1
|
Zhang T, Zhou W, Fan T, Yuan Y, Tang X, Zhang Q, Zou J, Li Y. Lactic acid metabolism: gynecological cancer's Achilles' heel. Discov Oncol 2025; 16:657. [PMID: 40314877 PMCID: PMC12048388 DOI: 10.1007/s12672-025-02364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Lactic acid is significantly expressed in many cancers, including gynecological cancer, and has become a key regulator of the proliferation, development, metastasis and invasion of these cancers. In clinical and experimental studies, the level of lactic acid in gynecological cancer is closely related to metastasis and invasion, tumor recurrence and poor prognosis. Lactic acid can regulate the internal metabolic pathway of gynecological cancer cells and drive the autonomous role of non-cancer cells in gynecological cancer. In addition to being used as a source of energy metabolism by gynecological cancer cells, lactic acid can also be transported from cancer cells to neighboring cancer cells, stroma and vascular endothelial cells (ECs) to further guide metabolic reprogramming. Lactic acid is also involved in promoting inflammation and angiogenesis in gynecologic tumors. Therefore, we reviewed the mechanisms and recent advances in the production and transport of lactic acid in gynecological cancer. These advances and evidence suggest that targeted lactic acid metabolism is a promising cancer treatment.
Collapse
Affiliation(s)
- Ting Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Wenchao Zhou
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Tingyu Fan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yuwei Yuan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Qunfeng Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Yukun Li
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
2
|
Zhou Y, Kang L, Yin G, Yang L, Chen B, Liu B, Zhu X, Xie Q. Adenosine A2B receptor activation regulates the balance between T helper 17 cells and regulatory T cells, and inhibits regulatory T cells exhaustion in experimental autoimmune myositis. J Cachexia Sarcopenia Muscle 2024; 15:2460-2475. [PMID: 39284778 PMCID: PMC11634480 DOI: 10.1002/jcsm.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Idiopathic inflammatory myopathy (IIM) is a systemic autoimmune disease characterized by skeletal muscle involvement. This study aimed to investigate the role of adenosine receptor signalling pathways in the development of experimental autoimmune myositis (EAM). METHODS An ecto-5'-nucleotidase (CD73) inhibitor, adenosine receptor agonists, a hypoxia-inducible factor-1α (HIF-1α) inhibitor or a vehicle were administered to control and EAM mice. Murine splenic CD4+ or regulatory T cells (Tregs) were isolated using magnetic beads and subsequently stimulated with an adenosine A2B receptor agonist, a HIF-1α inhibitor, or vehicle in vitro. In cross-sectional studies, we collected 64 serum samples (69% female, 49 ± 9 years), 63 peripheral blood samples (70% female, 50 ± 11 years), and 34 skeletal muscle samples (71% female, 63 ± 6 years) from patients with IIM. Additionally, 35 serum samples and 30 peripheral blood samples were obtained from age- and sex-matched healthy controls, and six quadriceps muscle samples were collected from patients with osteoarthritis to serve as the normal group. RESULTS Patients with IIM exhibited increased CD73 [dermatomyositis (DM), polymyositis (PM): P < 0.01; immune-mediated necrotizing myopathy (IMNM): P < 0.0001] and adenosine deaminase (ADA) expression (DM: P < 0.001; PM, IMNM: P < 0.0001) in the skeletal muscles, and serum ADA levels [56.7 (95% CI: 53.7, 58.7) vs. 198.8 (95% CI: 186.2, 237.3) ng/μL, P < 0.0001]. Intervention with a CD73 inhibitor exacerbated (P = 0.0461), whereas adenosine receptor agonists (A1: P = 0.0009; A2B: P < 0.0001; A3: P = 0.0001) and the HIF-1α inhibitor (P = 0.0044) alleviated skeletal muscle injury in EAM mice. Elevated expression of programmed cell death protein-1 (PD1: P = 0.0023) and T-cell immunoglobulin and mucin-domain containing-3 (TIM3: P < 0.0001) in skeletal muscles of patients with IIM were correlated with creatine kinase levels (PD1, r = 0.7072, P < 0.0001; TIM3, r = 0.4808, P = 0.0046). PD1+CD4+ (r = 0.3243, P = 0.0115) and PD1+CD8+ (r = 0.3959, P = 0.0017) T cells were correlated with Myositis Disease Activity Assessment Visual Analogue Scale scores (muscle) in IIM. The exhausted Tregs were identified in the skeletal muscles of patients with IIM. Activation of the A2B adenosine receptor downregulated HIF-1α (protein or mRNA level, P < 0.01), resulting in decreased T helper cell 17 (Th17) (13.58% vs. 5.43%, P = 0.0201) and phosphorylated-signal transducer and activator of transcription 3 (p-STAT3)+ Th17 (16.32% vs. 6.73%, P = 0.0029), decreased exhausted Tregs (PD1+ Tregs: 53.55% vs. 40.28%, P = 0.0005; TIM3+ Tregs: 3.93% vs. 3.11%, P = 0.0029), and increased Tregs (0.45% vs. 2.89%, P = 0.0006) in EAM mice. CONCLUSIONS The exhausted T cells may be pathogenic in IIM, and the activation of adenosine A2B receptor signalling pathway can regulate Th17/Treg balance and inhibit Tregs exhaustion, thereby slowing EAM disease progression.
Collapse
Affiliation(s)
- Yueyuan Zhou
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Limei Kang
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Geng Yin
- Department of General Practice, General Practice Medical CenterWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Leiyi Yang
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Bo Chen
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Binhan Liu
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Xiaoyan Zhu
- Department of PhysiologyNaval Medical UniversityShanghaiYangpu DistrictChina
| | - Qibing Xie
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| |
Collapse
|
3
|
Liu D, Wang T, Zhao X, Chen J, Yang T, Shen Y, Zhou YD. Saturated fatty acids stimulate cytokine production in tanycytes via the PP2Ac-dependent signaling pathway. J Cereb Blood Flow Metab 2024; 44:985-999. [PMID: 38069840 PMCID: PMC11318396 DOI: 10.1177/0271678x231219115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 05/18/2024]
Abstract
The hypothalamic tanycytes are crucial for free fatty acids (FFAs) detection, storage, and transport within the central nervous system. They have been shown to effectively respond to fluctuations in circulating FFAs, thereby regulating energy homeostasis. However, the precise molecular mechanisms by which tanycytes modulate lipid utilization remain unclear. Here, we report that the catalytic subunit of protein phosphatase 2 A (PP2Ac), a serine/threonine phosphatase, is expressed in tanycytes and its accumulation and activation occur in response to high-fat diet consumption. In vitro, tanycytic PP2Ac responds to palmitic acid (PA) exposure and accumulates and is activated at an early stage in an AMPK-dependent manner. Furthermore, activated PP2Ac boosts hypoxia-inducible factor-1α (HIF-1α) accumulation, resulting in upregulation of an array of cytokines. Pretreatment with a PP2Ac inhibitor, LB100, prevented the PA-induced elevation of vascular endothelial growth factor (VEGF), fibroblast growth factor 1 (FGF1), hepatocyte growth factor (HGF), and dipeptidyl peptidase IV (DPPIV or CD26). Our results disclose a mechanism of lipid metabolism in tanycytes that involves the activation of PP2Ac and highlight the physiological significance of PP2Ac in hypothalamic tanycytes in response to overnutrition and efficacious treatment of obesity.
Collapse
Affiliation(s)
- Danyang Liu
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Tao Wang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xingqi Zhao
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Juan Chen
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Tianqi Yang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Lingang Laboratory, Shanghai 200031, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
4
|
Bui BP, Nguyen PL, Lee K, Cho J. Hypoxia-Inducible Factor-1: A Novel Therapeutic Target for the Management of Cancer, Drug Resistance, and Cancer-Related Pain. Cancers (Basel) 2022; 14:cancers14246054. [PMID: 36551540 PMCID: PMC9775408 DOI: 10.3390/cancers14246054] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates the transcription of many genes that are responsible for the adaptation and survival of tumor cells in hypoxic environments. Over the past few decades, tremendous efforts have been made to comprehensively understand the role of HIF-1 in tumor progression. Based on the pivotal roles of HIF-1 in tumor biology, many HIF-1 inhibitors interrupting expression, stabilization, DNA binding properties, or transcriptional activity have been identified as potential therapeutic agents for various cancers, yet none of these inhibitors have yet been successfully translated into clinically available cancer treatments. In this review, we briefly introduce the regulation of the HIF-1 pathway and summarize its roles in tumor cell proliferation, angiogenesis, and metastasis. In addition, we explore the implications of HIF-1 in the development of drug resistance and cancer-related pain: the most commonly encountered obstacles during conventional anticancer therapies. Finally, the current status of HIF-1 inhibitors in clinical trials and their perspectives are highlighted, along with their modes of action. This review provides new insights into novel anticancer drug development targeting HIF-1. HIF-1 inhibitors may be promising combinational therapeutic interventions to improve the efficacy of current cancer treatments and reduce drug resistance and cancer-related pain.
Collapse
|
5
|
Huang S, Gao Y, Zhang X, Lu J, Wei J, Mei H, Xing J, Pan X. Development of Simple and Accurate in Silico Ligand-Based Models for Predicting ABCG2 Inhibition. Front Chem 2022; 10:863146. [PMID: 35665065 PMCID: PMC9159808 DOI: 10.3389/fchem.2022.863146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The ATP binding cassette transporter ABCG2 is a physiologically important drug transporter that has a central role in determining the ADMET (absorption, distribution, metabolism, elimination, and toxicity) profile of therapeutics, and contributes to multidrug resistance. Thus, development of predictive in silico models for the identification of ABCG2 inhibitors is of great interest in the early stage of drug discovery. In this work, by exploiting a large public dataset, a number of ligand-based classification models were developed using partial least squares-discriminant analysis (PLS-DA) with molecular interaction field- and fingerprint-based structural description methods, regarding physicochemical and fragmental properties related to ABCG2 inhibition. An in-house dataset compiled from recently experimental studies was used to rigorously validated the model performance. The key molecular properties and fragments favored to inhibitor binding were discussed in detail, which was further explored by docking simulations. A highly informative chemical property was identified as the principal determinant of ABCG2 inhibition, which was utilized to derive a simple rule that had a strong capability for differentiating inhibitors from non-inhibitors. Furthermore, the incorporation of the rule into the best PLS-DA model significantly improved the classification performance, particularly achieving a high prediction accuracy on the independent in-house set. The integrative model is simple and accurate, which could be applied to the evaluation of drug-transporter interactions in drug development. Also, the dominant molecular features derived from the models may help medicinal chemists in the molecular design of novel inhibitors to circumvent ABCG2-mediated drug resistance.
Collapse
Affiliation(s)
- Shuheng Huang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing, China
| | - Yingjie Gao
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xuelian Zhang
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing, China
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
- *Correspondence: Xianchao Pan, ; Juan Xing,
| | - Xianchao Pan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Xianchao Pan, ; Juan Xing,
| |
Collapse
|
6
|
Jiang D, Lei T, Wang Z, Shen C, Cao D, Hou T. ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. J Cheminform 2020; 12:16. [PMID: 33430990 PMCID: PMC7059329 DOI: 10.1186/s13321-020-00421-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) efflux transporter, plays a critical role in multi-drug resistance (MDR) to anti-cancer drugs and drug–drug interactions. The prediction of BCRP inhibition can facilitate evaluating potential drug resistance and drug–drug interactions in early stage of drug discovery. Here we reported a structurally diverse dataset consisting of 1098 BCRP inhibitors and 1701 non-inhibitors. Analysis of various physicochemical properties illustrates that BCRP inhibitors are more hydrophobic and aromatic than non-inhibitors. We then developed a series of quantitative structure–activity relationship (QSAR) models to discriminate between BCRP inhibitors and non-inhibitors. The optimal feature subset was determined by a wrapper feature selection method named rfSA (simulated annealing algorithm coupled with random forest), and the classification models were established by using seven machine learning approaches based on the optimal feature subset, including a deep learning method, two ensemble learning methods, and four classical machine learning methods. The statistical results demonstrated that three methods, including support vector machine (SVM), deep neural networks (DNN) and extreme gradient boosting (XGBoost), outperformed the others, and the SVM classifier yielded the best predictions (MCC = 0.812 and AUC = 0.958 for the test set). Then, a perturbation-based model-agnostic method was used to interpret our models and analyze the representative features for different models. The application domain analysis demonstrated the prediction reliability of our models. Moreover, the important structural fragments related to BCRP inhibition were identified by the information gain (IG) method along with the frequency analysis. In conclusion, we believe that the classification models developed in this study can be regarded as simple and accurate tools to distinguish BCRP inhibitors from non-inhibitors in drug design and discovery pipelines.![]()
Collapse
Affiliation(s)
- Dejun Jiang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Tailong Lei
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zhe Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Chao Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410004, Hunan, People's Republic of China.
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Dei S, Braconi L, Romanelli MN, Teodori E. Recent advances in the search of BCRP- and dual P-gp/BCRP-based multidrug resistance modulators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:710-743. [PMID: 35582565 PMCID: PMC8992508 DOI: 10.20517/cdr.2019.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
The development of multidrug resistance (MDR) is one of the major challenges to the success of chemotherapy treatment of cancer. This phenomenon is often associated with the overexpression of the ATP-binding cassette (ABC) transporters P-gp (P-glycoprotein, ABCB1), multidrug resistance-associated protein 1, ABCC1 and breast cancer resistance protein, ABCG2 (BCRP). These transporters are constitutively expressed in many tissues playing relevant protective roles by the regulation of the permeability of biological membranes, but they are also overexpressed in malignant tissues. P-gp is the first efflux transporter discovered to be involved in cancer drug resistance, and over the years, inhibitors of this pump have been disclosed to administer them in combination with chemotherapeutic agents. Three generations of inhibitors of P-gp have been examined in preclinical and clinical studies; however, these trials have largely failed to demonstrate that coadministration of pump inhibitors elicits an improvement in therapeutic efficacy of antitumor agents, although some of the latest compounds show better results. Therefore, new and innovative strategies, such as the fallback to natural products and the discover of dual activity ligands emerged as new perspectives. BCRP is the most recently ABC protein identified to be involved in multidrug resistance. It is overexpressed in several haematological and solid tumours together with P-gp, threatening the therapeutic effectiveness of different chemotherapeutic drugs. The chemistry of recently described BCRP inhibitors and dual P-gp/BCRP inhibitors, as well as their preliminary pharmacological evaluation are discussed, and the most recent advances concerning these kinds of MDR modulators are reviewed.
Collapse
Affiliation(s)
- Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
8
|
Development of a Ternary Solid Dispersion Formulation of LW6 to Improve the In Vivo Activity as a BCRP Inhibitor: Preparation and In Vitro/In Vivo Characterization. Pharmaceutics 2019; 11:pharmaceutics11050206. [PMID: 31052438 PMCID: PMC6572573 DOI: 10.3390/pharmaceutics11050206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022] Open
Abstract
LW6 (3-[2-(4-adamantan-1-yl-phenoxy)-acetylamino]-4-hydroxy-benzoic acid methyl ester) is a potent inhibitor of drug efflux by the breast cancer resistance protein (BCRP). However, its poor aqueous solubility leads to low bioavailability, which currently limits in vivo applications. Therefore, the present study aimed to develop ternary solid dispersion (SD) formulations in order to enhance the aqueous solubility and dissolution rate of LW6. Various SDs of LW6 were prepared using a solvent evaporation method with different drug/excipient ratios. The solubility and dissolution profiles of LW6 in different SDs were examined, and F8-SD which is composed of LW6, poloxamer 407, and povidone K30 at a weight ratio of 1:5:8 was selected as the optimal SD. The structural characteristics of F8-SD were also examined using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM). In the acidic to neutral pH range, F8-SD achieved rapid dissolution with a drug release of 76–81% within 20 min, while the dissolution of pure LW6 was negligible. The XRPD patterns indicated that F8-SD probably enhanced the solubility and dissolution of LW6 by changing the drug crystallinity to an amorphous state, in addition to the solubilizing effect of the hydrophilic carriers. Furthermore, F8-SD significantly improved the oral bioavailability of topotecan, which is a BCRP substrate, in rats. The systemic exposure of topotecan was enhanced approximately 10-fold by the concurrent use of F8-SD. In conclusion, the ternary SD formulation of LW6 with povidone K30 and poloxamer 407 appeared to be effective at improving the dissolution and in vivo effects of LW6 as a BCRP inhibitor.
Collapse
|
9
|
Liao M, Chuang BC, Zhu Q, Li Y, Guan E, Yu S, Yang J, Prakash S, Xia CQ. Preclinical absorption, distribution, metabolism, excretion and pharmacokinetics of a novel selective inhibitor of breast cancer resistance protein (BCRP). Xenobiotica 2017; 48:467-477. [PMID: 28485193 DOI: 10.1080/00498254.2017.1328147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. Breast cancer resistance protein (BCRP) plays an important role in drug absorption, distribution and excretion. It is challenging to evaluate BCRP functions in preclinical models because commonly used BCRP inhibitors are nonspecific or unstable in animal plasma. 2. In this work, in vitro absorption, distribution, metabolism and elimination (ADME) assays and pharmacokinetic (PK) experiments in Bcrp knockout (KO) (Abcg2-/-) and wild-type (WT) FVB mice and Wistar rats were conducted to characterize the preclinical properties of a novel selective BCRP inhibitor (ML753286, a Ko143 analog). 3. ML753286 is a potent inhibitor for BCRP, but not for P-glycoprotein (P-gp), organic anion-transporting polypeptide (OATP) or major cytochrome P450s (CYPs). It has high permeability, but is not an efflux transporter substrate. ML753286 has low to medium clearance in rodent and human liver S9 fractions, and is stable in plasma cross species. Bcrp inhibition affects oral absorption and clearance of sulfasalazine in rodents. A single dose of ML753286 at 50-300 mg/kg orally, and at 20 mg/kg intravenously or 25 mg/kg orally inhibits Bcrp functions in mice and rats, respectively. 4. These findings confirm that ML753286 is a useful selective inhibitor to evaluate BCRP/Bcrp activity in vitro and in rodent model systems.
Collapse
Affiliation(s)
- Mingxiang Liao
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Bei-Ching Chuang
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Qing Zhu
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Yuexian Li
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Emily Guan
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Shaoxia Yu
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Johnny Yang
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Shimoga Prakash
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Cindy Q Xia
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| |
Collapse
|