1
|
Keen J, McDermott JH, Aguilar-Martinez E, Newman WG. Pharmacogenomics: DPYD and Prevention of Toxicity. Clin Oncol (R Coll Radiol) 2025; 38:103706. [PMID: 39721301 DOI: 10.1016/j.clon.2024.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/10/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
In 2020, the introduction of pre-emptive DPYD genotyping prior to the administration of systemic fluoropyrimidine-based chemotherapy represented one of the first widespread pharmacogenetic testing programmes to be applied nationally in the United Kingdom. Pharmacogenetic variants in the DPYD gene found in between 3 and 6% of the population are a recognised cause of primary DPD enzyme deficiency and associated increased risk of severe fluoropyrimidine toxicity [1]. Yet, the availability of testing globally is heterogeneous. Despite growing evidence that in addition to reducing drug-induced toxicity, DPYD-guided dosing does not negatively affect outcomes, further research on the impact of routine DPYD genotyping in the UK population is required. With mandatory testing in the UK focussed on four well-characterised variants, there is a need to address the applicability of this strategy across diverse ethnic or ancestral populations. We highlight approaches to identify and characterise rare variants in DPYD and in other genes involved in the pyrimidine metabolic pathway to reduce healthcare inequalities. Finally, we discuss the future of pharmacogenomics within cancer care, and the potential to harness innovative digital and genotyping technologies to streamline prescribing and optimise both systemic anti-cancer therapies and supportive care.
Collapse
Affiliation(s)
- J Keen
- NHS North West Genomic Medicine Service Alliance, UK.
| | - J H McDermott
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK; The Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | - E Aguilar-Martinez
- The Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | - W G Newman
- NHS North West Genomic Medicine Service Alliance, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK; The Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Medwid SJ, Mailloux JL, Wigle TJ, Kim RB. Common dihydropyrimidinase ( DPYS ) genetic variations do not predict fluoropyrimidine-related chemotherapy toxicity in a Canadian cohort. Pharmacogenet Genomics 2024; 34:83-87. [PMID: 38215018 DOI: 10.1097/fpc.0000000000000521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Known genetic variations in dihydropyrimidine dehydrogenase (gene name DPYD ) do not fully predict patients at risk for severe fluoropyrimidine-associated chemotherapy toxicity. Dihydropyrimidinase (gene name DPYS ), the second catabolic enzyme in fluoropyrimidine metabolism, has been noted as a potential determinant of variation in fluoropyrimidine metabolism and response. In this study, we genotyped for DPYS c.-1T>C (rs2959023), c.265-58T>C (rs2669429) and c.541C>T (rs36027551) in a Canadian cohort of 248 patients who were wild type for Clinical Pharmacogenetics Implementation Consortium recommended DPYD variants and had received a standard dose of fluoropyrimidine chemotherapy. None of our patients were found to carry the DPYS c.541C>T variant, while the minor allele frequencies were 63% and 54% for c.-1T>C and c.265-58T>C, respectively. There was no association between DPYS c.-1T>C wild type and heterozygote [odds ratio (OR) (95% confidence interval, CI) = 1.10 (0.51-2.40)] or homozygote variant carriers [OR (95% CI) = 1.22 (0.55-2.70)], or between DPYS c.265-58T>C wild-type patients and heterozygote [OR (95% CI) = 0.93 (0.48-1.80)] or homozygote variant carriers [OR (95% CI) = 0.76 (0.37-1.55)] in terms of fluoropyrimidine-associated toxicity. Therefore, in our cohort of mostly Caucasian Canadians, genetic variations in DPYS do not appear to be a significant contributor to severe fluoropyrimidine-associated toxicity.
Collapse
Affiliation(s)
- Samantha J Medwid
- Department of Medicine, University of Western Ontario
- Department of Medicine, London Health Sciences Centre
| | - Jaymie L Mailloux
- Department of Medicine, University of Western Ontario
- Department of Medicine, London Health Sciences Centre
| | | | - Richard B Kim
- Department of Medicine, University of Western Ontario
- Department of Medicine, London Health Sciences Centre
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
3
|
Nassogne MC, Marie S, Dewulf JP. Neurological presentations of inborn errors of purine and pyrimidine metabolism. Eur J Paediatr Neurol 2024; 48:69-77. [PMID: 38056117 DOI: 10.1016/j.ejpn.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Purines and pyrimidines are essential components as they are the building blocks of vital molecules, such as nucleic acids, coenzymes, signalling molecules, as well as energy transfer molecules. Purine and pyrimidine metabolism defects are characterised by abnormal concentrations of purines, pyrimidines and/or their metabolites in cells or body fluids. This phenomenon is due to a decreased or an increased activity of enzymes involved in this metabolism and has been reported in humans for over 60 years. This review provides an overview of neurological presentations of inborn errors of purine and pyrimidine metabolism. These conditions can lead to psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscular symptoms. Clinical signs are often nonspecific and thus overlooked, but some diseases are treatable and early diagnosis may improve the child's future. Although these metabolic hereditary diseases are rare, they are most probably under-diagnosed. When confronted with suggestive clinical or laboratory signs, clinicians should prescribe genetic testing in association with a biochemical screening including thorough purine and pyrimidine metabolites analysis and/or specific enzyme evaluation. This is most likely going to increase the number of confirmed patients.
Collapse
Affiliation(s)
- Marie-Cécile Nassogne
- Service de Neurologie Pédiatrique, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium; Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium.
| | - Sandrine Marie
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium.
| | - Joseph P Dewulf
- Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium; Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium.
| |
Collapse
|
4
|
Maslarinou A, Manolopoulos VG, Ragia G. Pharmacogenomic-guided dosing of fluoropyrimidines beyond DPYD: time for a polygenic algorithm? Front Pharmacol 2023; 14:1184523. [PMID: 37256234 PMCID: PMC10226670 DOI: 10.3389/fphar.2023.1184523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/19/2023] [Indexed: 06/01/2023] Open
Abstract
Fluoropyrimidines are chemotherapeutic agents widely used for the treatment of various solid tumors. Commonly prescribed FPs include 5-fluorouracil (5-FU) and its oral prodrugs capecitabine (CAP) and tegafur. Bioconversion of 5-FU prodrugs to 5-FU and subsequent metabolic activation of 5-FU are required for the formation of fluorodeoxyuridine triphosphate (FdUTP) and fluorouridine triphosphate, the active nucleotides through which 5-FU exerts its antimetabolite actions. A significant proportion of FP-treated patients develop severe or life-threatening, even fatal, toxicity. It is well known that FP-induced toxicity is governed by genetic factors, with dihydropyrimidine dehydrogenase (DPYD), the rate limiting enzyme in 5-FU catabolism, being currently the cornerstone of FP pharmacogenomics. DPYD-based dosing guidelines exist to guide FP chemotherapy suggesting significant dose reductions in DPYD defective patients. Accumulated evidence shows that additional variations in other genes implicated in FP pharmacokinetics and pharmacodynamics increase risk for FP toxicity, therefore taking into account more gene variations in FP dosing guidelines holds promise to improve FP pharmacotherapy. In this review we describe the current knowledge on pharmacogenomics of FP-related genes, beyond DPYD, focusing on FP toxicity risk and genetic effects on FP dose reductions. We propose that in the future, FP dosing guidelines may be expanded to include a broader ethnicity-based genetic panel as well as gene*gene and gender*gene interactions towards safer FP prescription.
Collapse
Affiliation(s)
- Anthi Maslarinou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine and Pharmacological Research Solutions Center, Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine and Pharmacological Research Solutions Center, Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine and Pharmacological Research Solutions Center, Alexandroupolis, Greece
| |
Collapse
|
5
|
In Vitro Assessment of Fluoropyrimidine-Metabolizing Enzymes: Dihydropyrimidine Dehydrogenase, Dihydropyrimidinase, and β-Ureidopropionase. J Clin Med 2020; 9:jcm9082342. [PMID: 32707991 PMCID: PMC7464968 DOI: 10.3390/jcm9082342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/22/2023] Open
Abstract
Fluoropyrimidine drugs (FPs), including 5-fluorouracil, tegafur, capecitabine, and doxifluridine, are among the most widely used anticancer agents in the treatment of solid tumors. However, severe toxicity occurs in approximately 30% of patients following FP administration, emphasizing the importance of predicting the risk of acute toxicity before treatment. Three metabolic enzymes, dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP), and β-ureidopropionase (β-UP), degrade FPs; hence, deficiencies in these enzymes, arising from genetic polymorphisms, are involved in severe FP-related toxicity, although the effect of these polymorphisms on in vivo enzymatic activity has not been clarified. Furthermore, the clinical usefulness of current methods for predicting in vivo activity, such as pyrimidine concentrations in blood or urine, is unknown. In vitro tests have been established as advantageous for predicting the in vivo activity of enzyme variants. This is due to several studies that evaluated FP activities after enzyme metabolism using transient expression systems in Escherichia coli or mammalian cells; however, there are no comparative reports of these results. Thus, in this review, we summarized the results of in vitro analyses involving DPD, DHP, and β-UP in an attempt to encourage further comparative studies using these drug types and to aid in the elucidation of their underlying mechanisms.
Collapse
|
6
|
Yokoi K, Nakajima Y, Matsuoka H, Shinkai Y, Ishihara T, Maeda Y, Kato T, Katsuno H, Masumori K, Kawada K, Yoshikawa T, Ito T, Kurahashi H. Impact of DPYD, DPYS, and UPB1 gene variations on severe drug-related toxicity in patients with cancer. Cancer Sci 2020; 111:3359-3366. [PMID: 32619063 PMCID: PMC7469832 DOI: 10.1111/cas.14553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer treatment with a fluoropyrimidine (FP) is often accompanied by severe toxicity that may be dependent on the activity of catalytic enzymes encoded by the DPYD, DPYS, and UPB1 genes. Genotype-guided dose individualization of FP therapy has been proposed in western countries, but our knowledge of the relevant genetic variants in East Asian populations is presently limited. To investigate the association between these genetic variations and FP-related high toxicity in a Japanese population, we obtained blood samples from 301 patients who received this chemotherapy and sequenced the coding exons and flanking intron regions of their DPYD, DPYS, and UPB1 genes. In total, 24 single nucleotide variants (15 in DPYD, 7 in DPYS and 2 in UPB1) were identified including 3 novel variants in DPYD and 1 novel variant in DPYS. We did not find a significant association between FP-related high toxicity and each of these individual variants, although a certain trend toward significance was observed for p.Arg181Trp and p.Gln334Arg in DPYS (P = .0813 and .087). When we focused on 7 DPYD rare variants (p.Ser199Asn, p.IIe245Phe, p.Thr305Lys, p.Glu386Ter, p.Ser556Arg, p.Ala571Asp, p.Trp621Cys) which have an allele frequency of less than 0.01% in the Japanese population and are predicted to be loss-of-function mutations by in silico analysis, the group of patients who were heterozygous carriers of at least one these rare variants showed a strong association with FP-related high toxicity (P = .003). Although the availability of screening of these rare loss-of-function variants is still unknown, our data provide useful information that may help to alleviate FP-related toxicity in Japanese patients with cancer.
Collapse
Affiliation(s)
- Katsuyuki Yokoi
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan.,Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yoko Nakajima
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Matsuoka
- Department of Gastrointestinal Surgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasuko Shinkai
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital Gifu University, Gifu, Japan
| | - Yasuhiro Maeda
- Center for Joint Research Facilities Support, Fujita Health University, Toyoake, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Hidetoshi Katsuno
- Department of Gastrointestinal Surgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Masumori
- Department of Gastrointestinal Surgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kenji Kawada
- Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Ito
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
7
|
A novel stop-gain mutation in DPYS gene causing Dihidropyrimidinase deficiency, a case report. BMC MEDICAL GENETICS 2020; 21:138. [PMID: 32600357 PMCID: PMC7325154 DOI: 10.1186/s12881-020-01070-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/16/2020] [Indexed: 11/17/2022]
Abstract
Background Dihidropyrimidinase (DHP) deficiency is an inherited inborn error of pyrimidine metabolism with a variable clinical presentation and even asymptomatic subjects. Dihydropyrimidinase is encoded by the DPYS gene, thus pathogenic mutations in this gene can cause DHP deficiency. To date, several variations in the DPYS gene have been reported but only 23 of them have been confirmed to be pathogenic. Therefore, the biochemical, clinical and genetic aspects of this disease are still unclear. Case presentation Here, we report a 22-year-old woman with DHP deficiency. To identify the genetic cause of DHP deficiency in this patient, Whole Exome Sequencing (WES) was performed, which revealed a novel homozygote stop gain mutation (NM_001385: Exon 9, c.1501 A > T, p.K501X) in the DPYS gene. Sanger sequencing was carried out on proband and other family members in order to confirm the identified mutation. According to the homozygote genotype of the patient and heterozygote genotype of her parents, the autosomal recessive pattern of inheritance was confirmed. In addition, bioinformatics analysis of the identified variant using Mutation Taster and T-Coffee Multiple Sequence Alignment showed the pathogenicity of mutation. Moreover, mRNA expression level of DPYS gene in the proband’s liver biopsy showed about 6-fold reduction compared to control, which strongly suggested the pathogenicity of the identified mutation. Conclusions This study identified a novel pathogenic stop gain mutation in DPYS gene in a DHP deficient patient. Our findings can improve the knowledge about the genetic basis of the disease and also provide information for accurate genetic counseling for the families at risk of these types of disorders.
Collapse
|
8
|
Predicting mucositis risk associated with cytotoxic cancer treatment regimens: rationale, complexity, and challenges. Curr Opin Support Palliat Care 2019; 12:198-210. [PMID: 29547492 DOI: 10.1097/spc.0000000000000339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are to describe the complexity of factors influencing the risk of cancer regimen-related mucosal injury (CRRMI), to evaluate the contribution of the innate immune response to CRRMI risk, to compare the concordance of genome analytics in describing mechanism and risk, and to determine if common biological pathways are noted when CRRMI is compared to a disease with a similar phenotype. RECENT FINDINGS The pathogenesis of and risk for CRRMI are complex and influenced by multiple intrinsic and extrinsic factors. It is incumbent on analyses to recognize the likelihood that the interplay and cross-talk of synergistically expressed factors is critical and that the contributing weights of these factors is not uniform from patient to patient. Genomically derived analyses imply final common pathways are implicit in phenotype expression. SUMMARY The identification of specific factors (both genomic and otherwise) which contribute to CRRMI risk represents an important opportunity to apply principles of precision medicine to the management of regimen-related toxicities.
Collapse
|
9
|
Zawiah M, Yousef AM, Kadi T, Yousef M, Majdalawi K, Al-Yacoub S, Al-Hiary R, Tantawi D, Mukred R, Ajaj AR. Early disease relapse in a patient with colorectal cancer who harbors genetic variants of DPYD, TYMS, MTHFR and DHFR after treatment with 5-fluorouracil-based chemotherapy. Drug Metab Pers Ther 2018; 33:201-205. [PMID: 30207288 DOI: 10.1515/dmpt-2018-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
Background Early relapse in colorectal cancer (CRC) after curative resection is mainly attributed to the key determinants such as tumor histology, stage, lymphovascular invasion, and the response to chemotherapy. Case presentation Interindividual variability in the efficacy of adjuvant chemotherapy between patients receiving the same treatment may be ascribed to the patients' genetic profile. In this report, we highlight a clinical case of a patient with stage II CRC who relapsed within a short period after starting adjuvant chemotherapy and was later found to have multiple genetic polymorphisms in the DPYD, TYMS, MTHFR, and DHFR genes. Conclusions Based on the clinical data of the patient and the key role of these genes in 5-fluorouracil pathway, we hypothesize that these variants may contribute to the drug response and early relapse in CRC.
Collapse
Affiliation(s)
- Mohammed Zawiah
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Al-Motassem Yousef
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Taha Kadi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammed Yousef
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Khalil Majdalawi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Shorouq Al-Yacoub
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Rasha Al-Hiary
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Dua'a Tantawi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Ramzi Mukred
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
10
|
Nakajima Y, Meijer J, Dobritzsch D, Ito T, Zhang C, Wang X, Watanabe Y, Tashiro K, Meinsma R, Roelofsen J, Zoetekouw L, van Kuilenburg ABP. Dihydropyrimidinase deficiency in four East Asian patients due to novel and rare DPYS mutations affecting protein structural integrity and catalytic activity. Mol Genet Metab 2017; 122:216-222. [PMID: 29054612 DOI: 10.1016/j.ymgme.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 01/07/2023]
Abstract
Dihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and catalyzes the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine. To date, only 31 genetically confirmed patients with a DHP deficiency have been reported and the clinical, biochemical and genetic spectrum of DHP deficient patients is, therefore, still largely unknown. Here, we show that 4 newly identified DHP deficient patients presented with strongly elevated levels of 5,6-dihydrouracil and 5,6-dihydrothymine in urine and a highly variable clinical presentation, ranging from asymptomatic to infantile spasm and reduced white matter and brain atrophy. Analysis of the DHP gene (DPYS) showed the presence of 8 variants including 4 novel/rare missense variants and one novel deletion. Functional analysis of recombinantly expressed DHP mutants carrying the p.M250I, p.H295R, p.Q334R, p.T418I and the p.R490H variant showed residual DHP activities of 2.0%, 9.8%, 9.7%, 64% and 0.3%, respectively. The crystal structure of human DHP indicated that all point mutations were likely to cause rearrangements of loops shaping the active site, primarily affecting substrate binding and stability of the enzyme. The observation that the identified mutations were more prevalent in East Asians and the Japanese population indicates that DHP deficiency may be more common than anticipated in these ethnic groups.
Collapse
Affiliation(s)
- Yoko Nakajima
- Fujita Health University School of Medicine, Department of Pediatrics, Toyoake 470-1192, Japan; Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands
| | - Judith Meijer
- Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands
| | - Doreen Dobritzsch
- Uppsala University, Department of Chemistry, Biomedical Center, S-751 24 Uppsala, Sweden
| | - Tetsuya Ito
- Fujita Health University School of Medicine, Department of Pediatrics, Toyoake 470-1192, Japan
| | - Chunhua Zhang
- MILS International, Department of Research and Development, Kanazawa 921-8105, Japan
| | - Xu Wang
- Beijing Children's Hospital, Capital University of Medical Sciences, Department of Neurology, Beijing 100045, China
| | - Yoriko Watanabe
- Kurume University, School of Medicine, Department of Pediatrics, Kurume 830-0011, Japan
| | - Kyoko Tashiro
- Kurume University, School of Medicine, Research Institute of Medical Mass Spectrometry, Kurume 830-0011, Japan
| | - Rutger Meinsma
- Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands
| | - Jeroen Roelofsen
- Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands
| | - Lida Zoetekouw
- Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis. PLoS One 2017; 12:e0180396. [PMID: 28678827 PMCID: PMC5498049 DOI: 10.1371/journal.pone.0180396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological processes, including pathways related to inflammation and oxidative stress, that are relevant to mucositis development, thus providing the basis for future studies to improve the management and treatment of mucositis in patients with cancer.
Collapse
|
12
|
Meulendijks D, Cats A, Beijnen JH, Schellens JHM. Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydropyrimidine dehydrogenase activity - Ready for clinical practice? Cancer Treat Rev 2016; 50:23-34. [PMID: 27589829 DOI: 10.1016/j.ctrv.2016.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023]
Abstract
Fluoropyrimidines remain the cornerstone of treatment for different types of cancer, and are used by an estimated two million patients annually. The toxicity associated with fluoropyrimidine therapy is substantial, however, and affects around 30% of the patients, with 0.5-1% suffering fatal toxicity. Activity of the main 5-fluorouracil (5-FU) metabolic enzyme, dihydropyrimidine dehydrogenase (DPD), is the key determinant of 5-FU pharmacology, and accounts for around 80% of 5-FU catabolism. There is a consistent relationship between DPD activity and 5-FU exposure on the one hand, and risk of severe and potentially lethal fluoropyrimidine-associated toxicity on the other hand. Therefore, there is a sound rationale for individualizing treatment with fluoropyrimidines based on DPD status in order to improve patient safety. The field of individualized treatment with fluoropyrimidines is now rapidly developing. The main strategies that are available, are based on genotyping of the gene encoding DPD (DPYD) and measuring of pretreatment DPD phenotype. Clinical validity of additional approaches, including genotyping of MIR27A has also recently been demonstrated. Here, we critically review the evidence on clinical validity and utility of strategies available to clinicians to identify patients at risk of developing severe and potentially fatal toxicity as a result of DPD deficiency. We evaluate the advantages and limitations of these methods when used in clinical practice, and discuss for which strategies clinical implementation is currently justified based on the available evidence and, in addition, which additional data will be required before implementing other, as yet less developed strategies.
Collapse
Affiliation(s)
- Didier Meulendijks
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands.
| | - Annemieke Cats
- Department of Gastroenterology & Hepatology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
de Oliveira FA, Shahin MH, Gong Y, McDonough CW, Beitelshees AL, Gums JG, Chapman AB, Boerwinkle E, Turner ST, Frye RF, Fiehn O, Kaddurah-Daouk R, Johnson JA, Cooper-DeHoff RM. Novel plasma biomarker of atenolol-induced hyperglycemia identified through a metabolomics-genomics integrative approach. Metabolomics 2016; 12:129. [PMID: 28217400 PMCID: PMC5310671 DOI: 10.1007/s11306-016-1076-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION While atenolol is an effective antihypertensive agent, its use is also associated with adverse events including hyperglycemia and incident diabetes that may offset the benefits of blood pressure lowering. By combining metabolomic and genomic data acquired from hypertensive individuals treated with atenolol, it may be possible to better understand the pathways that most impact the development of an adverse glycemic state. OBJECTIVE To identify biomarkers that can help predict susceptibility to blood glucose excursions during exposure to atenolol. METHODS Plasma samples acquired from 234 Caucasian participants treated with atenolol in the Pharmacogenomic Evaluation of Antihypertensive Responses trial were analyzed by gas chromatography Time-Of-Flight Mass Spectroscopy. Metabolomics and genomics data were integrated by first correlating participant's metabolomic profiles to change in glucose after treatment with atenolol, and then incorporating genotype information from genes involved in metabolite pathways associated with glucose response. RESULTS Our findings indicate that the baseline level of β-alanine was associated with glucose change after treatment with atenolol (Q = 0.007, β = 2.97 mg/dL). Analysis of genomic data revealed that carriers of the G allele for SNP rs2669429 in gene DPYS, which codes for dihydropyrimidinase, an enzyme involved in β-alanine formation, had significantly higher glucose levels after treatment with atenolol when compared with non-carriers (Q = 0.05, β = 2.76 mg/dL). This finding was replicated in participants who received atenolol as an add-on therapy (P = 0.04, β = 1.86 mg/dL). CONCLUSION These results suggest that β-alanine and rs2669429 may be predictors of atenolol-induced hyperglycemia in Caucasian individuals and further investigation is warranted.
Collapse
Affiliation(s)
- Felipe A de Oliveira
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | - Mohamed H Shahin
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | - Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | | | - John G Gums
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA; Department of Community Health and Family Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Eric Boerwinkle
- Human Genetics Center and Institute for Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | - Oliver Fiehn
- Genome Center, University of California at Davis, Davis, CA, USA; Biochemistry Department, King Abdullah University, Jeddah, Saudi Arabia
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| |
Collapse
|
14
|
Kummer D, Froehlich TK, Joerger M, Aebi S, Sistonen J, Amstutz U, Largiadèr CR. Dihydropyrimidinase and β-ureidopropionase gene variation and severe fluoropyrimidine-related toxicity. Pharmacogenomics 2015; 16:1367-77. [DOI: 10.2217/pgs.15.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aims: To assess the association of DPYS and UPB1 genetic variation, encoding the catabolic enzymes downstream of dihydropyrimidine dehydrogenase, with early-onset toxicity from fluoropyrimidine-based chemotherapy. Patients & methods: The coding and exon-flanking regions of both genes were sequenced in a discovery subset (164 patients). Candidate variants were genotyped in the full cohort of 514 patients. Results & conclusions: Novel rare deleterious variants in DPYS (c.253C > T and c.1217G > A) were detected once each in toxicity cases and may explain the occurrence of severe toxicity in individual patients, and associations of common variants in DPYS (c.1–1T > C: padjusted = 0.003; OR = 2.53; 95% CI: 1.39–4.62, and c.265–58T > C: padjusted = 0.039; OR = 0.61; 95% CI: 0.38–0.97) with 5-fluorouracil toxicity were replicated.
Collapse
Affiliation(s)
- Dominic Kummer
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
- Graduate School for Cellular & Biomedical Sciences, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Tanja K Froehlich
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| | - Markus Joerger
- Department of Medical Oncology & Hematology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, CH-9007 St. Gallen, Switzerland
| | - Stefan Aebi
- Division of Medical Oncology, Cantonal Hospital Lucerne, Spitalstrasse, CH-6000 Lucerne 16, Switzerland
| | - Johanna Sistonen
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| | - Ursula Amstutz
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| | - Carlo R Largiadèr
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| |
Collapse
|
15
|
Genetic polymorphisms of dihydropyrimidinase in a Japanese patient with capecitabine-induced toxicity. PLoS One 2015; 10:e0124818. [PMID: 25915935 PMCID: PMC4411063 DOI: 10.1371/journal.pone.0124818] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 03/20/2015] [Indexed: 01/12/2023] Open
Abstract
Dihydropyrimidinase (DHP) is the second enzyme in the catabolic pathway of uracil, thymine, and chemotherapeutic fluoropyrimidine agents such as 5-fluorouracil (5-FU). Thus, DHP deficiency might be associated with 5-FU toxicity during fluoropyrimidine chemotherapy. We performed genetic analyses of the family of a patient with advanced colon cancer who underwent radical colectomy followed by treatment with 5-FU prodrug capecitabine and developed severe toxicity attributable to a lack of DHP. We measured urinary uracil and dihydrouracil, and genotyped DPYS in the patient and her family. We also measured the allele frequency of DPYS polymorphisms in 391 unrelated Japanese subjects. The patient had compound heterozygous missense and nonsense polymorphisms comprising c.1001A>G (p.Gln334Arg) in exon 6 and c.1393C>T (p.Arg465Ter) in exon 8, which are known to result in a DHP enzyme with little or no activity. The urinary dihydrouracil/uracil ratio in the patient was 17.08, while the mean ± SD urinary dihydrouracil/uracil ratio in family members who were heterozygous or homozygous for wild-type DPYS was 0.25 ± 0.06. In unrelated subjects, 8 of 391 individuals were heterozygous for the c.1001A>G mutation, while the c.1393C>T mutation was not identified. This is the first report of a DHP-deficient patient with DPYS compound heterozygous polymorphisms who was treated with a fluoropyrimidine, and our findings suggest that polymorphisms in the DPYS gene are pharmacogenomic markers associated with severe 5-FU toxicity in Japanese patients.
Collapse
|
16
|
Akai F, Hosono H, Hirasawa N, Hiratsuka M. Novel single nucleotide polymorphisms of the dihydropyrimidinase gene (DPYS) in Japanese individuals. Drug Metab Pharmacokinet 2015; 30:127-9. [PMID: 25760541 DOI: 10.1016/j.dmpk.2014.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/18/2014] [Indexed: 11/17/2022]
Abstract
Genetic polymorphisms of the dihydropyrimidinase gene (DPYS) may be associated with the development of severe toxicity to 5-fluorouracil, a drug used to treat solid tumors. In this study, we analyzed the nine coding exons and exon-intron junctions of DPYS in 183 Japanese individuals. We detected two novel single nucleotide polymorphisms (SNPs)-285C > T (Thr95Thr) and 349T > C (Trp117Arg)-in exon 2. The nonsynonymous SNP 349T > C was analyzed in 208 Japanese individuals. Although the allele frequency of the SNP in the Japanese population was found to be extremely low (0.13%), the enzymatic activity of the variant protein might be reduced compared with that of the wild-type protein.
Collapse
Affiliation(s)
- Fumika Akai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroki Hosono
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
17
|
Germline oncopharmacogenetics, a promising field in cancer therapy. Cell Oncol (Dordr) 2015; 38:65-89. [PMID: 25573079 DOI: 10.1007/s13402-014-0214-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenetics (PGx) is the study of the relationship between inter-individual genetic variation and drug responses. Germline variants of genes involved in drug metabolism, drug transport, and drug targets can affect individual response to medications. Cancer therapies are characterized by an intrinsically high toxicity; therefore, the application of pharmacogenetics to cancer patients is a particularly promising method for avoiding the use of inefficacious drugs and preventing the associated adverse effects. However, despite continuing efforts in this field, very few labels include information about germline genetic variants associated with drug responses. DPYD, TPMT, UGT1A1, G6PD, CYP2D6, and HLA are the sole loci for which the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) report specific information. This review highlights the germline PGx variants that have been approved to date for anticancer treatments, and also provides some insights about other germline variants with potential clinical applications. The continuous and rapid evolution of next-generation sequencing applications, together with the development of computational methods, should help to refine the implementation of personalized medicine. One day, clinicians may be able to prescribe the best treatment and the correct drug dosage based on each patient's genotype. This approach would improve treatment efficacy, reduce toxicity, and predict non-responders, thereby decreasing chemotherapy-associated morbidity and improving health benefits.
Collapse
|
18
|
Magdy T, Arlanov R, Winter S, Lang T, Klein K, Toyoda Y, Ishikawa T, Schwab M, Zanger UM. ABCC11/MRP8 polymorphisms affect 5-fluorouracil-induced severe toxicity and hepatic expression. Pharmacogenomics 2014; 14:1433-48. [PMID: 24024896 DOI: 10.2217/pgs.13.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM Because 5-fluorodeoxyuridine monophosphate (5-FdUMP), an anabolic active metabolite of 5-fluorouracil (5-FU), is a substrate of MRP8 (encoded by ABCC11), we investigated whether ABCC11 polymorphisms play a role in severe toxicity of 5-FU. PATIENTS & METHODS Genomic DNA from 672 cancer patients treated with 5-FU monotherapy and with documented toxicity according to WHO criteria was genotyped for 12 ABCC11 tag SNPs. Functional impact of polymorphisms was assessed in a Caucasian human liver cohort (n = 150) and by recombinant expression of MRP8 protein variants. RESULTS Univariate and multivariate analysis identified rs17822471 (G>A, T546M) as risk factor of severe leukopenia (p = 0.021, odds ratio [95%CI]: 3.31 [1.26-8.66]) but not of other toxicity types. MRP8 protein expression in human liver was 1.7-fold lower in carriers compared with wild-type (p = 0.02). Recombinant expression confirmed the effect of T546M on protein expression. CONCLUSION Since MRP8 is expressed in bone marrow blasts and leukocytes, lower expression may lead to intracellular accumulation of 5-FdUMP and increased risk of leukopenia.
Collapse
Affiliation(s)
- Tarek Magdy
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Auerbachstrasse 112, D-70376 Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer 2013; 108:2505-15. [PMID: 23736036 PMCID: PMC3694243 DOI: 10.1038/bjc.2013.262] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Fluoropyrimidine drugs are extensively used for the treatment of solid cancers. However, adverse drug reactions are a major clinical problem, often necessitating treatment discontinuation. The aim of this study was to identify pharmacogenetic markers predicting fluoropyrimidine toxicity. Methods: Toxicity in the first four cycles of 5-fluorouracil or capecitabine-based chemotherapy were recorded for a series of 430 patients. The association between demographic variables, DPYD, DPYS, TYMS, MTHFR, CDA genotypes, and toxicity were analysed using logistic regression models. Results: Four DPYD sequence variants (c.1905+1G>A, c.2846A>T, c.1601G>A and c.1679T>G) were found in 6% of the cohort and were significantly associated with grade 3–4 toxicity (P<0.0001). The TYMS 3′-untranslated region del/del genotype substantially increased the risk of severe toxicity (P=0.0123, odds ratio (OR)=3.08, 95% confidence interval (CI): 1.38–6.87). For patients treated with capecitabine, a MTHFR c.1298CC homozygous variant genotype predicted hand–foot syndrome (P=4.1 × 10−6, OR=9.99, 95% CI: 3.84–27.8). The linked CDA c.−92A>G and CDA c.−451C>T variants predicted grade 2–4 diarrhoea (P=0.0055, OR=2.3, 95% CI: 1.3–4.2 and P=0.0082, OR=2.3, 95% CI: 1.3–4.2, respectively). Conclusion: We have identified a panel of clinically useful pharmacogenetic markers predicting toxicity to fluoropyrimidine therapy. Dose reduction should be considered in patients carrying these sequence variants.
Collapse
|
20
|
Contribution of the β-ureidopropionase (UPB1) gene alterations to the development of fluoropyrimidine-related toxicity. Pharmacol Rep 2012; 64:1234-42. [DOI: 10.1016/s1734-1140(12)70919-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 05/11/2012] [Indexed: 11/18/2022]
|
21
|
Wettergren Y, Carlsson G, Odin E, Gustavsson B. Pretherapeutic uracil and dihydrouracil levels of colorectal cancer patients are associated with sex and toxic side effects during adjuvant 5-fluorouracil-based chemotherapy. Cancer 2011; 118:2935-43. [PMID: 22020693 DOI: 10.1002/cncr.26595] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/15/2011] [Accepted: 09/07/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND In Nordic countries, the standard treatment of colorectal cancer (CRC) in the adjuvant setting is bolus 5-fluorouracil (5-FU) plus leucovorin alone or in combination with oxaliplatin. 5-FU competes with the natural occurring pyrimidine uracil (Ura) as a substrate for dihydropyrimidine dehydrogenase (DPD; enzyme commission number 1.3.1.2). Low DPD activity is associated with toxicity during treatment. Pretherapeutic detection of DPD deficiency could prevent severe toxicity otherwise limiting drug administration. Assays showing that DPD deficiency impairs breakdown of Ura to dihydrouracil (UH(2)) seem promising for clinical use. METHODS Urine was collected from 56 untreated volunteers and 143 patients with CRC before adjuvant treatment. Ura and UH(2) were analyzed using a column-switching high-performance liquid chromatography method that incorporates reversed-phase and cation-exchange columns. Ura, UH(2), and UH(2)/Ura levels were related to toxicity. RESULTS Ura and UH(2) in patients were not different from controls. UH(2) was significantly higher in women compared with men. The UH(2)/Ura ratio, however, did not differ according to sex. Low UH(2) and UH(2)/Ura levels were associated with diarrhea in men. Women experiencing thrombocytopenia had significantly higher Ura compared with women with no thrombocytopenia. The UH(2)/Ura ratio correlated negatively with total toxicity score in men (r = -0.39, P = .020). CONCLUSION Pretherapeutic Ura and UH(2) levels per se may be related to risk of side effects during adjuvant 5-FU-based treatment, whereas the UH(2)/Ura ratio may not always reveal such a risk. Sex is a strong risk factor for toxicity, showing the importance of evaluating male and female patients separately.
Collapse
Affiliation(s)
- Yvonne Wettergren
- Surgical-Oncology Laboratory, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, the Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
| | | | | | | |
Collapse
|
22
|
Ciccolini J, Gross E, Dahan L, Lacarelle B, Mercier C. Routine dihydropyrimidine dehydrogenase testing for anticipating 5-fluorouracil-related severe toxicities: hype or hope? Clin Colorectal Cancer 2011; 9:224-8. [PMID: 20920994 DOI: 10.3816/ccc.2010.n.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
5-Fluorouracil (5-FU) is a mainstay for treating colorectal cancer, alone or more frequently as part of combination therapies. However, its efficacy/toxicity balance is often limited by the occurrence of severe toxicities, showing in about 15%-20% of patients. Several clinical reports have shown the deleterious effect of dihydropyrimidine dehydrogenase (DPD) genetic polymorphism, a condition that reduces the liver detoxification step of standard dosages of 5-FU, in patients undergoing fluoropyrimidine-based therapy. Admittedly, DPD deficiency accounts for 50%-75% of the severe and sometimes life-threatening toxicities associated with 5-FU (or oral 5-FU). However, technical consensus on the best way to identify patients with DPD deficiency before administrating 5-FU is far from being achieved. Consequently, no regulatory step has been undertaken yet to recommend DPD testing as part of routine clinical practice for securing the administration of 5-FU. This review covers the limits and achievements of the various strategies proposed so far for determining DPD status in patients scheduled for 5-FU therapy.
Collapse
|
23
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2010. [DOI: 10.1002/pds.1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|