1
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
2
|
Qiu CJ, Hu LY, Yang J, Cao JJ, Pei BG, Dai RR, Pan SJ. A novel nanoplatform-based circCSNK1G3 affects CBX7 protein and promotes glioma cell growth. Int J Biol Macromol 2024; 276:134025. [PMID: 39033888 DOI: 10.1016/j.ijbiomac.2024.134025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Bioenvironmental and biological factors have the potential to contribute to the development of glioma, a type of brain tumor. Recent studies have suggested that a unique circular RNA called circCSNK1G3 could play a role in promoting the growth of glioma cells. It does this by stabilizing a specific microRNA called miR-181 and reducing the expression of a tumor-suppressor gene known as chromobox protein homolog 7 (CBX7). To further investigate circCSNK1G3 and its effects on glioma, we utilized a nanoplatform called adeno-associated virus (AAV)-RNAi.To explore the functional implications of circCSNK1G3, we employed siRNA to silence its expression. Along with these effects, the silencing of circCSNK1G3 led to a depletion of miR-181d and an upregulation of CBX7. When we introduced miR-181d mimics, which artificially increase the levels of miR-181d, the anti-glioma cell activity induced by circCSNK1G3 siRNA was almost completely reversed. Conversely, inhibiting miR-181d mimicked the effects of circCSNK1G3 silencing. Moreover, when we overexpressed circCSNK1G3 in glioma cells, we observed an elevation of miR-181d and a depletion of CBX7. We found that the growth of A172 xenografts (tumors) carrying circCSNK1G3 shRNA was significantly inhibited. In these xenograft tissues, we detected a depletion of circCSNK1G3 and miR-181d, as well as an upregulation of CBX7.
Collapse
Affiliation(s)
- Cheng-Jie Qiu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China
| | - Liang-Yun Hu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China
| | - Jin Yang
- Department of Pulmonary and Critical Care Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jiao-Jiao Cao
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China
| | - Ben-Gen Pei
- Department of Neurosurgery, Zhou-Pu Hospital, Shanghai Jian-Kang University, School of Medicine, Shanghai, China.
| | - Ran-Ran Dai
- Department of Pulmonary and Critical Care Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Si-Jian Pan
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Zhu H, Chen HJ, Wen HY, Wang ZG, Liu SL. Engineered Lipidic Nanomaterials Inspired by Sphingomyelin Metabolism for Cancer Therapy. Molecules 2023; 28:5366. [PMID: 37513239 PMCID: PMC10383197 DOI: 10.3390/molecules28145366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Sphingomyelin (SM) and its metabolites are crucial regulators of tumor cell growth, differentiation, senescence, and programmed cell death. With the rise in lipid-based nanomaterials, engineered lipidic nanomaterials inspired by SM metabolism, corresponding lipid targeting, and signaling activation have made fascinating advances in cancer therapeutic processes. In this review, we first described the specific pathways of SM metabolism and the roles of their associated bioactive molecules in mediating cell survival or death. We next summarized the advantages and specific applications of SM metabolism-based lipidic nanomaterials in specific cancer therapies. Finally, we discussed the challenges and perspectives of this emerging and promising SM metabolism-based nanomaterials research area.
Collapse
Affiliation(s)
- Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hai-Yan Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
4
|
Li L, Lu S, Ma C. Anti-proliferative and pro-apoptotic effects of curcumin on skin cutaneous melanoma: Bioinformatics analysis and in vitro experimental studies. Front Genet 2022; 13:983943. [PMID: 36171883 PMCID: PMC9510772 DOI: 10.3389/fgene.2022.983943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Objective: To reveal the potential mechanisms of curcumin for the treatment of skin cutaneous melanoma (SKCM) and its identify novel prognostic biomarkers. Methods: We searched the Cancer Genome Atlas and Traditional Chinese Medicine Systems Pharmacology database for the data on SKCM and curcumin. We conducted data analysis using R and online tools. The propagation and migration of SKCM cells were assessed with CCK-8 and scratch wound assays, respectively. We assessed apoptosis by TUNEL assay and western blot. Results: The survival analysis revealed that the mRNA expressions of DPYD, DPYS, LYN, PRKCQ, and TLR1 were significantly related to a favorable overall survival in SKCM patients. Additionally, the mRNA expression level of DPYD was associated with GPI, LYN, PCSK9, PRKCQ, and TLR1 mRNAs. GSEA results showed that the prognostic hub genes were augmented with ultraviolet, apoptosis, and metastasis. Curcumin expressed proliferation and migration of SK-MEL-1 cells (p < 0.05), and induced apoptosis (p < 0.05) significantly. Conclusion: Curcumin may have potential therapeutic effects in SKCM by inhibiting cell proliferation and migration and inducing apoptosis by regulating oxygen-related signaling pathways. The hub genes might be identified as novel biomarkers for SKCM.
Collapse
Affiliation(s)
- Long Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Chao Ma
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Chao Ma,
| |
Collapse
|
5
|
Targeting sphingosine kinase 1/2 by a novel dual inhibitor SKI-349 suppresses non-small cell lung cancer cell growth. Cell Death Dis 2022; 13:602. [PMID: 35831279 PMCID: PMC9279331 DOI: 10.1038/s41419-022-05049-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Sphingosine kinase 1 (SphK1) and sphingosine kinase (SphK2) are both important therapeutic targets of non-small cell lung cancer (NSCLC). SKI-349 is a novel, highly efficient and small molecular SphK1/2 dual inhibitor. Here in primary human NSCLC cells and immortalized cell lines, SKI-349 potently inhibited cell proliferation, cell cycle progression, migration and viability. The dual inhibitor induced mitochondrial depolarization and apoptosis activation in NSCLC cells, but it was non-cytotoxic to human lung epithelial cells. SKI-349 inhibited SphK activity and induced ceramide accumulation in primary NSCLC cells, without affecting SphK1/2 expression. SKI-349-induced NSCLC cell death was attenuated by sphingosine-1-phosphate and by the SphK activator K6PC-5, but was potentiated by the short-chain ceramide C6. Moreover, SKI-349 induced Akt-mTOR inactivation, JNK activation, and oxidative injury in primary NSCLC cells. In addition, SKI-349 decreased bromodomain-containing protein 4 (BRD4) expression and downregulated BRD4-dependent genes (Myc, cyclin D1 and Klf4) in primary NSCLC cells. At last, SKI-349 (10 mg/kg) administration inhibited NSCLC xenograft growth in nude mice. Akt-mTOR inhibition, JNK activation, oxidative injury and BRD4 downregulation were detected in SKI-349-treated NSCLC xenograft tissues. Taken together, targeting SphK1/2 by SKI-349 potently inhibits NSCLC cell growth in vitro and in vivo.
Collapse
|
6
|
Cong C, Jiaxin B, Liu X, Zhang X, Fu Y, Li Z, Xu Z, Wei S, Wang D, Gao D. A homologous-targeting "nanoconverter" with variable size for deep tumor penetration and immunotherapy. J Mater Chem B 2021; 9:2323-2333. [PMID: 33621309 DOI: 10.1039/d0tb02908d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tumor-associated immunosuppression, as a key barrier, prevents immunotherapy-resistant tumors. In this study, an ingenious "nanoconverter" was designed to convert immunosuppression into immunoactivation, which was a C6-ceramide (C6)-modified tumor cytomembrane-coated polydopamine-paclitaxel system (PTX/PDA@M-C6). The co-administration of C6-ceramide and tumor cytomembrane changed an adaptive immune state to an activation state, which induced a robust antigen presentation ability of tumor-infiltrating dendritic cells to activate T1 helper cells and cytotoxic T lymphocytes. Meanwhile, C6-ceramide regulated the phenotype of macrophages via the reactive oxygen species pathway, which resulted in the conversion of M2-like macrophages by infiltration within tumors into M2-like macrophages, and therefore, M2-like macrophage-mediated immunosuppression was weakened distinctly. The "nanoconverter"-mediated conversion process upregulated the expression of related immune factors including interleukin-12, interleukin-6, tumor necrosis factor-α and interferon-γ and executed positive anti-tumor effects. In addition, under the protection of tumor-homologous cytomembrane, the "nanoconverter" exhibited excellent delivery efficiency (23.22%), and subsequently, accumulated special structural "nanoconverter" could break down into smaller nanoparticles for deep penetration into the tumor tissue under a NIR laser. Ultimately, chemo/thermal therapy-assisted immunotherapy completely eliminated the tumors of tumor-bearing mice, and a potent memory response relying on effector memory T cells still persisted to protect against tumor relapse after the end of treatment. The "nanoconverter" serves as a promising nanodrug delivery system for the conversion of immunosuppression and enhanced chemo/thermal therapy. Therefore, the highly cumulative "nanoconverter" has great potential for promoting the effect and clinical application of immunotherapy.
Collapse
Affiliation(s)
- Cong Cong
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-remediation in Water and RESOURCE REUSE KEY Lab of Hebei, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Bian Jiaxin
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-remediation in Water and RESOURCE REUSE KEY Lab of Hebei, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Xiaokang Liu
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-remediation in Water and RESOURCE REUSE KEY Lab of Hebei, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Xinyue Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-remediation in Water and RESOURCE REUSE KEY Lab of Hebei, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Yihan Fu
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-remediation in Water and RESOURCE REUSE KEY Lab of Hebei, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Zhuo Li
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-remediation in Water and RESOURCE REUSE KEY Lab of Hebei, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Zichuang Xu
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-remediation in Water and RESOURCE REUSE KEY Lab of Hebei, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Shipan Wei
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-remediation in Water and RESOURCE REUSE KEY Lab of Hebei, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-remediation in Water and RESOURCE REUSE KEY Lab of Hebei, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-remediation in Water and RESOURCE REUSE KEY Lab of Hebei, Yanshan University, Qinhuangdao 066004, P. R. China.
| |
Collapse
|
7
|
Ji YJ, Shao Y, Zhang J, Zhang X, Qiang P. Bromodomain-containing protein 4 silencing by microRNA-765 produces anti-ovarian cancer cell activity. Aging (Albany NY) 2021; 13:8214-8227. [PMID: 33686960 PMCID: PMC8034896 DOI: 10.18632/aging.202632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) overexpression promotes ovarian cancer progression, and represents an important therapeutic oncotarget. This current study identified microRNA-765 (miR-765) as a novel BRD4-targeting miRNA. We showed that miR-765 directly associated with and silenced BRD4. In primary ovarian cancer cells and established cell lines (SKOV3 and CaOV3), ectopic overexpression of miR-765 inhibited cancer cell proliferation, migration and invasion, and induced apoptosis activation. In contrast, miR-765 inhibition by its anti-sense induced BRD4 upregulation to promote ovarian cancer cell proliferation, migration and invasion. Significantly, miR-765 overexpression-induced anti-ovarian cancer cell activity was largely attenuated by restoring BRD4 expression through an UTR-null BRD4 construct. Moreover, CRISPR/Cas9-induced BRD4 knockout (KO)inhibited proliferation and activated apoptosis in ovarian cancer cells. BRD4 KO in ovarian cancer cells abolished the functional impact of miR-765. miR-765 expression levels were downregulated in human ovarian cancer tissues and cells, correlating with the upregulation of BRD4 mRNA. Collectively, BRD4 silencing by miR-765produces significant anti-ovarian cancer cell activity. miR-765 could be further tested for its anti-ovarian cancer potential.
Collapse
Affiliation(s)
- Yong-Jun Ji
- Obstetrics and Gynecology Department, Suzhou Ninth People's Hospital of Soochow University, Suzhou, China
| | - Yang Shao
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jie Zhang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xu Zhang
- Obstetrics and Gynecology Department, Suzhou Ninth People's Hospital of Soochow University, Suzhou, China
| | - Ping Qiang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| |
Collapse
|
8
|
Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the Marketing of Curcumin as a Drug. Int J Mol Sci 2020; 21:E6619. [PMID: 32927725 PMCID: PMC7554750 DOI: 10.3390/ijms21186619] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Among the extensive public and scientific interest in the use of phytochemicals to prevent or treat human diseases in recent years, natural compounds have been highly investigated to elucidate their therapeutic effect on chronic human diseases including cancer, cardiovascular disease, and neurodegenerative disease. Curcumin, an active principle of the perennial herb Curcuma longa, has attracted an increasing research interest over the last half-century due to its diversity of molecular targets, including transcription factors, enzymes, protein kinases, growth factors, inflammatory cytokines, receptors, and it's interesting pharmacological activities. Despite that, the clinical effectiveness of the native curcumin is weak, owing to its low bioavailability and rapid metabolism. Preclinical data obtained from animal models and phase I clinical studies done in human volunteers confirmed a small amount of intestinal absorption, hepatic first pass effect, and some degree of intestinal metabolism, might explain its poor systemic availability when it is given via the oral route. During the last decade, researchers have attempted with new pharmaceutical methods such as nanoparticles, liposomes, micelles, solid dispersions, emulsions, and microspheres to improve the bioavailability of curcumin. As a result, a significant number of bioavailable curcumin-based formulations were introduced with a varying range of enhanced bioavailability. This manuscript critically reviews the available scientific evidence on the basic and clinical effects and molecular targets of curcumin. We also discuss its pharmacokinetic and problems for marketing curcumin as a drug.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Lucia Buccarello
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Jessica Dragotto
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| | - Marco Feligioni
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| |
Collapse
|
9
|
Augmented anticancer activity of curcumin loaded fungal chitosan nanoparticles. Int J Biol Macromol 2020; 155:861-867. [DOI: 10.1016/j.ijbiomac.2019.11.207] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/09/2023]
|
10
|
Vollono L, Falconi M, Gaziano R, Iacovelli F, Dika E, Terracciano C, Bianchi L, Campione E. Potential of Curcumin in Skin Disorders. Nutrients 2019; 11:E2169. [PMID: 31509968 PMCID: PMC6770633 DOI: 10.3390/nu11092169] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a compound isolated from turmeric, a plant known for its medicinal use. Recently, there is a growing interest in the medical community in identifying novel, low-cost, safe molecules that may be used in the treatment of inflammatory and neoplastic diseases. An increasing amount of evidence suggests that curcumin may represent an effective agent in the treatment of several skin conditions. We examined the most relevant in vitro and in vivo studies published to date regarding the use of curcumin in inflammatory, neoplastic, and infectious skin diseases, providing information on its bioavailability and safety profile. Moreover, we performed a computational analysis about curcumin's interaction towards the major enzymatic targets identified in the literature. Our results suggest that curcumin may represent a low-cost, well-tolerated, effective agent in the treatment of skin diseases. However, bypass of limitations of its in vivo use (low oral bioavailability, metabolism) is essential in order to conduct larger clinical trials that could confirm these observations. The possible use of curcumin in combination with traditional drugs and the formulations of novel delivery systems represent a very promising field for future applicative research.
Collapse
Affiliation(s)
- Laura Vollono
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Roberta Gaziano
- Microbiology Section, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Emi Dika
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Via Massarenti, 1-40138 Bologna, Italy
| | - Chiara Terracciano
- Neurology Unit, Guglielmo de Saliceto Hospital, 29121-29122 Piacenza, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy.
| |
Collapse
|
11
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
12
|
Zhu Y, Wang C, Zhou Y, Ma N, Zhou J. C6 ceramide motivates the anticancer sensibility induced by PKC412 in preclinical head and neck squamous cell carcinoma models. J Cell Physiol 2018; 233:9437-9446. [PMID: 29968910 DOI: 10.1002/jcp.26831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/10/2018] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to evaluate the anti-head and neck squamous cell carcinoma (anti-HNSCC) cell activity by C6 ceramide and multikinase inhibitor PKC412. Experiments were performed on HNSCC cell lines (SQ20B and SCC-9) and primary human oral carcinoma cells. Results showed that PKC412 inhibited HNSCC cell proliferation without provoking apoptosis activation. Cotreatment of C6 ceramide significantly augmented PKC412-induced lethality in HNSCC cells. PKC412 decreased Akt-mammalian target of rapamycin (mTOR) activation in HNSCC cells, facilitated with cotreatment of C6 ceramide. In contrast, exogenous expression of a constitutively active Akt restored Akt-mTOR activation and attenuated lethality by the cotreatment. We propose that Mcl-1 is a primary resistance factor of PKC412. The cytotoxicity of PKC412 in HNSCC cells was potentiated with Mcl-1 short hairpin RNA knockdown, but was attenuated with Mcl-1 overexpression. Intriguingly, C6 ceramide downregulated Mcl-1 in HNSCC cells. In vivo, PKC412 oral administration inhibited SQ20B xenograft tumor growth in severe combined immunodeficient mice. The antitumor activity of PKC412 was further sensitized with coadministration of liposomal C6 ceramide. Together, we suggest that PKC412 could be further studied as a promising anti-HNSCC strategy, alone or in combination with C6 ceramide.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chaojie Wang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yun Zhou
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ning Ma
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jianwei Zhou
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Gong YQ, Huang W, Li KR, Liu YY, Cao GF, Cao C, Jiang Q. SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling. Oncotarget 2018; 7:60123-60132. [PMID: 27517753 PMCID: PMC5312373 DOI: 10.18632/oncotarget.11164] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis.
Collapse
Affiliation(s)
- Yi-Qing Gong
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China.,Ophthalmology Department, Zhenjiang First People's Hospital, Zhenjiang, China
| | - Wei Huang
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Ke-Ran Li
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Liu
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Guo-Fan Cao
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Cong Cao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Qin Jiang
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Nabavi SM, Russo GL, Tedesco I, Daglia M, Orhan IE, Nabavi SF, Bishayee A, Nagulapalli Venkata KC, Abdollahi M, Hajheydari Z. Curcumin and Melanoma: From Chemistry to Medicine. Nutr Cancer 2018; 70:164-175. [PMID: 29300102 DOI: 10.1080/01635581.2018.1412485] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Melanoma is the most deadly form of skin cancer, with about 48,000 deaths each year worldwide. Growing evidence suggests that individual nutrients or dietary patterns might have important roles in the prevention of melanoma. Considering that melanoma is a potentially life-threatening cancer, novel protective and adjuvant treatments are needed to improve its prognosis. Curcumin is a bioactive substance extracted from rhizome of Curcuma longa L. Its global market is expected to grow in the next few years, especially in the pharmaceutical industry, due to its numerous physiological and pharmacological properties. For this review, we collected the available data on the protective and therapeutic role of curcumin against melanoma. We also discuss the chemistry, dietary sources, bioavailability, and metabolism of curcumin, and the mechanisms of action of its potential anticancer effects at the molecular level. Current challenges and future directions for research are also critically discussed.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- a Applied Biotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Gian Luigi Russo
- b Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Idolo Tedesco
- b Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Maria Daglia
- c Department of Drug Sciences , Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia , Pavia , Italy
| | - Ilkay Erdogan Orhan
- d Department of Pharmacognosy , Faculty of Pharmacy, Gazi University , Ankara , Turkey
| | - Seyed Fazel Nabavi
- a Applied Biotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Anupam Bishayee
- e Department of Pharmaceutical Sciences , College of Pharmacy, Larkin University , Miami , Florida , USA
| | | | - Mohammad Abdollahi
- f Toxicology and Diseases Group , Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Zohreh Hajheydari
- g Department of Dermatology , Boo-Ali Sina (Avicenna) Hospital, Faculty of Medicine, Mazandaran University of Medical Sciences , Sari , Iran
| |
Collapse
|
15
|
Weng Y, Lin J, Liu H, Wu H, Yan Z, Zhao J. AMPK activation by Tanshinone IIA protects neuronal cells from oxygen-glucose deprivation. Oncotarget 2017; 9:4511-4521. [PMID: 29435120 PMCID: PMC5796991 DOI: 10.18632/oncotarget.23391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
The current study tested the potential neuroprotective function of Tanshinone IIA (ThIIA) in neuronal cells with oxygen-glucose deprivation (ODG) and re-oxygenation (OGDR). In SH-SY5Y neuronal cells and primary murine cortical neurons, ThIIA pre-treatment attenuated OGDR-induced viability reduction and apoptosis. Further, OGDR-induced mitochondrial depolarization, reactive oxygen species production, lipid peroxidation and DNA damages in neuronal cells were significantly attenuated by ThIIA. ThIIA activated AMP-activated protein kinase (AMPK) signaling, which was essential for neuroprotection against OGDR. AMPKα1 knockdown or complete knockout in SH-SY5Y cells abolished ThIIA-induced AMPK activation and neuroprotection against OGDR. Further studies found that ThIIA up-regulated microRNA-135b to downregulate the AMPK phosphatase Ppm1e. Notably, knockdown of Ppm1e by targeted shRNA or forced microRNA-135b expression also activated AMPK and protected SH-SY5Y cells from OGDR. Together, AMPK activation by ThIIA protects neuronal cells from OGDR. microRNA-135b-mediated silence of Ppm1e could be the key mechanism of AMPK activation by ThIIA.
Collapse
Affiliation(s)
- Yingfeng Weng
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jixian Lin
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Liu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Wu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhimin Yan
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Jiang F, Jin K, Huang S, Bao Q, Shao Z, Hu X, Ye J. Liposomal C6 Ceramide Activates Protein Phosphatase 1 to Inhibit Melanoma Cells. PLoS One 2016; 11:e0159849. [PMID: 27631768 PMCID: PMC5025141 DOI: 10.1371/journal.pone.0159849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/09/2016] [Indexed: 02/02/2023] Open
Abstract
Melanoma is one common skin cancer. In the present study, the potential anti-melanoma activity by a liposomal C6 ceramide was tested in vitro. We showed that the liposomal C6 (ceramide) was cytotoxic and anti-proliferative against a panel of human melanoma cell lines (SK-Mel2, WM-266.4 and A-375 and WM-115). In addition, liposomal C6 induced caspase-dependent apoptotic death in the melanoma cells. Reversely, its cytotoxicity was attenuated by several caspase inhibitors. Intriguingly, liposomal C6 was non-cytotoxic to B10BR mouse melanocytes and primary human melanocytes. Molecularly, liposomal C6 activated protein phosphatase 1 (PP1) to inactivate Akt-mammalian target of rapamycin (mTOR) signaling in melanoma cells. On the other hand, PP1 shRNA knockdown or exogenous expression of constitutively activate Akt1 (CA-Akt1) restored Akt-mTOR activation and significantly attenuated liposomal C6-mediated cytotoxicity and apoptosis in melanoma cells. Our results suggest that liposomal C6 activates PP1 to inhibit melanoma cells.
Collapse
Affiliation(s)
- Fangzhen Jiang
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Kai Jin
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
- * E-mail:
| | - Shenyu Huang
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Qi Bao
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Zheren Shao
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Xueqing Hu
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Juan Ye
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| |
Collapse
|
17
|
Ma YY, Mou XZ, Ding YH, Zou H, Huang DS. Delivery systems of ceramide in targeted cancer therapy: ceramide alone or in combination with other anti-tumor agents. Expert Opin Drug Deliv 2016; 13:1397-406. [PMID: 27168034 DOI: 10.1080/17425247.2016.1188803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Medical School and Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Dong-Sheng Huang
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Hepatobiliary Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| |
Collapse
|
18
|
C6 ceramide sensitizes the anti-hepatocellular carcinoma (HCC) activity by AZD-8055, a novel mTORC1/2 dual inhibitor. Tumour Biol 2016; 37:11039-48. [PMID: 26897748 DOI: 10.1007/s13277-015-4598-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022] Open
Abstract
Aberrant activation of mammalian target of rapamycin (mTOR) plays pivotal roles in promoting hepatocellular carcinoma (HCC) tumorigenesis and chemoresistance. Here, we tested the potential anti-HCC activity by a novel mTOR complex 1/2 (mTORC1/2) dual inhibitor AZD-8055 and, more importantly, the potential AZD-8055 sensitization effect by a cell-permeable short-chain ceramide (C6). We showed that AZD-8055 mainly exerted moderate cytotoxic effect against a panel of HCC cell lines (HepG2, Hep3B, and SMMC-7721). Co-treatment of C6 ceramide remarkably augmented AZD-8055-induced HCC cytotoxicity. Meanwhile, C6 ceramide dramatically potentiated AZD-8055-induced HCC cell apoptotic death. Further studies demonstrated that AZD-8055 and C6 ceramide synergistically induced anti-survival and pro-apoptotic activity in primary cultured human HCC cells, but not in the non-cancerous human hepatocytes. Signaling studies showed that AZD-8055 and C6 ceramide synergistically suppressed Akt-mTOR complex 1/2 cascade activation. In vivo, AZD-8055 oral administration suppressed HepG2 hepatoma xenograft growth in nude mice, while moderately improving mice survival. Its anti-tumor activity was dramatically potentiated with co-administration of a liposome-packed C6 ceramide. Together, these results demonstrate that concurrent targeting mTORC1/2 by AZD-8055 exerts anti-tumor ability in preclinical HCC models, and its activity is further sensitized with co-administration of C6 ceramide.
Collapse
|
19
|
Barui S, Saha S, Yakati V, Chaudhuri A. Systemic Codelivery of a Homoserine Derived Ceramide Analogue and Curcumin to Tumor Vasculature Inhibits Mouse Tumor Growth. Mol Pharm 2016; 13:404-19. [DOI: 10.1021/acs.molpharmaceut.5b00644] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sugata Barui
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
| | - Soumen Saha
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
- Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| | - Venu Yakati
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
- Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| | - Arabinda Chaudhuri
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India
- Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| |
Collapse
|
20
|
Abstract
Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
Collapse
|
21
|
Realini N, Palese F, Pizzirani D, Pontis S, Basit A, Bach A, Ganesan A, Piomelli D. Acid Ceramidase in Melanoma: EXPRESSION, LOCALIZATION, AND EFFECTS OF PHARMACOLOGICAL INHIBITION. J Biol Chem 2015; 291:2422-34. [PMID: 26553872 DOI: 10.1074/jbc.m115.666909] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 11/06/2022] Open
Abstract
Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human subjects with Stage II melanoma. Immunofluorescence studies revealed that the subcellular localization of AC differs between melanocytes (where it is found in both cytosol and nucleus) and melanoma cells (where it is primarily localized to cytosol). In addition to having high AC levels, melanoma cells generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 nM) and stable inhibitor. AC inhibition increased cellular ceramide levels, decreased sphingosine 1-phosphate levels, and acted synergistically with several, albeit not all, antitumoral agents. The results suggest that AC-controlled sphingolipid metabolism may play an important role in the control of melanoma proliferation.
Collapse
Affiliation(s)
- Natalia Realini
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesca Palese
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Daniela Pizzirani
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Silvia Pontis
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Abdul Basit
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Anders Bach
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy, the Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen 2100, Denmark, and
| | | | - Daniele Piomelli
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy, Anatomy and Neurobiology, University of California, Irvine, California 92617
| |
Collapse
|
22
|
Zhou C, Chen Z, Lu X, Wu H, Yang Q, Xu D. Icaritin activates JNK-dependent mPTP necrosis pathway in colorectal cancer cells. Tumour Biol 2015; 37:3135-44. [PMID: 26427664 DOI: 10.1007/s13277-015-4134-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022] Open
Abstract
The colorectal cancer (CRC) is one leading contributor of cancer-related mortality worldwide. The search for effective anti-CRC agents is valuable. In the current study, we showed that icaritin (ICT), an active natural ingredient from the Chinese plant Epimedium, potently inhibited proliferation and survival of established (HT-29, HCT-116, DLD-1, and SW-620) and primary (patient-derived) CRC cells. Significantly, ICT mainly induced necrosis, but not apoptosis, in CRC cells. The necrosis inhibitor necrostatin-1 attenuated ICT-mediated cytotoxicity in CRC cells. We showed that ICT treatment in CRC cells induced mitochondrial permeability transition pore (mPTP) opening, which was evidenced by mitochondrial membrane potential (MMP) decrease and mitochondrial adenine nucleotide translocator-1 (ANT-1)-cyclophilin-D (CyPD) association. On the other hand, mPTP blockers, including sanglifehrin A, cyclosporin A, and bongkrekic acid, as well as siRNA-mediated knockdown of mPTP component (CyPD or ANT-1), significantly alleviated ICT-mediated cytotoxicity against CRC cells. We suggested that Jun-N-terminal kinase (JNK) activation by ICT mediated mPTP opening and subsequent CRC cell necrosis. JNK pharmacological inhibition, dominant negative mutation, or shRNA downregulation suppressed ICT-induced MMP reduction and subsequent HT-29 cell necrosis. In vivo, oral gavage of ICT dramatically inhibited HT-29 xenograft growth in nude mice. The in vivo activity by ICT was largely attenuated by co-administration with the mPTP blocker CsA. Collectively, our results showed that ICT exerts potent inhibitory effect against CRC cells in vitro and in vivo. JNK-dependent mPTP necrosis pathway could be key mechanism responsible for ICT's actions.
Collapse
Affiliation(s)
- Chunxian Zhou
- Department of Interventional Radiology, WuJiang Hospital Affiliated to Nantong University, No. 169 Park Road, Songling Town, WuJiang, Suzhou, 215200, China
| | - Zhengrong Chen
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xingsheng Lu
- Department of Hepatobiliary Surgery of Suzhou Municipal Hospital, Suzhou, 215000, China
| | - Hao Wu
- Department of Interventional Radiology, WuJiang Hospital Affiliated to Nantong University, No. 169 Park Road, Songling Town, WuJiang, Suzhou, 215200, China
| | - Qunying Yang
- Department of Interventional Radiology, WuJiang Hospital Affiliated to Nantong University, No. 169 Park Road, Songling Town, WuJiang, Suzhou, 215200, China
| | - Dongfeng Xu
- Department of Interventional Radiology, WuJiang Hospital Affiliated to Nantong University, No. 169 Park Road, Songling Town, WuJiang, Suzhou, 215200, China.
| |
Collapse
|
23
|
Mahmood K, Zia KM, Zuber M, Salman M, Anjum MN. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review. Int J Biol Macromol 2015; 81:877-90. [PMID: 26391597 DOI: 10.1016/j.ijbiomac.2015.09.026] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/05/2015] [Accepted: 09/16/2015] [Indexed: 01/15/2023]
Abstract
Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anticoagulant and anti-infective effects. This review summarizes and discusses recently published papers on the key biomedical applications of curcumin based materials. The highlighted studies in the review provide evidence of the ability of curcumin to show the significant vitro antioxidant, diabetic complication, antimicrobial, neuroprotective, anti-cancer activities and detection of hypochlorous acid, wound healing, treatment of major depression, healing of paracentesis, and treatment of carcinoma and optical detection of pyrrole properties. Hydrophobic nature of this polyphenolic compound along with its rapid metabolism, physicochemical and biological instability contribute to its poor bioavailability. To redress these problems several approaches have been proposed like encapsulation of curcumin in liposomes and polymeric micelles, inclusion complex formation with cyclodextrin, formation of polymer-curcumin conjugates, etc.
Collapse
Affiliation(s)
- Kashif Mahmood
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad, Pakistan.
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Mahwish Salman
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
24
|
Yu T, Chen C, Sun Y, Sun H, Li TH, Meng J, Shi X. ABT-737 sensitizes curcumin-induced anti-melanoma cell activity through facilitating mPTP death pathway. Biochem Biophys Res Commun 2015; 464:286-91. [PMID: 26116776 DOI: 10.1016/j.bbrc.2015.06.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 01/03/2023]
Abstract
In the current study, we studied the potential role of ABT-737, a novel Bcl-2 inhibitor, on curcumin-induced anti-melanoma cell activity in vitro. The associated mechanisms were also investigated. We demonstrated that ABT-737 significantly sensitized curcumin-induced activity against melanoma cells (WM-115 and B16 lines), resulting in substantial cell death and apoptosis with co-administration. At the molecular level, curcumin and ABT-737 synergistically induced mitochondrial permeability transition pore (mPTP) opening in melanoma cells, the latter was evidenced by mitochondrial membrane potential (MPP) reduction and mitochondrial complexation between cyclophilin-D (CyPD) and adenine nucleotide translocator 1 (ANT-1). Significantly, mPTP blockers, including cyclosporin A and sanglifehrin A, remarkably inhibited curcumin and ABT-737 co-administration-induced cytotoxicity against melanoma cells. Meanwhile, siRNA-mediated knockdown of CyPD or ANT-1, the two key components of mPTP, alleviated WM-116 cell death by the co-treatment. Collectively, we show that ABT-737 sensitizes curcumin-induced anti-melanoma cell activity probably through facilitating mPTP death pathway. ABT-737 could be further investigated as a potential curcumin adjuvant in melanoma and other cancer treatment.
Collapse
Affiliation(s)
- Teng Yu
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province, 272011, PR China.
| | - Chao Chen
- Department of Ophthalmology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province, 272011, PR China
| | - Yang Sun
- Department of Thoracic Surgery, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province, 272011, PR China
| | - Hui Sun
- Department of Blood Transfusion, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province, 272011, PR China
| | - Tian-Hang Li
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province, 272011, PR China
| | - Jin Meng
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province, 272011, PR China
| | - Xianhua Shi
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province, 272011, PR China
| |
Collapse
|
25
|
Casasampere M, Ordoñez YF, Pou A, Casas J. Inhibitors of dihydroceramide desaturase 1: Therapeutic agents and pharmacological tools to decipher the role of dihydroceramides in cell biology. Chem Phys Lipids 2015; 197:33-44. [PMID: 26248324 DOI: 10.1016/j.chemphyslip.2015.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Dihydroceramide desaturase (Des1) is the last enzyme in the de novo synthesis of ceramides (Cer). It catalyzes the insertion of a double bond into dihydroceramides (dhCer) to convert them to Cer, both of which are further metabolized to more complex (dihydro) sphingolipids. For many years dhCer have received poor attention, mainly due to their supposed lack of biological activity. It was not until about ten years ago that the concept that dhCer might have regulatory roles in biology emerged for the first time. Since then, multiple publications have established that dhCer are implicated in a wide spectrum of biological processes. Physiological and pathophysiological functions of dhCer have been recently reviewed. In this review we will focus on the biochemical features of Des1 and on its inhibition by different compounds with presumably different modes of action.
Collapse
Affiliation(s)
- Mireia Casasampere
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Yadira F Ordoñez
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ana Pou
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
26
|
Cheng L, Chen YZ, Peng Y, Yi N, Gu XS, Jin Y, Bai XM. Ceramide production mediates cinobufotalin-induced growth inhibition and apoptosis in cultured hepatocellular carcinoma cells. Tumour Biol 2015; 36:5763-71. [PMID: 25724183 DOI: 10.1007/s13277-015-3245-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/10/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive and lethal neoplasm with poor prognosis. The aim of this study is to investigate the anticancer activity of cinobufotalin, a bufadienolide isolated from toad venom, in cultured HCC cells, and to study the underlying mechanisms. We found that cinobufotalin (at nmol/L) significantly inhibited HCC cell growth and survival while inducing considerable cell apoptosis. Further, cinobufotalin inhibited sphingosine kinase 1 (SphK1) activity and induced pro-apoptotic ceramide production. Ceramide synthase-1 small hairpin RNA (shRNA)-depletion inhibited cinobufotalin-induced ceramide production and HCC cell apoptosis. On the other hand, the glucosylceramide synthase (GCS) inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) facilitated cinobufotalin-induced ceramide production and cell apoptosis. SphK1 inhibitor II (SKI-II), similar to cinobufotalin, increased cellular ceramide level and promoted HCC cell apoptosis. Finally, we observed that cinobufotalin inactivated Akt-S6K1 signaling in HepG2 cells, which was again inhibited by ceramide synthase-1 shRNA-depletion. In conclusion, the results of this study suggest that cinobufotalin induces growth inhibition and apoptosis in cultured HCC cells through ceramide production. Cinobufotalin may be investigated as a novel anti-HCC agent.
Collapse
Affiliation(s)
- Long Cheng
- Department of Interventional Radiology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215001, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Abdel Shakor AB, Atia M, Ismail IA, Alshehri A, El-Refaey H, Kwiatkowska K, Sobota A. Curcumin induces apoptosis of multidrug-resistant human leukemia HL60 cells by complex pathways leading to ceramide accumulation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1672-82. [DOI: 10.1016/j.bbalip.2014.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022]
|
28
|
Identification of TGF-β-activated kinase 1 as a possible novel target for renal cell carcinoma intervention. Biochem Biophys Res Commun 2014; 453:106-11. [DOI: 10.1016/j.bbrc.2014.09.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 01/16/2023]
|
29
|
Kai S, Lu JH, Hui PP, Zhao H. Pre-clinical evaluation of cinobufotalin as a potential anti-lung cancer agent. Biochem Biophys Res Commun 2014; 452:768-74. [PMID: 25201730 DOI: 10.1016/j.bbrc.2014.08.147] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
Abstract
Lung cancer is a major cause of cancer-related mortality in the United States and around the world. Due to the pre-existing or acquired chemo-resistance, the current standard chemotherapy regimens only show moderate activity against lung cancer. In the current study, we explored the potential anti-lung cancer activity of cinobufotalin in vivo and in vitro, and studied the underlying mechanisms. We demonstrated that cinobufotalin displayed considerable cytotoxicity against lung cancer cells (A549, H460 and HTB-58 lines) without inducing significant cell apoptosis. Our data suggest that mitochondrial protein cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates cinobufotalin-induced non-apoptotic death of lung cancer cells. The Cyp-D inhibitor cyclosporine A (CsA), the mPTP blocker sanglifehrin A (SfA), and Cyp-D shRNA-silencing significantly inhibited cinobufotalin-induced mitochondrial membrane potential (MMP) reduction and A549 cell death (but not apoptosis). Using a mice xenograft model, we found that cinobufotalin inhibited A549 lung cancer cell growth in vivo. Thus, cinobufotalin mainly induces Cyp-D-dependent non-apoptotic death in cultured lung cancer cells. The results of this study suggest that cinobufotalin might be further investigated as a novel anti-lung cancer agent.
Collapse
Affiliation(s)
- Sheng Kai
- Department of Geriatrics, Shanghai Changning Center Hospital, Shanghai 200336, China
| | - Jia-Huan Lu
- Department of Geriatrics, Shanghai Changning Center Hospital, Shanghai 200336, China
| | - Ping-Ping Hui
- Department of Geriatrics, Shanghai Changning Center Hospital, Shanghai 200336, China
| | - Hui Zhao
- Department of Geriatrics, Shanghai Changning Center Hospital, Shanghai 200336, China.
| |
Collapse
|
30
|
Qiu Y, Yu T, Wang W, Pan K, Shi D, Sun H. Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mPTP) opening. Biochem Biophys Res Commun 2014; 448:15-21. [PMID: 24735534 DOI: 10.1016/j.bbrc.2014.04.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 01/13/2023]
Abstract
Here we studied the role of mitochondrial permeability transition pore (mPTP) opening in curcumin's cytotoxicity in melanoma cells. In cultured WM-115 melanoma cells, curcumin induced mitochondrial membrane potential (MPP) decrease, cyclophilin-D (CyPD)-adenine nucleotide translocator 1 (ANT-1) (two mPTP components) mitochondrial association and cytochrome C release, indicating mPTP opening. The mPTP blocker sanglifehrin A (SfA) and ANT-1 siRNA-depletion dramatically inhibited curcumin-induced cytochrome C release and WM-115 cell death. CyPD is required for curcumin-induced melanoma cell death. The CyPD inhibitor cyclosporin A (CsA) or CyPD siRNA-depletion inhibited curcumin-induced WM-115 cell death and apoptosis, while WM-115 cells with CyPD over-expression were hyper-sensitive to curcumin. Finally, we found that C6 ceramide enhanced curcumin-induced cytotoxicity probably through facilitating mPTP opening, while CsA and SfA as well as CyPD and ANT-1 siRNAs alleviated C6 ceramide's effect on curcumin in WM-115 cells. Together, these results suggest that curcumin-induced melanoma cell death is associated with mPTP opening.
Collapse
Affiliation(s)
- Ying Qiu
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China.
| | - Teng Yu
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| | - Wei Wang
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| | - Kun Pan
- Department of Dermatology, The Skin Disease Hospital of Ji-ning City, Ji-ning City, Shandong Province 272011, PR China
| | - Dongmei Shi
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| | - Hui Sun
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| |
Collapse
|
31
|
Wang M, Yu T, Zhu C, Sun H, Qiu Y, Zhu X, Li J. Resveratrol triggers protective autophagy through the ceramide/Akt/mTOR pathway in melanoma B16 cells. Nutr Cancer 2014; 66:435-40. [PMID: 24579778 DOI: 10.1080/01635581.2013.878738] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene, RSV), a natural polyphenolic compound, is known as a promising anti-cancer agent. In this study, we showed that RSV could inhibit the growth of B16 cells via induction of apoptosis. Moreover, our results showed for the first time that RSV induced autophagy in B16 cells, which might occur through ceramide accumulation and Akt/mTOR pathway inhibition. Inhibition of autophagy by an autophagic inhibitor 3-methyladenine (3-MA) or si-Beclin 1 enhanced RSV-induced cytotoxicity and apoptosis. Thus, autophagy inhibition represents a promising approach to improve the efficacy of RSV in the treatment of patients with melanoma.
Collapse
Affiliation(s)
- Meng Wang
- a Department of Oncology , Shandong Jining No.1 People's Hospital , Jining , China
| | | | | | | | | | | | | |
Collapse
|
32
|
Dhule SS, Penfornis P, He J, Harris MR, Terry T, John V, Pochampally R. The combined effect of encapsulating curcumin and C6 ceramide in liposomal nanoparticles against osteosarcoma. Mol Pharm 2014; 11:417-27. [PMID: 24380633 DOI: 10.1021/mp400366r] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examines the antitumor potential of curcumin and C6 ceramide (C6) against osteosarcoma (OS) cell lines when both are encapsulated in the bilayer of liposomal nanoparticles. Three liposomal formulations were prepared: curcumin liposomes, C6 liposomes and C6-curcumin liposomes. Curcumin in combination with C6 showed 1.5 times enhanced cytotoxic effect in the case of MG-63 and KHOS OS cell lines, in comparison with curcumin liposomes alone. Importantly, C6-curcumin liposomes were found to be less toxic on untransformed primary human cells (human mesenchymal stem cells) in comparison to OS cell lines. In addition, cell cycle assays on a KHOS cell line after treatment revealed that curcumin only liposomes induced G2/M arrest by upregulation of cyclin B1, while C6 only liposomes induced G1 arrest by downregulation of cyclin D1. C6-curcumin liposomes induced G2/M arrest and showed a combined effect in the expression levels of cyclin D1 and cyclin B1. The efficiency of the preparations was tested in vivo using a human osteosarcoma xenograft assay. Using pegylated liposomes to increase the plasma half-life and tagging with folate (FA) for targeted delivery in vivo, a significant reduction in tumor size was observed with C6-curcumin-FA liposomes. The encapsulation of two water insoluble drugs, curcumin and C6, in the lipid bilayer of liposomes enhances the cytotoxic effect and validates the potential of combined drug therapy.
Collapse
Affiliation(s)
- Santosh S Dhule
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | | | | | | | | | | | | |
Collapse
|
33
|
Yu T, Ji J, Guo YL. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells. Biochem Biophys Res Commun 2013; 441:53-8. [PMID: 24134840 DOI: 10.1016/j.bbrc.2013.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/04/2013] [Indexed: 12/20/2022]
Abstract
Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.
Collapse
Affiliation(s)
- Teng Yu
- Department of Dermatology, Shandong Ji-ning No. 1 People's Hospital, Shandong Province 272011, PR China.
| | | | | |
Collapse
|
34
|
Beckham TH, Lu P, Jones EE, Marrison T, Lewis CS, Cheng JC, Ramshesh VK, Beeson G, Beeson CC, Drake RR, Bielawska A, Bielawski J, Szulc ZM, Ogretmen B, Norris JS, Liu X. LCL124, a cationic analog of ceramide, selectively induces pancreatic cancer cell death by accumulating in mitochondria. J Pharmacol Exp Ther 2013; 344:167-78. [PMID: 23086228 PMCID: PMC3533418 DOI: 10.1124/jpet.112.199216] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/15/2012] [Indexed: 12/19/2022] Open
Abstract
Treatment of pancreatic cancer that cannot be surgically resected currently relies on minimally beneficial cytotoxic chemotherapy with gemcitabine. As the fourth leading cause of cancer-related death in the United States with dismal survival statistics, pancreatic cancer demands new and more effective treatment approaches. Resistance to gemcitabine is nearly universal and appears to involve defects in the intrinsic/mitochondrial apoptotic pathway. The bioactive sphingolipid ceramide is a critical mediator of apoptosis initiated by a number of therapeutic modalities. It is noteworthy that insufficient ceramide accumulation has been linked to gemcitabine resistance in multiple cancer types, including pancreatic cancer. Taking advantage of the fact that cancer cells frequently have more negatively charged mitochondria, we investigated a means to circumvent resistance to gemcitabine by targeting delivery of a cationic ceramide (l-t-C6-CCPS [LCL124: ((2S,3S,4E)-2-N-[6'-(1″-pyridinium)-hexanoyl-sphingosine bromide)]) to cancer cell mitochondria. LCL124 was effective in initiating apoptosis by causing mitochondrial depolarization in pancreatic cancer cells but demonstrated significantly less activity against nonmalignant pancreatic ductal epithelial cells. Furthermore, we demonstrate that the mitochondrial membrane potentials of the cancer cells were more negative than nonmalignant cells and that dissipation of this potential abrogated cell killing by LCL124, establishing that the effectiveness of this compound is potential-dependent. LCL124 selectively accumulated in and inhibited the growth of xenografts in vivo, confirming the tumor selectivity and therapeutic potential of cationic ceramides in pancreatic cancer. It is noteworthy that gemcitabine-resistant pancreatic cancer cells became more sensitive to subsequent treatment with LCL124, suggesting that this compound may be a uniquely suited to overcome gemcitabine resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Thomas H Beckham
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Morad SAF, Levin JC, Shanmugavelandy SS, Kester M, Fabrias G, Bedia C, Cabot MC. Ceramide--antiestrogen nanoliposomal combinations--novel impact of hormonal therapy in hormone-insensitive breast cancer. Mol Cancer Ther 2012; 11:2352-61. [PMID: 22962326 DOI: 10.1158/1535-7163.mct-12-0594] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although the sphingolipid ceramide exhibits potent tumor suppressor effects, efforts to harness this have been hampered by poor solubility, uptake, bioavailability, and metabolic conversion. Therefore, identification of avenues to improve efficacy is necessary for development of ceramide-based therapies. In this study, we used mutant p53, triple-negative breast cancer (TNBC) cells, a type of breast cancer highly refractory to treatment, and cell-permeable nanoliposomal C6-ceramide in conjunction with the antiestrogen tamoxifen, which has been shown to be an effective modulator of ceramide metabolism. We show for the first time that nanoliposomal tamoxifen enhances nanoliposomal C6-ceramide cytotoxicity in cultured TNBC cells, a response that was accompanied by induction of cell-cycle arrest at G(1) and G(2), caspase-dependent induction of DNA fragmentation, and enhanced mitochondrial and lysosomal membrane permeability at 18 and 2 hours, respectively. Tamoxifen metabolites were also effective. Only tamoxifen promoted lysosomal membrane permeability. In addition, we show for the first time that tamoxifen inhibits acid ceramidase, as measured in intact cell assays; this effect was irreversible. Together, our findings show that tamoxifen magnifies the antiproliferative effects of C6-ceramide via combined targeting of cell-cycle traverse and lysosomal and mitochondrial integrity. We adduce that C6-ceramide-induced apoptosis is amplified by tamoxifen's impact on lysosomes and perhaps accompanying inhibition of acid ceramidase, which could result in decreased levels of sphingosine 1-phosphate. This drug regimen could serve as a promising therapy for chemoresistant and triple-negative types of breast cancer, and thus represents an indication for tamoxifen, irrespective of estrogen receptor status.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Experimental Therapeutics, John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Liu X, Xie D, Chen R, Mei M, Zou J, Chen X, Dai J. A furantaxane with an unusual 6/8/6/5 ring system and potent tumor MDR reversal activity obtained via microbial transformation. Org Lett 2012; 14:4106-9. [PMID: 22852759 DOI: 10.1021/ol301755n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A furantaxane (4) with an unusual 6/8/6/5 ring system and two hydroxylated products (2, 3) were isolated following the biotransformation of a taxane (1) by Streptomyces griseus. The structures of the isolates were elucidated by spectroscopic analysis. The absolute configuration of 4, which exhibited potent reversal activity in the A549/taxol MDR tumor cell line, was unambiguously deduced by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Yang YL, Ji C, Cheng L, He L, Lu CC, Wang R, Bi ZG. Sphingosine kinase-1 inhibition sensitizes curcumin-induced growth inhibition and apoptosis in ovarian cancer cells. Cancer Sci 2012; 103:1538-45. [PMID: 22594559 DOI: 10.1111/j.1349-7006.2012.02335.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 01/11/2023] Open
Abstract
Recent published studies suggest that increasing levels of ceramides enhance the chemo-sensitivity of curcumin. Using in vitro approaches, we analyzed the impact of sphingosine kinase-1 (SphK-1) inhibition on ceramide production, and evaluated SphK1 inhibitor II (SKI-II) as a potential curcumin chemo-sensitizer in ovarian cancer cells. We found that SphK1 is overexpressed in ovarian cancer patients' tumor tissues and in cultured ovarian cancer cell lines. Inhibition of SphK1 by SKI-II or by RNA interference (RNAi) knockdown dramatically enhanced curcumin-induced apoptosis and growth inhibition in ovarian cancer cells. SKI-II facilitated curcumin-induced ceramide production, p38 activation and Akt inhibition. Inhibition of p38 by the pharmacological inhibitor (SB 203580), a dominant-negative expression vector, or by RNAi diminished curcumin and SKI-II co-administration-induced ovarian cancer cell apoptosis. In addition, restoring Akt activation introducing a constitutively active Akt, or inhibiting ceramide production by fumonisin B1 also inhibited the curcumin plus SKI-II co-administration-induced in vitro anti-ovarian cancer effect, suggesting that ceramide accumulation, p38 activation and Akt inhibition are downstream effectors. Our findings suggest that low, well-tolerated doses of SKI-II may offer significant improvement to the clinical curcumin treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yan-li Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen MB, Wu XY, Tao GQ, Liu CY, Chen J, Wang LQ, Lu PH. Perifosine sensitizes curcumin-induced anti-colorectal cancer effects by targeting multiple signaling pathways bothin vivoandin vitro. Int J Cancer 2012; 131:2487-98. [DOI: 10.1002/ijc.27548] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/02/2012] [Indexed: 01/05/2023]
|
39
|
Yu T, Li J, Qiu Y, Sun H. 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) facilitates curcumin-induced melanoma cell apoptosis by enhancing ceramide accumulation, JNK activation, and inhibiting PI3K/AKT activation. Mol Cell Biochem 2011; 361:47-54. [PMID: 21959977 DOI: 10.1007/s11010-011-1086-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 09/16/2011] [Indexed: 01/10/2023]
Abstract
The majority of metastatic melanomas are resistant to different chemotherapeutic agents, consequently, the search for novel anti-melanoma agents and adjuvant is urgent. Here, we found that 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glycosphingolipid biosynthesis, enhanced curcumin-induced cell growth inhibition and apoptosis in two melanoma cell lines (WM-115 and B16). PDMP facilitated curcumin-induced ceramide accumulation; the latter contributed to melanoma cell apoptosis. PDMP also dramatically enhanced curcumin-induced c-Jun N-terminal kinase activation, which was important to melanoma cell apoptosis. Meanwhile, curcumin plus PDMP treatment largely inhibited the activation of pro-survival PI3K/AKT signal pathway. In conclusion, PDMP-sensitized curcumin-induced melanoma cell growth inhibition and apoptosis in vitro due to changes of multiple signal events. Combining PDMP with curcumin may represent a new therapeutic intervention against melanoma.
Collapse
Affiliation(s)
- Teng Yu
- Jining Medical University, Jining, Shandong Province, People's Republic of China.
| | | | | | | |
Collapse
|
40
|
Abusnina A, Keravis T, Yougbaré I, Bronner C, Lugnier C. Anti-proliferative effect of curcumin on melanoma cells is mediated by PDE1A inhibition that regulates the epigenetic integrator UHRF1. Mol Nutr Food Res 2011; 55:1677-89. [PMID: 22045655 DOI: 10.1002/mnfr.201100307] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/12/2011] [Accepted: 07/24/2011] [Indexed: 02/06/2023]
Abstract
SCOPE Curcumin inhibits proliferation of many cancer cells. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing intracellular cyclic adenosine-3',5'-monophosphate (cAMP) and/or cyclic guanosine-3',5'-monophosphate (cGMP), play a pivotal role in signalling pathways involved in cell proliferation. Therefore, this study investigated PDE1-5 participations in the anti-proliferative properties of curcumin in B16F10 murine melanoma cells. METHODS AND RESULTS We report that curcumin inhibits PDE1-5 activities (IC(50) ≅10(-5) M), indicating that curcumin acts as a non-selective PDE inhibitor. In melanoma cells, PDE4 and PDE1 represent the major cAMP-PDEs and cGMP-PDEs activities, respectively. Curcumin treatment decreased PDE1 and PDE4 activities and dose dependently increased intracellular cGMP levels, whereas cAMP levels were unchanged. Curcumin inhibited cell proliferation and cell cycle progression by accumulating cells in the S- and G2/M-phases with enhanced expressions of cyclin-dependent kinase inhibitors. In contrast, expressions of PDE1A, cyclin A and the epigenetic integrator ubiquitin-like containing PHD and Ring Finger domains 1 (UHRF1) and DNA methyltransferase 1 (DNMT1) were decreased by curcumin. Interestingly, PDE1A overexpression increased UHRF1 and DNMT1 expressions and rescued the B16F10 cells from curcumin anti-proliferative effects. Nimodipine, a PDE1 inhibitor, mimicked the curcumin effects. CONCLUSION Curcumin exerts its anti-cancer property by targeting PDE1 that inhibits melanoma cell proliferation via UHRF1, DNMT1, cyclin A, p21 and p27 regulations. This suggests that natural PDE1 inhibitors present in food might be effective in preventing cancer.
Collapse
Affiliation(s)
- Abdurazzag Abusnina
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | | | | | | | | |
Collapse
|
41
|
Abstract
Cutaneous melanoma, a cancer of melanocytes, when detected at later stages is arguably one of the most lethal cancers and the cause of more years of lost life than any other cancer among young adults. There is no standard therapy for advanced-stage melanoma and the median survival time for patients with metastatic melanoma is <1 yr. An urgent need for novel strategies against melanoma has directed research towards the development of new chemotherapeutic and biologic agents that can target the tumor by several different mechanisms. Recently, several dietary agents are being investigated for their role in the prevention and treatment of various forms of cancer and may represent the future modality of the treatment. Here, we have reviewed emerging data on botanicals that are showing promise for their potential inhibitory effect against cutaneous melanoma.
Collapse
Affiliation(s)
- Deeba N Syed
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
42
|
Sun H, Yu T, Li J. Co-administration of perifosine with paclitaxel synergistically induces apoptosis in ovarian cancer cells: more than just AKT inhibition. Cancer Lett 2011; 310:118-28. [PMID: 21775054 DOI: 10.1016/j.canlet.2011.06.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/09/2011] [Accepted: 06/12/2011] [Indexed: 12/28/2022]
Abstract
Here we report an oral alkylphospholipid perifosine dramatically sensitizes chemo-resistant ovarian cancer cells to paclitaxel induced cell death and apoptosis in vitro. We found that co-administration perifosine with paclitaxel in human ovarian cancer cells led to the inhibition of AKT/mTOR complex 1 (mTORC1), a marked increase in ceramide and reactive oxygen species (ROS) production, and a striking increase in the activation of pro-apoptosis pathways, including caspase 3, c-Jun N-terminal kinases (JNK) and AMP-activated protein kinase (AMPK). These signaling events together caused a marked increase of cancer cell apoptosis. Combining paclitaxel with perifosine may represent a novel anti-ovarian cancer strategy.
Collapse
Affiliation(s)
- Hui Sun
- Central Lab., Jining First People's Hospital, 6 Jiankang Road, Jining City, Shandong Province 272111, PR China
| | | | | |
Collapse
|