1
|
Hertz DL, Joerger M, Bang YJ, Mathijssen RH, Zhou C, Zhang L, Gandara D, Stahl M, Monk BJ, Jaehde U, Beumer JH. Paclitaxel therapeutic drug monitoring - International association of therapeutic drug monitoring and clinical toxicology recommendations. Eur J Cancer 2024; 202:114024. [PMID: 38513383 PMCID: PMC11053297 DOI: 10.1016/j.ejca.2024.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Paclitaxel, one of the most frequently used anticancer drugs, is dosed by body surface area, which leads to substantial inter-individual variability in systemic drug exposure. We evaluated clinical evidence regarding the scientific rationale and clinical benefit of individualized paclitaxel dosing based on measured systemic concentrations, known as therapeutic drug monitoring (TDM). In retrospective studies, higher systemic exposure is associated with greater toxicity and efficacy of paclitaxel treatment across several disease types and dosing regimens. In prospective trials, TDM reduces variability in systemic exposure, and has been demonstrated to reduce toxicity while retaining treatment efficacy for 3-weekly dosing in patients with advanced non-small cell lung cancer. Despite the demonstrated benefits of paclitaxel TDM, clinical adoption has been limited due to the challenges with sample collection and analysis. Based on our review, we strongly recommend TDM for patients receiving every 3-week paclitaxel in combination with a platinum agent for advanced NSCLC, due to the prospectively demonstrated clinical benefits, and find moderate evidence to recommend TDM for paclitaxel 3-hour infusions for other tumor types and preliminary evidence suggesting potential usefulness for paclitaxel administered by 1-hour infusions.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Markus Joerger
- Department of Medical Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland.
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Ron H Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - David Gandara
- Division of Hematology-Oncology, University of California, Davis, 4501 X Street, Suite, 3016, Sacramento, CA, USA
| | - Michael Stahl
- Department of Medical Oncology, Evang. Kliniken Essen-Mitte, Essen, Germany
| | - Bradley J Monk
- GOG-Foundation, University of Arizona College of Medicine, Creighton University School of Medicine, Phoenix, USA
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Radovanovic M, Galettis P, Flynn A, Martin JH, Schneider JJ. Paclitaxel and Therapeutic Drug Monitoring with Microsampling in Clinical Practice. Pharmaceuticals (Basel) 2023; 17:63. [PMID: 38256896 PMCID: PMC10820540 DOI: 10.3390/ph17010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Paclitaxel is an anticancer agent efficacious in various tumors. There is large interindividual variability in drug plasma concentrations resulting in a wide variability in observed toxicity in patients. Studies have shown the time the concentration of paclitaxel exceeds 0.05 µM is a predictive parameter of toxicity, making dose individualization potentially useful in reducing the adverse effects. To determine paclitaxel drug concentration, a venous blood sample collected 24 h following the end of infusion is required, often inconvenient for patients. Alternatively, using a microsampling device for self-sampling would facilitate paclitaxel monitoring regardless of the patient's location. We investigated the feasibility of collecting venous and capillary samples (using a Mitra® device) from cancer patients to determine the paclitaxel concentrations. The relationship between the venous plasma and whole blood and venous and capillary blood (on Mitra®) paclitaxel concentrations, defined by a Passing-Bablok regression, were 0.8433 and 0.8569, respectively. Demonstrating a clinically acceptable relationship between plasma and whole blood paclitaxel concentration would reduce the need to establish new target concentrations in whole blood. However, in this study, comparison of venous and capillary blood using Mitra® for sampling displayed wide confidence intervals suggesting the results from the plasma and whole blood on this device may not be interchangeable.
Collapse
Affiliation(s)
- Mirjana Radovanovic
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW 2308, Australia; (P.G.); (A.F.); (J.H.M.); (J.J.S.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Peter Galettis
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW 2308, Australia; (P.G.); (A.F.); (J.H.M.); (J.J.S.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alex Flynn
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW 2308, Australia; (P.G.); (A.F.); (J.H.M.); (J.J.S.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Jennifer H. Martin
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW 2308, Australia; (P.G.); (A.F.); (J.H.M.); (J.J.S.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Jennifer J. Schneider
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW 2308, Australia; (P.G.); (A.F.); (J.H.M.); (J.J.S.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
3
|
Paclitaxel exposure-toxicity analysis reveals a pharmacokinetic determinant for dose-limiting neutropenia in East-Asian solid tumor patients: results from two prospective, phase II studies. Cancer Chemother Pharmacol 2022; 90:229-237. [PMID: 35922567 DOI: 10.1007/s00280-022-04456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE The time of a paclitaxel (PTX) concentration remains above 0.05 μM (Tc > 0.05) has been associated with PTX-induced adverse effects in Caucasians, while limited studies were reported in Asians. This study was aimed to explore the characteristics of Tc > 0.05 and the relationship between PTX exposure and toxicity in East-Asian patients. METHODS This study was based on two prospective phase II clinical trials and patients with advanced nasopharyngeal cancer (NPC) and non-small cell lung cancer (NSCLC) who were naïve to PTX were included independently. Eligible patients receive PTX (175 mg/m2) and carboplatin (AUC = 5) treatment every 3 weeks. PTX pharmacokinetic analysis was accessed. The relationship between PTX exposure and toxicities after first cycle as well as clinical efficacy was evaluated. RESULTS A total of 93 NPC and 40 NSCLC patients were enrolled. PTX exposure was consistent in two trials with average Tc > 0.05 duration of 38.8 h and 38.4 h, respectively. Average Tc > 0.05 in patients with grade 3/4 neutropenia was significantly higher than those without severe neutropenia in NPC patients (P = 0.003) and NSCLC patients (P = 0.007). Cut-off value of Tc > 0.05 were identified from the NPC cohort and then verified in the NSCLC cohort, dividing patients into high exposure Tc > 0.05 group (> 39 h) and low exposure group (≤ 39 h). Incidence of grade 3/4 neutropenia were significantly higher in the high exposure group in NPC cohort (43.3% vs 10.0%, P < 0.001) and NSCLC cohort (42.1% vs 9.5%, P = 0.028). No significant relationship between Tc > 0.05 and efficacy were observed. CONCLUSION Patients with PTX Tc > 0.05 duration above 39 h experience more severe neutropenia than those under 39 h. Prospective studies are needed to verify this threshold.
Collapse
|
4
|
Syrowatka A, Song W, Amato MG, Foer D, Edrees H, Co Z, Kuznetsova M, Dulgarian S, Seger DL, Simona A, Bain PA, Purcell Jackson G, Rhee K, Bates DW. Key use cases for artificial intelligence to reduce the frequency of adverse drug events: a scoping review. Lancet Digit Health 2022; 4:e137-e148. [PMID: 34836823 DOI: 10.1016/s2589-7500(21)00229-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 12/31/2022]
Abstract
Adverse drug events (ADEs) represent one of the most prevalent types of health-care-related harm, and there is substantial room for improvement in the way that they are currently predicted and detected. We conducted a scoping review to identify key use cases in which artificial intelligence (AI) could be leveraged to reduce the frequency of ADEs. We focused on modern machine learning techniques and natural language processing. 78 articles were included in the scoping review. Studies were heterogeneous and applied various AI techniques covering a wide range of medications and ADEs. We identified several key use cases in which AI could contribute to reducing the frequency and consequences of ADEs, through prediction to prevent ADEs and early detection to mitigate the effects. Most studies (73 [94%] of 78) assessed technical algorithm performance, and few studies evaluated the use of AI in clinical settings. Most articles (58 [74%] of 78) were published within the past 5 years, highlighting an emerging area of study. Availability of new types of data, such as genetic information, and access to unstructured clinical notes might further advance the field.
Collapse
Affiliation(s)
- Ania Syrowatka
- Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Wenyu Song
- Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mary G Amato
- Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA; Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Dinah Foer
- Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Heba Edrees
- Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA; Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Zoe Co
- Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Sevan Dulgarian
- Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Diane L Seger
- Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Aurélien Simona
- Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul A Bain
- Countway Library of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gretchen Purcell Jackson
- IBM Watson Health, Cambridge, MA, USA; Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyu Rhee
- IBM Watson Health, Cambridge, MA, USA; CVS Health, Wellesley Hills, MA, USA
| | - David W Bates
- Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Harvard T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
van Doorn L, Crombag MRBS, Rier HN, van Vugt JLA, van Kesteren C, Bins S, Mathijssen RHJ, Levin MD, Koolen SLW. The Influence of Body Composition on the Systemic Exposure of Paclitaxel in Esophageal Cancer Patients. Pharmaceuticals (Basel) 2021; 14:ph14010047. [PMID: 33435449 PMCID: PMC7827486 DOI: 10.3390/ph14010047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Changes in body composition are associated with chemotherapy-related toxicities and effectiveness of treatment. It is hypothesized that the pharmacokinetics (PK) of chemotherapeutics may depend on body composition. The effects of body composition on the variability of paclitaxel PK were studied in patients with esophageal cancer. Skeletal muscle index (SMI), visceral adipose tissue (VAT), and skeletal muscle density (SMD) were measured at the third lumbar vertebra on computed tomography (CT) scans performed before treatment. Paclitaxel PK data were collected from a prospective study performed between May 2004 and January 2014. Non-linear mixed-effects modeling was used to fit paclitaxel PK profiles and evaluate the covariates body surface area (BSA), SMI, VAT, and SMD using a significance threshold of p < 0.001. Paclitaxel was administered to 184 patients in a dose range of 50 to 175 mg/m2. Median BSA was 1.98 m2 (range of 1.4 to 2.8 m2). SMI, VAT, and SMD were not superior to BSA in predicting paclitaxel PK. The additive value of SMI, VAT, and SMD to BSA was also negligible. We did not find evidence that paclitaxel dosing could be further optimized by correcting for SMI, VAT, or SMD.
Collapse
Affiliation(s)
- Leni van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (S.B.); (R.H.J.M.); (S.L.W.K.)
- Correspondence:
| | - Marie-Rose B. S. Crombag
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Hánah N. Rier
- Department of Internal Medicine, Albert Schweitzer Hospital, 3318 AT Dordrecht, The Netherlands; (H.N.R.); (M.-D.L.)
| | - Jeroen L. A. van Vugt
- Department of Surgery, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | | | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (S.B.); (R.H.J.M.); (S.L.W.K.)
| | - Ron H. J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (S.B.); (R.H.J.M.); (S.L.W.K.)
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, 3318 AT Dordrecht, The Netherlands; (H.N.R.); (M.-D.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (S.B.); (R.H.J.M.); (S.L.W.K.)
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
6
|
Ojara FW, Henrich A, Frances N, Huisinga W, Hartung N, Joerger M, Kloft C. Time-to-Event Analysis of Paclitaxel-Associated Peripheral Neuropathy in Advanced Non-Small-Cell Lung Cancer Highlighting Key Influential Treatment/Patient Factors. J Pharmacol Exp Ther 2020; 375:430-438. [PMID: 33008871 DOI: 10.1124/jpet.120.000053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022] Open
Abstract
Paclitaxel-associated peripheral neuropathy (PN), a major dose-limiting toxicity, significantly impacts patients' quality of life/treatment outcome. Evaluation of risk factors often ignores time of PN onset, precluding the impact of time-dependent factors, e.g., drug exposure, needed to comprehensively characterize PN. We employed parametric time-to-event (TTE) analysis to describe the time course of risk of first occurrence of clinically relevant PN grades ≥2 (PN2+, n = 105, common terminology criteria v4.0) and associated patient/treatment characteristics, leveraging data from 365 patients (1454 cycles) receiving paclitaxel every 3 weeks (plus carboplatin AUC = 6 or cisplatin 80 mg/m2) for ≤6 cycles. Paclitaxel was intravenously administered (3 hours) as standard 200-mg/m2 doses (n = 182) or as pharmacokinetic-guided dosing (n = 183). A cycle-varying hazard TTE model linking surge in hazard of PN2+ to paclitaxel administration [PN2+ proportions (i.e., cases per 1000 patients), 1st day, cycle 1: 4.87 of 1000; cycle 6: 7.36 of 1000] and linear decline across cycle (last day, cycle 1: 1.64 of 1000; cycle 6: 2.48 of 1000) adequately characterized the time-varying hazard of PN2+. From joint covariate evaluation, PN2+ proportions (1st day, cycle 1) increased by 1.00 per 1000 with 5-μmol·h/l higher paclitaxel exposure per cycle (AUC between the start and end of a cycle, most relevant covariate), 0.429 per 1000 with 5-year higher age, 1.31 per 1000 (smokers vs. nonsmokers), and decreased by 0.670 per 1000 (females vs. males). Compared to 200 mg/m2 dosing every 3 weeks, model-predicted cumulative risk of PN2+ was significantly higher (42%) with 80 mg/m2 weekly dosing but reduced by 11% with 175 mg/m2 dosing every 3 weeks. The established TTE modeling framework enables quantification and comparison of patient's cumulative risks of PN2+ for different clinically relevant paclitaxel dosing schedules, sparing patients PN2+ to improve paclitaxel therapy. SIGNIFICANCE STATEMENT: Characterization of risk factors of paclitaxel-associated peripheral neuropathy (PN) typically involves time-independent comparison of PN odds in patient subpopulations, concealing the impact of time-dependent factors, e.g., changing paclitaxel exposure, required to comprehensively characterize PN. We developed a parametric time-to-event model describing the time course in risk of clinically relevant paclitaxel-associated PN, identifying the highest risk in older male smokers with higher paclitaxel area under the plasma concentration-time curve between the start and end of a cycle. The developed framework enabled quantification of patient's risk of PN for clinically relevant paclitaxel dosing schedules, facilitating future dosing decisions.
Collapse
Affiliation(s)
- Francis W Ojara
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Andrea Henrich
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Nicolas Frances
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Wilhelm Huisinga
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Niklas Hartung
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Markus Joerger
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| |
Collapse
|
7
|
Sharma MR, Mehrotra S, Gray E, Wu K, Barry WT, Hudis C, Winer EP, Lyss AP, Toppmeyer DL, Moreno-Aspitia A, Lad TE, Velasco M, Overmoyer B, Rugo HS, Ratain MJ, Gobburu JV. Personalized Management of Chemotherapy-Induced Peripheral Neuropathy Based on a Patient Reported Outcome: CALGB 40502 (Alliance). J Clin Pharmacol 2019; 60:444-452. [PMID: 31802506 DOI: 10.1002/jcph.1559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (henceforth, neuropathy) is often dose limiting and is generally managed by empirical dose modifications. We aimed to (1) identify an early time point that is predictive of future neuropathy using a patient-reported outcome and (2) propose a dose-adjustment algorithm based on simulated data to manage neuropathy. In previous work, a dose-neuropathy model was developed using dosing and patient-reported outcome data from Cancer and Leukemia Group B 40502 (Alliance), a randomized phase III trial of paclitaxel, nanoparticle albumin-bound paclitaxel or ixabepilone as first-line chemotherapy for locally recurrent or metastatic breast cancer. In the current work, an early time point that is predictive of the future severity of neuropathy was identified based on predictive accuracy of the model. Using the early data and model parameters, simulations were conducted to propose a dose-adjustment algorithm for the prospective management of neuropathy in individual patients. The end of the first 3 cycles (12 weeks) was identified as the early time point based on a predictive accuracy of 75% for the neuropathy score after 6 cycles. For paclitaxel, nanoparticle albumin-bound paclitaxel, and ixabepilone, simulations with the proposed dose-adjustment algorithm resulted in 61%, 48%, and 35% fewer patients, respectively, with neuropathy score ≥8 after 6 cycles compared to no dose adjustment. We conclude that early patient-reported outcome data on neuropathy can be used to guide dose adjustments in individual patients that reduce the severity of future neuropathy. Prospective validation of this approach should be undertaken in future studies.
Collapse
Affiliation(s)
| | - Shailly Mehrotra
- Center for Translational Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Kehua Wu
- The University of Chicago, Chicago, Illinois, USA
| | - William T Barry
- Alliance Statistics and Data Center, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Clifford Hudis
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric P Winer
- Dana-Farber/Partners CancerCare/Harvard Cancer Center, Boston, Massachusetts, USA
| | - Alan P Lyss
- Heartland Cancer Research NCORP, St. Louis, Missouri, USA
| | | | | | - Thomas E Lad
- John H. Stroger Jr Hospital of Cook County, Chicago, Illinois, USA
| | - Mario Velasco
- Decatur Memorial Hospital/Cancer Care Specialists of Illinois/Heartland Cancer Research NCORP, Decatur, Illinois, USA
| | - Beth Overmoyer
- Dana-Farber/Partners CancerCare/Harvard Cancer Center, Boston, Massachusetts, USA
| | - Hope S Rugo
- University of California San Francisco, San Francisco, California, USA
| | | | - Jogarao V Gobburu
- Center for Translational Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Does Older Age Lead to Higher Risk for Neutropenia in Patients Treated with Paclitaxel? Pharm Res 2019; 36:163. [PMID: 31617004 DOI: 10.1007/s11095-019-2697-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/02/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE There is ongoing concern regarding increased toxicity from paclitaxel in elderly patients, particularly of severe neutropenia. Yet, data so far is controversial and this concern is not supported by a clinically relevant age-dependent difference in pharmacokinetics (PK) of paclitaxel. This study assessed whether age is associated with increased risk for paclitaxel-induced neutropenia. METHODS Paclitaxel plasma concentration-time data, pooled from multiple different studies, was combined with available respective neutrophil count data during the first treatment cycle. Paclitaxel pharmacokinetic-pharmacodynamic (PK-PD) data was modeled using a non-linear mixed effects approach and a semiphysiological neutropenia model, where systemic paclitaxel exposure was linked to reduced proliferation of neutrophils. The impact of age was evaluated on relevant variables in the model, using a significance threshold of p < 0.005. RESULTS Paclitaxel PK-PD data was evaluated from 300 patients, with a median age of 65 years (range 23-84 years), containing 116 patients ≥70 years (39%). First cycle neutrophil counts were adequately described by a threshold effect model of paclitaxel on the proliferation rate of neutrophils. Age as a continuous or dichotomous variable (≥70 versus <70 years) did not significantly impact sensitivity of the bone marrow to paclitaxel nor the average maturation time of neutrophils (both p > 0.005), causing a decline in the respective interindividual variability of <1%. CONCLUSION Results from this large retrospective patient cohort do not suggest elderly patients to be at an increased risk of developing paclitaxel-associated neutropenia during the first treatment cycle. Reflexive dose reductions of paclitaxel in elderly patients are unlikely to improve the risk of severe neutropenia and may be deleterious.
Collapse
|
9
|
Guo X, Sun H, Dong J, Feng Y, Li H, Zhuang R, Wang P, Cai W, Zhou Y. Does nab-paclitaxel have a higher incidence of peripheral neuropathy than solvent-based paclitaxel? Evidence from a systematic review and meta-analysis. Crit Rev Oncol Hematol 2019; 139:16-23. [PMID: 31112878 DOI: 10.1016/j.critrevonc.2019.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Paclitaxel-induced peripheral neuropathy is a common reason for dose reduction or early cessation of therapy. Nab-paclitaxel was developed to provide additional clinical benefits and overcome the safety drawbacks of solvent-based paclitaxel. However, the incidence of peripheral neuropathy induced by nab-paclitaxel was reported higher than solvent-based paclitaxel but evidence remains inconsistent. Therefore, we conducted a meta-analysis to compare the incidence and severity of peripheral neuropathy between nab-paclitaxel and solvent-based paclitaxel mono-chemotherapy. In total, 24 articles were included in this meta-analysis. Results revealed the incidence of peripheral neuropathy induced by nab-paclitaxel was higher than solvent-based paclitaxel. The dosage and assessment method could influence the comparison of the incidence and severity of peripheral neuropathy between nab-paclitaxel and solvent-based paclitaxel. Current evidence suggests the incidence of peripheral neuropathy induced by nab-paclitaxel was higher than solvent-based paclitaxel among cancer patients received mono-chemotherapy. When received nab-paclitaxel, more attention should be paid to peripheral neuropathy.
Collapse
Affiliation(s)
- Xi Guo
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Sun
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Jihong Dong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Feng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongyuan Zhuang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peipei Wang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Christner SM, Parise RA, Ivy PS, Tawbi H, Chu E, Beumer JH. Quantitation of paclitaxel, and its 6-alpha-OH and 3-para-OH metabolites in human plasma by LC-MS/MS. J Pharm Biomed Anal 2019; 172:26-32. [PMID: 31022613 DOI: 10.1016/j.jpba.2019.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/27/2022]
Abstract
We have developed a high performance liquid chromatography mass spectrometry method for quantitating paclitaxel and its 6-alpha-OH and 3-para-OH metabolites in 0.1 mL human plasma. After MTBE liquid-liquid extraction, chromatographic separation was achieved with a Phenomenex synergy polar reverse phase (4 μm, 2 mm × 50 mm) column and a gradient of 0.1% formic acid in acetonitrile and water over an 8 min run time. Mass spectrometric detection was performed on an ABI SCIEX 4000Q with electrospray, positive-mode ionization. The assay was linear from 10-10,000 ng/mL for paclitaxel and 1-1000 ng/mL for both metabolites and proved to be accurate (94.3-110.4%) and precise (<11.3%CV). Recovery from plasma was 59.3-91.3% and matrix effect was negligible (-3.5 to 6.2%). Plasma freeze thaw stability (90.2-107.0%), stability for 37 months at -80 °C (89.4-112.6%), and stability for 4 h at room temperature (87.7-100.0%) were all acceptable. This assay will be an essential tool to further define the metabolism and pharmacology of paclitaxel and metabolites in the clinical setting. The assay may be utilized for therapeutic drug monitoring of paclitaxel and may also reveal the CYP2C8 and CYP3A4 activity phenotype of patients.
Collapse
Affiliation(s)
- Susan M Christner
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Robert A Parise
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Percy S Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, United States
| | - Hussein Tawbi
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Edward Chu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
11
|
Impact of Older Age on the Exposure of Paclitaxel: a Population Pharmacokinetic Study. Pharm Res 2019; 36:33. [PMID: 30617624 DOI: 10.1007/s11095-018-2563-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE Limited available data suggest that older patients are more prone to develop paclitaxel-induced toxicity than their younger peers. It remains unclear whether this is related to age-dependent pharmacokinetics (PK) of paclitaxel. Primary objective of this study was to determine the influence of older age on the PK of paclitaxel. METHODS PK data of patients aged ≥70 years who received paclitaxel intravenously at the Netherlands Cancer Institute (NKI) and the Radboud University Medical Center between September 2012 and May 2017 were collected. These prospectively collected data were pooled with previously published databases from multiple clinical trials conducted at the NKI and Erasmus MC Cancer Institute. A previously developed 3-compartment population PK model with saturable distribution and elimination was used to describe paclitaxel plasma concentration-time data. Hereafter, influence of age on paclitaxel PK was assessed in a previously established full covariate model. RESULTS In total, paclitaxel PK data from 684 patients were available, consisting of 166 patients ≥70 years (24%). Median age of the cohort was 61 years (range 18 to 84 years). The impact of age, either treated as a continuous or dichotomous covariate (<70 versus ≥70 years), on the elimination of paclitaxel was only marginal but statistically significant (both p < 0.001 with no clinically relevant decrease in interindividual variability). For a typical patient, maximal elimination capacity decreased by only 5% for a 10-year increment of age. CONCLUSION In this extensive multi-center dataset, which included a considerable number of older patients, older age had no clinically relevant impact on paclitaxel PK.
Collapse
|
12
|
Marcath LA, Kidwell KM, Robinson AC, Vangipuram K, Burness ML, Griggs JJ, Poznak CV, Schott AF, Hayes DF, Henry NL, Hertz DL. Patients carrying CYP2C8*3 have shorter systemic paclitaxel exposure. Pharmacogenomics 2018; 20:95-104. [PMID: 30520341 DOI: 10.2217/pgs-2018-0162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM First, evaluate if patients carrying putatively diminished activity CYP2C8 genotype have longer paclitaxel exposure (e.g., time above threshold concentration of 0.05 μM [Tc >0.05]). Second, screen additional pharmacogenes for associations with Tc >0.05. Methods: Pharmacogene panel genotypes were translated into genetic phenotypes for associations with Tc >0.05 (n = 58). RESULTS Patients with predicted low-activity CYP2C8 had shorter Tc >0.05 after adjustment for age, body surface area and race (9.65 vs 11.03 hrs, β = 5.47, p = 0.02). This association was attributed to CYP2C8*3 (p = 0.006), not CYP2C8*4 (p = 0.58). Patients with predicted low-activity SLCO1B1 had longer Tc >0.05 (12.12 vs 10.15 hrs, β = 0.85, p = 0.012). CONCLUSION Contrary to previous publications, CYP2C8*3 may confer increased paclitaxel metabolic activity. SLCO1B1 and CYP2C8 genotype may explain some paclitaxel pharmacokinetic variability.
Collapse
Affiliation(s)
- Lauren A Marcath
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Kelley M Kidwell
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Adam C Robinson
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Kiran Vangipuram
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Monika L Burness
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer J Griggs
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Catherine Van Poznak
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anne F Schott
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Norah Lynn Henry
- Department of Internal Medicine, Division of Oncology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Validation of a Commercial Assay and Decision Support Tool for Routine Paclitaxel Therapeutic Drug Monitoring (TDM). Ther Drug Monit 2018; 39:617-624. [PMID: 28937535 DOI: 10.1097/ftd.0000000000000446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The value of therapeutic drug monitoring (TDM) for paclitaxel (PTX) was recently demonstrated in the largest TDM trial ever conducted in oncology. The trial demonstrated significant reduction in neuropathy when using TDM. Dose adjustment for PTX was based on time above a threshold concentration (Tc>0.05). Tc>0.05 must be calculated with a pharmacokinetic model and complex nonlinear mixed-effects software. The use of the software and chromatographic methods to measure PTX requires specialized expertise. User-friendly methods to quantitate PTX and calculate Tc>0.05 could simplify the introduction of TDM into routine clinical practice. METHODS The immunoassay (MyPaclitaxel) was used to quantitate PTX in samples from the clinical trial; the results were used to calculate Tc>0.05 using a stand-alone computer program with a simple, friendly graphical user interface for nonlinear mixed-effects pharmacokinetic calculations (MyCare Drug Exposure Calculator). The resulting dose recommendations from the calculated Tc>0.05 were compared with those using liquid chromatography-ultraviolet detection and NONMEM to examine the efficacy of the simpler tools for TDM. RESULTS There was a good agreement between the immunoassay and liquid chromatography-ultraviolet detection: Passing-Bablok regression slope was 1.045 and intercept was -6.00, R was 0.9757, and mean bias was -1.77 ng/mL (-2.07 nmol/L). Dosing recommendations were identical for 70% of the cycles and within 10% for 89% of the samples. All Tc>0.05 values were at the same or adjacent medical decision points. CONCLUSIONS MyPaclitaxel assay and MyCare Drug Exposure Calculator are convenient, user-friendly tools that may be suitable for routine TDM of PTX in clinical care.
Collapse
|
14
|
Hertz DL, Kidwell KM, Vangipuram K, Li F, Pai MP, Burness M, Griggs JJ, Schott AF, Van Poznak C, Hayes DF, Lavoie Smith EM, Henry NL. Paclitaxel Plasma Concentration after the First Infusion Predicts Treatment-Limiting Peripheral Neuropathy. Clin Cancer Res 2018; 24:3602-3610. [PMID: 29703818 DOI: 10.1158/1078-0432.ccr-18-0656] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/02/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022]
Abstract
Purpose: Paclitaxel exposure, specifically the maximum concentration (Cmax) and amount of time the concentration remains above 0.05 μmol/L (Tc>0.05), has been associated with the occurrence of paclitaxel-induced peripheral neuropathy. The objective of this study was to validate the relationship between paclitaxel exposure and peripheral neuropathy.Experimental Design: Patients with breast cancer receiving paclitaxel 80 mg/m2 × 12 weekly doses were enrolled in an observational clinical study (NCT02338115). Paclitaxel plasma concentration was measured at the end of and 16-26 hours after the first infusion to estimate Cmax and Tc>0.05 Patient-reported peripheral neuropathy was collected via CIPN20 at each dose, and an 8-item sensory subscale (CIPN8) was used in the primary analysis to test for an association with Tc>0.05 Secondary analyses were conducted using Cmax as an alternative exposure parameter and testing each parameter with a secondary endpoint of the occurrence of peripheral neuropathy-induced treatment disruption.Results: In 60 subjects included in the analysis, the increase in CIPN8 during treatment was associated with baseline CIPN8, cumulative dose, and relative dose intensity (P < 0.05), but neither Tc>0.05 (P = 0.27) nor Cmax (P = 0.99). In analyses of the secondary endpoint, cumulative dose (OR = 1.46; 95% confidence interval (CI), 1.18-1.80; P = 0.0008) and Tc>0.05 (OR = 1.79; 95% CI, 1.06-3.01; P = 0.029) or Cmax (OR = 2.74; 95% CI, 1.45-5.20; P = 0.002) were associated with peripheral neuropathy-induced treatment disruption.Conclusions: Paclitaxel exposure is predictive of the occurrence of treatment-limiting peripheral neuropathy in patients receiving weekly paclitaxel for breast cancer. Studies are warranted to determine whether exposure-guided dosing enhances treatment effectiveness and/or prevents peripheral neuropathy in these patients. Clin Cancer Res; 24(15); 3602-10. ©2018 AACR.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan. .,University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Kelley M Kidwell
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Kiran Vangipuram
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Feng Li
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Manjunath P Pai
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Monika Burness
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jennifer J Griggs
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anne F Schott
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Catherine Van Poznak
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ellen M Lavoie Smith
- Department of Health Behavior and Biological Sciences, University of Michigan School of Nursing, Ann Arbor, Michigan
| | - N Lynn Henry
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
15
|
Haviari S, You B, Tod M. In Silico Evaluation of Pharmacokinetic Optimization for Antimitogram-Based Clinical Trials. Cancer Res 2018; 78:1873-1882. [PMID: 29317432 DOI: 10.1158/0008-5472.can-17-1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/30/2017] [Accepted: 01/05/2018] [Indexed: 11/16/2022]
Abstract
Antimitograms are prototype in vitro tests for evaluating chemotherapeutic efficacy using patient-derived primary cancer cells. These tests might help optimize treatment from a pharmacodynamic standpoint by guiding treatment selection. However, they are technically challenging and require refinements and trials to demonstrate benefit to be widely used. In this study, we performed simulations aimed at exploring how to validate antimitograms and how to complement them by pharmacokinetic optimization. A generic model of advanced cancer, including pharmacokinetic-pharmacodynamic monitoring, was used to link dosing schedules with progression-free survival (PFS), as built from previously validated modules. This model was used to explore different possible situations in terms of pharmacokinetic variability, pharmacodynamic variability, and antimitogram performance. The model recapitulated tumor dynamics and standalone therapeutic drug monitoring efficacy consistent with published clinical results. Simulations showed that combining pharmacokinetic and pharmacodynamic optimization should increase PFS in a synergistic fashion. Simulated data were then used to compute required clinical trial sizes, which were 30% to 90% smaller when pharmacokinetic optimization was added to pharmacodynamic optimization. This improvement was observed even when pharmacokinetic optimization alone exhibited only modest benefit. Overall, our work illustrates the synergy derived from combining antimitograms with therapeutic drug monitoring, permitting a disproportionate reduction of the trial size required to prove a benefit on PFS. Accordingly, we suggest that strategies with benefits too small for standalone clinical trials could be validated in combination in a similar manner.Significance: This work offers a method to reduce the number of patients needed for a clinical trial to prove the hypothesized benefit of a drug to progression-free survival, possibly easing opportunities to evaluate combinations. Cancer Res; 78(7); 1873-82. ©2018 AACR.
Collapse
Affiliation(s)
- Skerdi Haviari
- EA3738 CTO, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins, France.
- Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Benoît You
- EA3738 CTO, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins, France
- Université Claude Bernard Lyon 1, Lyon, France
- Service d'Oncologie Médicale, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Michel Tod
- EA3738 CTO, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins, France.
- Université Claude Bernard Lyon 1, Lyon, France
- Pharmacie, Hôpital de la Croix Rousse, Hospices civils de Lyon, Lyon, France
| |
Collapse
|
16
|
Andriguetti NB, Hahn RZ, Lizot LF, Raymundo S, Costa JL, da Cunha KF, Vilela RM, Kluck HM, Schwartsmann G, Antunes MV, Linden R. Analytical and clinical validation of a dried blood spot assay for the determination of paclitaxel using high-performance liquid chromatography-tandem mass spectrometry. Clin Biochem 2018. [DOI: 10.1016/j.clinbiochem.2018.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Lavezzi SM, Borella E, Carrara L, De Nicolao G, Magni P, Poggesi I. Mathematical modeling of efficacy and safety for anticancer drugs clinical development. Expert Opin Drug Discov 2017; 13:5-21. [DOI: 10.1080/17460441.2018.1388369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Silvia Maria Lavezzi
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Pavia, Italy
| | - Elisa Borella
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Pavia, Italy
| | - Letizia Carrara
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Pavia, Italy
| | - Giuseppe De Nicolao
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Pavia, Italy
| | - Paolo Magni
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Pavia, Italy
| | - Italo Poggesi
- Global Clinical Pharmacology, Janssen Research and Development, Cologno Monzese, Italy
| |
Collapse
|
18
|
Kerckhove N, Collin A, Condé S, Chaleteix C, Pezet D, Balayssac D. Long-Term Effects, Pathophysiological Mechanisms, and Risk Factors of Chemotherapy-Induced Peripheral Neuropathies: A Comprehensive Literature Review. Front Pharmacol 2017; 8:86. [PMID: 28286483 PMCID: PMC5323411 DOI: 10.3389/fphar.2017.00086] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/09/2017] [Indexed: 12/29/2022] Open
Abstract
Neurotoxic anticancer drugs, such as platinum-based anticancer drugs, taxanes, vinca alkaloids, and proteasome/angiogenesis inhibitors are responsible for chemotherapy-induced peripheral neuropathy (CIPN). The health consequences of CIPN remain worrying as it is associated with several comorbidities and affects a specific population of patients already impacted by cancer, a strong driver for declines in older adults. The purpose of this review is to present a comprehensive overview of the long-term effects of CIPN in cancer patients and survivors. Pathophysiological mechanisms and risk factors are also presented. Neurotoxic mechanisms leading to CIPNs are not yet fully understood but involve neuronopathy and/or axonopathy, mainly associated with DNA damage, oxidative stress, mitochondria toxicity, and ion channel remodeling in the neurons of the peripheral nervous system. Classical symptoms of CIPNs are peripheral neuropathy with a “stocking and glove” distribution characterized by sensory loss, paresthesia, dysesthesia and numbness, sometimes associated with neuropathic pain in the most serious cases. Several risk factors can promote CIPN as a function of the anticancer drug considered, such as cumulative dose, treatment duration, history of neuropathy, combination of therapies and genetic polymorphisms. CIPNs are frequent in cancer patients with an overall incidence of approximately 38% (possibly up to 90% of patients treated with oxaliplatin). Finally, the long-term reversibility of these CIPNs remain questionable, notably in the case of platinum-based anticancer drugs and taxanes, for which CIPN may last several years after the end of anticancer chemotherapies. These long-term effects are associated with comorbidities such as depression, insomnia, falls and decreases of health-related quality of life in cancer patients and survivors. However, it is noteworthy that these long-term effects remain poorly studied, and only limited data are available such as in the case of bortezomib and thalidomide-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Nicolas Kerckhove
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Délégation à la Recherche Clinique et à l'Innovation, Université Clermont Auvergne Clermont-Ferrand, France
| | - Aurore Collin
- INSERM U1107, NEURO-DOL, Université Clermont Auvergne Clermont-Ferrand, France
| | - Sakahlé Condé
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Neurologie, Université Clermont Auvergne Clermont-Ferrand, France
| | - Carine Chaleteix
- CHU Clermont-Ferrand, Hématologie Clinique Adulte Clermont-Ferrand, France
| | - Denis Pezet
- INSERM U1071, CHU Clermont-Ferrand, Chirurgie et Oncologie Digestive, Université Clermont Auvergne Clermont-Ferrand, France
| | - David Balayssac
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Délégation à la Recherche Clinique et à l'Innovation, Université Clermont Auvergne Clermont-Ferrand, France
| |
Collapse
|