, IL, USA; Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA; Alcohol Research Program, Loyola University Chicago, Maywood, IL, USA; Burn Shock Trauma Research Institute, Loyola University Chicago, Maywood, IL, USA; Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Edward J Neafsey
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Collins
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA; Neuroscience Graduate Program, Loyola University Chicago, Maywood, IL, USA; Alcohol Research Program, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
9
|
Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, Liu Y, Sundaram RK, Hegan DC, Fons NR, Breuer GA, Song Y, Mishra-Gorur K, De Feyter HM, de Graaf RA, Surovtseva YV, Kachman M, Halene S, Günel M, Glazer PM, Bindra RS. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med 2018; 9:9/375/eaal2463. [PMID: 28148839 DOI: 10.1126/scitranslmed.aal2463] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/08/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
2-Hydroxyglutarate (2HG) exists as two enantiomers, (R)-2HG and (S)-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)-dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations, whereas the latter is produced under pathologic processes such as hypoxia. We report that IDH1/2 mutations induce a homologous recombination (HR) defect that renders tumor cells exquisitely sensitive to poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) inhibitors. This "BRCAness" phenotype of IDH mutant cells can be completely reversed by treatment with small-molecule inhibitors of the mutant IDH1 enzyme, and conversely, it can be entirely recapitulated by treatment with either of the 2HG enantiomers in cells with intact IDH1/2 proteins. We demonstrate mutant IDH1-dependent PARP inhibitor sensitivity in a range of clinically relevant models, including primary patient-derived glioma cells in culture and genetically matched tumor xenografts in vivo. These findings provide the basis for a possible therapeutic strategy exploiting the biological consequences of mutant IDH, rather than attempting to block 2HG production, by targeting the 2HG-dependent HR deficiency with PARP inhibition. Furthermore, our results uncover an unexpected link between oncometabolites, altered DNA repair, and genetic instability.
Collapse
Affiliation(s)
- Parker L Sulkowski
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Christopher D Corso
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nathaniel D Robinson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan E Scanlon
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karin R Purshouse
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hanwen Bai
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Denise C Hegan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nathan R Fons
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gregory A Breuer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Maureen Kachman
- Michigan Regional Comprehensive Metabolomics Resource Core, National Institute of Environmental Health Sciences (NIEHS) Children's Health Exposure Analysis Resource for Metabolomics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Murat Günel
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Bartelink IH, Prideaux B, Krings G, Wilmes L, Lee PRE, Bo P, Hann B, Coppé JP, Heditsian D, Swigart-Brown L, Jones EF, Magnitsky S, Keizer RJ, de Vries N, Rosing H, Pawlowska N, Thomas S, Dhawan M, Aggarwal R, Munster PN, Esserman LJ, Ruan W, Wu AHB, Yee D, Dartois V, Savic RM, Wolf DM, van ’t Veer L. Heterogeneous drug penetrance of veliparib and carboplatin measured in triple negative breast tumors. Breast Cancer Res 2017; 19:107. [PMID: 28893315 PMCID: PMC5594551 DOI: 10.1186/s13058-017-0896-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase inhibitors (PARPi), coupled to a DNA damaging agent is a promising approach to treating triple negative breast cancer (TNBC). However, not all patients respond; we hypothesize that non-response in some patients may be due to insufficient drug penetration. As a first step to testing this hypothesis, we quantified and visualized veliparib and carboplatin penetration in mouse xenograft TNBCs and patient blood samples. METHODS MDA-MB-231, HCC70 or MDA-MB-436 human TNBC cells were implanted in 41 beige SCID mice. Low dose (20 mg/kg) or high dose (60 mg/kg) veliparib was given three times daily for three days, with carboplatin (60 mg/kg) administered twice. In addition, blood samples were analyzed from 19 patients from a phase 1 study of carboplatin + PARPi talazoparib. Veliparib and carboplatin was quantified using liquid chromatography-mass spectrometry (LC-MS). Veliparib tissue penetration was visualized using matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) and platinum adducts (covalent nuclear DNA-binding) were quantified using inductively coupled plasma-mass spectrometry (ICP-MS). Pharmacokinetic modeling and Pearson's correlation were used to explore associations between concentrations in plasma, tumor cells and peripheral blood mononuclear cells (PBMCs). RESULTS Veliparib penetration in xenograft tumors was highly heterogeneous between and within tumors. Only 35% (CI 95% 26-44%), 74% (40-97%) and 46% (9-37%) of veliparib observed in plasma penetrated into MDA-MB-231, HCC70 and MDA-MB-436 cell-based xenografts, respectively. Within tumors, penetration heterogeneity was larger with the 60 mg/kg compared to the 20 mg/kg dose (RSD 155% versus 255%, P = 0.001). These tumor concentrations were predicted similar to clinical dosing levels, but predicted tumor concentrations were below half maximal concentration values as threshold of response. Xenograft veliparib concentrations correlated positively with platinum adduct formation (R 2 = 0.657), but no PARPi-platinum interaction was observed in patients' PBMCs. Platinum adduct formation was significantly higher in five gBRCA carriers (ratio of platinum in DNA in PBMCs/plasma 0.64% (IQR 0.60-1.16%) compared to nine non-carriers (ratio 0.29% (IQR 0.21-0.66%, P < 0.0001). CONCLUSIONS PARPi/platinum tumor penetration can be measured by MALDI-MSI and ICP-MS in PBMCs and fresh frozen, OCT embedded core needle biopsies. Large variability in platinum adduct formation and spatial heterogeneity in veliparib distribution may lead to insufficient drug exposure in select cell populations.
Collapse
Affiliation(s)
- Imke H. Bartelink
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Brendan Prideaux
- Rutgers New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Ave, Newark, NJ USA
| | - Gregor Krings
- Department of Pathology, University of California, San Francisco, CA USA
| | - Lisa Wilmes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Pei Rong Evelyn Lee
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Pan Bo
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Byron Hann
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Diane Heditsian
- Patient advocate University of California, San Francisco Breast Science Advocacy Core, San Francisco, CA USA
| | - Lamorna Swigart-Brown
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Ella F. Jones
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Sergey Magnitsky
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Ron J Keizer
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Niels de Vries
- Department of Clinical Pharmacy, Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, NKI-AVL, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Clinical Pharmacy, Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, NKI-AVL, Amsterdam, The Netherlands
| | - Nela Pawlowska
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Scott Thomas
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Mallika Dhawan
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Rahul Aggarwal
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Pamela N. Munster
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Laura J. Esserman
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Weiming Ruan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Alan H. B. Wu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Douglas Yee
- Division of Hematology Oncology, University of Minnesota, Minneapolis, MN USA
| | - Véronique Dartois
- Rutgers New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Ave, Newark, NJ USA
| | - Radojka M. Savic
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Denise M. Wolf
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Laura van ’t Veer
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| |
Collapse
|
11
|
Balvers RK, Lamfers MLM, Kloezeman JJ, Kleijn A, Berghauser Pont LME, Dirven CMF, Leenstra S. ABT-888 enhances cytotoxic effects of temozolomide independent of MGMT status in serum free cultured glioma cells. J Transl Med 2015; 13:74. [PMID: 25886061 PMCID: PMC4359449 DOI: 10.1186/s12967-015-0427-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/04/2015] [Indexed: 01/09/2023] Open
Abstract
Background The current standard of care for Glioblastoma Multiforme (GBM) consists of fractionated focal irradiation with concomitant temozolomide (TMZ) chemotherapy. A promising strategy to increase the efficacy of TMZ is through interference with the DNA damage repair machinery, by poly(ADP-ribose) polymerase protein inhibition(PARPi). The objective of the present study was to investigate the therapeutic benefit of combination therapy in patient-derived glioma stem-like cells (GSC). Methods Combination therapy feasibility was tested on established GBM cell lines U373 and T98. We developed an in vitro drug-screening assay based on GSC cultures derived from a panel of primary patient tissue samples (n = 20) to evaluate the effect of PARPi (ABT-888) monotherapy and combination therapy with TMZ. Therapeutic effect was assessed by viability, double stranded breaks, apoptosis and autophagy assays and longitudinal microscopic cell monitoring was performed. O-6-methylguanine-DNA methyltransferase (MGMT) status was determined by methylation assay and protein expression by western blots. Results PARPi monotherapy was found to decrease viability by more than 25% in 4 of the 20 GSCs (20%) at 10 μM. TMZ monotherapy at 50 μM and 100 μM was effective in 12 and 14 of the 20 GSCs, respectively. TMZ resistance to 100 μM was found in 7 of 8 MGMT protein positive cultures. Potentiation of TMZ therapy through PARPi was found in 90% (n = 20) of GSCs, of which 6 were initially resistant and 7 were sensitive to TMZ monotherapy. Increased induction of double stranded breaks and apoptosis were noted in responsive GSCs. There was a trend noted, albeit statistically insignificant, of increased autophagy both in western blots and accumulation of autophagosomes. Conclusion PARPi mediated potentiation of TMZ is independent of TMZ sensitivity and can override MGMT(-) mediated resistance when administered simultaneously. Response to combination therapy was associated with increased double strand breaks induction, and coincided by increased apoptosis and autophagy. PARPi addition potentiates TMZ treatment in primary GSCs. PARPi could potentially enhance the therapeutic efficacy of the standard of care in GBM.
Collapse
Affiliation(s)
- Rutger K Balvers
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Martine L M Lamfers
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Jenneke J Kloezeman
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Anne Kleijn
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Lotte M E Berghauser Pont
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Clemens M F Dirven
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Sieger Leenstra
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands. .,Department of Neurosurgery, St Elisabeth Hospital, Tilburg, The Netherlands.
| |
Collapse
|
12
|
Salem AH, Giranda VL, Mostafa NM. Population pharmacokinetic modeling of veliparib (ABT-888) in patients with non-hematologic malignancies. Clin Pharmacokinet 2014; 53:479-88. [PMID: 24452810 DOI: 10.1007/s40262-013-0130-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Veliparib (ABT-888) is a potent oral inhibitor of Poly(ADP-ribose) polymerase enzyme that is currently in development for the treatment of non-hematologic and hematologic malignancies. This analysis characterizes the population pharmacokinetics of veliparib, including developing a structural pharmacokinetic model and testing patient demographics and covariates for potential influence on veliparib pharmacokinetics in patients with non-hematologic malignancies. METHODS The analysis dataset included 3,542 veliparib concentration values from 325 patients with non-hematologic malignancies enrolled in three phase I and one phase II studies. Population pharmacokinetic modeling was performed using NONMEM. The likelihood ratio test was used for comparison of nested models, and visual predictive check was employed for model qualification. Covariates tested included body size measures, creatinine clearance (CLCR), formulation, age, sex, race, liver function tests, and coadministration with temozolomide. RESULTS A one-compartment model with first-order absorption and elimination adequately described veliparib pharmacokinetics. The final model included fixed effects for CLCR on veliparib oral clearance (CL/F) and lean body mass (LBM) on volume of distribution (V d/F). CL/F and V d/F were 20.9 L/h (for a CLCR of 100 mL/min) and 173 L (for an LBM of 56 kg), respectively. CONCLUSION Only LBM and CLCR were found to be determinants of veliparib V d/F and CL/F, respectively. Dosage adjustments of veliparib on the basis of body size, age, sex, race, liver function, and temozolomide coadministration are not necessary in patients with non-hematologic malignancies. This is the first study to characterize the population pharmacokinetics of veliparib, and the developed model will be used to conduct simulations and evaluate veliparib exposure-response relationships.
Collapse
Affiliation(s)
- Ahmed Hamed Salem
- Clinical Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA,
| | | | | |
Collapse
|
13
|
Su JM, Thompson P, Adesina A, Li XN, Kilburn L, Onar-Thomas A, Kocak M, Chyla B, McKeegan E, Warren KE, Goldman S, Pollack IF, Fouladi M, Chen A, Giranda V, Boyett J, Kun L, Blaney SM. A phase I trial of veliparib (ABT-888) and temozolomide in children with recurrent CNS tumors: a pediatric brain tumor consortium report. Neuro Oncol 2014; 16:1661-8. [PMID: 24908656 DOI: 10.1093/neuonc/nou103] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A phase I trial of veliparib (ABT-888), an oral poly(ADP-ribose) polymerase (PARP) inhibitor, and temozolomide (TMZ) was conducted in children with recurrent brain tumors to (i) estimate the maximum tolerated doses (MTDs) or recommended phase II doses (RP2Ds) of veliparib and TMZ; (ii) describe the toxicities of this regimen; and (iii) evaluate the plasma pharmacokinetic parameters and extent of PARP inhibition in peripheral blood mononuclear cells (PBMCs) following veliparib. METHODS TMZ was given once daily and veliparib twice daily for 5 days every 28 days. Veliparib concentrations and poly(ADP-ribose) (PAR) levels in PBMCs were measured on days 1 and 4. Analysis of pharmacokinetic and PBMC PAR levels were performed twice during study conduct to rationally guide dose modifications and to determine biologically optimal MTD/RP2D. RESULTS Twenty-nine evaluable patients were enrolled. Myelosuppression (grade 4 neutropenia and thrombocytopenia) were dose limiting. The RP2Ds are veliparib 25 mg/m(2) b.i.d. and TMZ 135 mg/m(2)/d. Only 2 out of 12 patients treated at RP2Ds experienced dose-limiting toxicities. Although no objective response was observed, 4 patients had stable disease >6 months in duration, including 1 with glioblastoma multiforme and 1 with ependymoma. At the RP2D of veliparib, pediatric pharmacokinetic parameters were similar to those in adults. CONCLUSIONS Veliparib and TMZ at the RP2D were well tolerated in children with recurrent brain tumors. A phase I/II trial to evaluate the tolerability and efficacy of veliparib, TMZ, and radiation in children with newly diagnosed brainstem gliomas is in progress.
Collapse
Affiliation(s)
- Jack M Su
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Patrick Thompson
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Adekunle Adesina
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Xiao-Nan Li
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Lindsay Kilburn
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Arzu Onar-Thomas
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Mehmet Kocak
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Brenda Chyla
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Evelyn McKeegan
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Katherine E Warren
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Stewart Goldman
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Ian F Pollack
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Maryam Fouladi
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Alice Chen
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Vincent Giranda
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - James Boyett
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Larry Kun
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| | - Susan M Blaney
- Texas Children's Cancer Center, Baylor College of Medicine (J.M.S., P.T., A.A., X-N.L., S.M.B.); Children's National Medical Center (L.K.); St. Jude Children's Research Hospital (A.O-T., J.B., L.K.); University of Tennessee Health Science Center (M.K.); AbbVie Pharmaceuticals (B.C., E.M., V.G.); National Cancer Institute, Pediatric Oncology Branch (K.E.W.); Children's Hospital of Chicago (S.G.); Children's Hospital of Pittsburgh (I.F.P.); Cincinnati Children's Hospital Medical Center (M.F.); Cancer Therapy Evaluation Program, National Cancer Institute (A.C.)
| |
Collapse
|
14
|
Kikuchi R, Lao Y, Bow DAJ, Chiou WJ, Andracki ME, Carr RA, Voorman RL, De Morais SM. Prediction of clinical drug-drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm Sci 2013; 102:4426-32. [PMID: 24122511 DOI: 10.1002/jps.23737] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 01/11/2023]
Abstract
Veliparib (ABT-888) is largely eliminated as parent drug in human urine (70% of the dose). Renal unbound clearance exceeds glomerular filtration rate, suggesting the involvement of transporter-mediated active secretion. Clinically relevant pharmacokinetic interactions in the kidney have been associated with OAT1, OAT3, OCT2, MATE1, and MATE2K. In the present study, interactions of veliparib with these transporters were investigated. Veliparib inhibited OAT1, OAT3, OCT2, MATE1, and MATE2K with IC50 values of 1371, 505, 3913, 69.9, and 69.5 μM, respectively. The clinical unbound maximum plasma concentration of veliparib after single oral dose of 50 mg (0.45 μM) is manyfold lower than IC50 values for OAT1, OAT3, OCT2, MATE1, or MATE2K. These results indicate a low potential for drug-drug interaction (DDI) with OAT1/3, OCT2, or MATE1/2K. Additional studies demonstrated that veliparib is a substrate of OCT2. In Oct1/Oct2 double-knockout mice, the plasma exposure of veliparib was increased by 1.5-fold, and the renal clearance was decreased by 1.8-fold as compared with wild-type mice, demonstrating that organic cation transporters contribute to the renal elimination in vivo. In summary, the in vitro transporter data for veliparib predicts minimal potential for an OAT1/3-, OCT2-, and MATE1/2K-mediated DDI given the clinical exposure after single oral dose of 50 mg.
Collapse
Affiliation(s)
- Ryota Kikuchi
- Drug Metabolism and Pharmacokinetics, AbbVie Inc, North Chicago, Illinois 60064
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Anjos SM, Robert R, Waller D, Zhang DL, Balghi H, Sampson HM, Ciciriello F, Lesimple P, Carlile GW, Goepp J, Liao J, Ferraro P, Phillipe R, Dantzer F, Hanrahan JW, Thomas DY. Decreasing Poly(ADP-Ribose) Polymerase Activity Restores ΔF508 CFTR Trafficking. Front Pharmacol 2012; 3:165. [PMID: 22988441 PMCID: PMC3439826 DOI: 10.3389/fphar.2012.00165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/21/2012] [Indexed: 12/04/2022] Open
Abstract
Most cystic fibrosis is caused by mutations in CFTR that prevent its trafficking from the ER to the plasma membrane and is associated with exaggerated inflammation, altered metabolism, and diminished responses to oxidative stress. PARP-1 is activated by oxidative stress and causes energy depletion and cell dysfunction. Inhibition of this enzyme protects against excessive inflammation and recent studies have also implicated it in intracellular protein trafficking. We hypothesized that PARP-1 activity is altered in CF and affects trafficking and function of the most common CF mutant ΔF508 CFTR. Indeed, PARP-1 activity was 2.9-fold higher in CF (ΔF508/ΔF508) human bronchial epithelial primary cells than in non-CF cells, and similar results were obtained by comparing CF vs. non-CF bronchial epithelial cell lines (2.5-fold higher in CFBE41o− vs. 16HBE14o−, P < 0.002). A PARP-1 inhibitor (ABT-888, Veliparib) partially restored CFTR channel activity in CFBE41o− cells overexpressing ΔF508 CFTR. Similarly, reducing PARP-1 activity by 85% in ileum from transgenic CF mice (Cftrtm1Eur) partially rescued ΔF508 CFTR activity to 7% of wild type mouse levels, and similar correction (7.8%) was observed in vivo by measuring salivary secretion. Inhibiting PARP-1 with ABT-888 or siRNA partially restored ΔF508 CFTR trafficking in cell lines, and most ΔF508 CFTR was complex glycosylated when heterologously expressed in PARP-1−/− mouse embryonic fibroblasts. Finally, levels of the mature glycoform of CFTR were reduced by peroxynitrite, a strong activator of PARP-1. These results demonstrate that PARP-1 activity is increased in CF, and identify a novel pathway that could be targeted by proteostatic correctors of CFTR trafficking.
Collapse
Affiliation(s)
- Suzana M Anjos
- Cystic Fibrosis Translational Research Center, Department of Biochemistry, McGill University Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li X, Delzer J, Voorman R, de Morais SM, Lao Y. Disposition and drug-drug interaction potential of veliparib (ABT-888), a novel and potent inhibitor of poly(ADP-ribose) polymerase. Drug Metab Dispos 2011; 39:1161-9. [PMID: 21436403 DOI: 10.1124/dmd.110.037820] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The disposition of veliparib [(R)-2-(2-methylpyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide, ABT-888], a novel and potent inhibitor of poly(ADP-ribose) polymerase for the treatment of cancers, was investigated in rats and dogs after intravenous and oral administration of [(3)H]veliparib and compared with that of humans. Veliparib absorption was high. Dosed radioactivity was widely distributed in rat tissues. The majority of drug-related material was excreted in urine as unchanged drug (approximately 54, 41, and 70% of the dose in rats, dogs, and humans, respectively). A lactam M8 and an amino acid M3 were two major excretory metabolites in animals. In the circulation of animals and humans, veliparib was the major drug-related component, and M8 was one of the major metabolites. Monooxygenated metabolite M2 was significant in the rat and dog, and M3 was also significant in the dog. Veliparib biotransformation occurred on the pyrrolidine moiety via formation of a lactam, an amino acid, and an N-carbamoyl glucuronide, in addition to oxidation on benzoimidazole carboxamide and sequential glucuronidation. In vitro experiments using recombinant human cytochrome P450 (P450) enzymes identified CYP2D6 as the major enzyme metabolizing veliparib with minor contributions from CYP1A2, 2C19, and 3A4. Veliparib did not inhibit or induce the activities of major human P450s. Veliparib was a weak P-glycoprotein (P-gp) substrate, showing no P-gp inhibition. Taken together, these studies indicate a low potential for veliparib to cause clinically significant P-gp or P450-mediated drug-drug interactions (DDIs). Overall, the favorable dispositional and DDI profiles of veliparib should be beneficial to its safety and efficacy.
Collapse
Affiliation(s)
- Xiaofeng Li
- Drug Metabolism, Pharmacokinetics and Bioanalysis, Abbott Laboratories, Abbott Park, IL 60044, USA
| | | | | | | | | |
Collapse
|
17
|
Fox E, Jayaprakash N, Pham TH, Rowley A, McCully CL, Pucino F, Goldbach-Mansky R. The serum and cerebrospinal fluid pharmacokinetics of anakinra after intravenous administration to non-human primates. J Neuroimmunol 2010; 223:138-40. [PMID: 20421138 PMCID: PMC2887614 DOI: 10.1016/j.jneuroim.2010.03.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Anakinra improves the central nervous system manifestations of neonatal-onset multisystem inflammatory disease, which is mediated by IL-1beta oversecretion. The cerebrospinal fluid (CSF) penetration of the IL-1 receptor antagonist anakinra was studied in rhesus monkeys after intravenous doses of 3 and 10 mg/kg. Drug exposure (area under concentration-time curve) in CSF was 0.28% of that in serum. The average CSF concentration at 3 mg/kg was 1.8 ng/mL, which is 30-fold higher than endogenous CSF levels of IL-1Ra. The CSF penetration was not dose-dependent, indicating that the CSF penetration was not saturated in the 3 to 10 mg/kg dose range.
Collapse
Affiliation(s)
- Elizabeth Fox
- The Children's Hospital of Philadelphia, Division of Oncology, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, Bouffet E, Hawkins C. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol 2010; 28:1337-44. [PMID: 20142589 DOI: 10.1200/jco.2009.25.5463] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Diffuse intrinsic pontine glioma (DIPG) is one of the most devastating of pediatric malignancies and one for which no effective therapy exists. A major contributor to the failure of therapeutic trials is the assumption that biologic properties of brainstem tumors in children are identical to cerebral high-grade gliomas of adults. A better understanding of the biology of DIPG itself is needed in order to develop agents targeted more specifically to these children's disease. Herein, we address this lack of knowledge by performing the first high-resolution single nucleotide polymorphism (SNP) -based DNA microarray analysis of a series of DIPGs. PATIENTS AND METHODS Eleven samples (nine postmortem and two pretreatment surgical samples), the largest series thus far examined, were hybridized to SNP arrays (250 k or 6.0). The study was approved by the research ethics board at our institution. All array findings were validated using quantitative polymerase chain reaction, fluorescence in situ hybridization, immunohistochemistry, and/or microsatellite analysis. RESULTS Analysis of DIPG copy number alterations showed recurrent changes distinct from those of pediatric supratentorial high-grade astrocytomas. Thirty-six percent of DIPGs had gains in platelet-derived growth factor receptor alpha (PDGFRA; 4 to 18 copies) and all showed PDGFR-alpha expression. Low-level gains in poly (ADP-ribose) polymerase (PARP) -1 were identified in three cases. Pathway analysis revealed genes with loss of heterozygosity were enriched for DNA repair pathways. CONCLUSION To our knowledge, our data provides the first, comprehensive high-resolution genomic analysis of pediatric DIPG. Our findings of recurrent involvement of the PDGFR pathway as well as defects in DNA repair pathways coupled with gain of PARP-1 highlight two potential, biologically based, therapeutic targets directed specifically at this devastating disease.
Collapse
Affiliation(s)
- Maryam Zarghooni
- Division of Pathology andHaematology, The Labatt Brain Tumor Research Centre, The Hospital for Sick Children,Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Reinhardt S, Zhao M, Mnatsakanyan A, Xu L, Ricklis RM, Chen A, Karp JE, Rudek MA. A rapid and sensitive method for determination of veliparib (ABT-888), in human plasma, bone marrow cells and supernatant by using LC/MS/MS. J Pharm Biomed Anal 2009; 52:122-8. [PMID: 20071126 DOI: 10.1016/j.jpba.2009.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/10/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
A rapid and sensitive method was developed and validated using a liquid chromatographic method with tandem mass spectrometry detection (LC/MS/MS) for determination of veliparib (ABT-888) in plasma, bone marrow supernatant, and bone marrow cells. Sample preparation involved a single protein precipitation step by the addition of the sample with acetonitrile. Separation of veliparib and the internal standard, A620223.69, was achieved on a Atlantis dC(18) column (100mmx2.1mm, 3microm) column using a mobile phase consisting of acetonitrile-ammonium acetate (2mM) containing formic acid (0.1%, v/v) using isocratic flow at 0.2mL/min for 3min. The analyte and internal standard were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the range of 5-1000nM. The values for both within day and between day precision and accuracy were well within the generally accepted criteria for analytical methods. This method was subsequently used to measure concentrations of veliparib in cancer patients receiving an oral daily dose of 10mg with demonstration of drug accumulation in the marrow compartment and in the target leukemia bone marrow cells.
Collapse
Affiliation(s)
- Sarah Reinhardt
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, United States
| | | | | | | | | | | | | | | |
Collapse
|