1
|
Yao L, Zhai W, Jiang Z, He R, Xie W, Li Y, Hu Y. The Inhibitory Effects of Propofol on Colorectal Cancer Progression through the NF-κB/HIF-1α Signaling Pathway. Anticancer Agents Med Chem 2024; 24:878-888. [PMID: 38571352 DOI: 10.2174/0118715206283884240326170501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Colorectal cancer (CRC) is a neoplastic disease that gradually develops due to genetic variations and epigenetic changes. Surgical excision is the first-line treatment for CRC. Accumulating evidence has shown that total intravenous anesthesia has beneficial effects for CRC patients as it decreases the probability of tumor recurrence and metastasis. Propofol is one of the most frequently used intravenous anesthetics in clinical practice. However, it remains unknown whether it can reduce recurrence and metastasis after surgery in cancer patients. METHODS CRC cell lines (HCT116 and SW480) were cultured in vitro, and different concentrations of propofol were added to the cell culture medium. The proliferation effect of propofol on CRC cell lines was evaluated by CCK-8 assay. The effect of propofol on the migration and invasion of CRC cells was evaluated by scratch healing and Transwell experiments. The inhibitory effects of propofol on NF-κB and HIF-1α expressions in CRC cell lines were determined by Western blotting and immunofluorescence assays to further clarify the regulatory effects of propofol on NF-κB and HIF-1α. RESULTS Compared to the control, propofol significantly inhibited the proliferation, migration, and invasion abilities of CRC cells (HCT116 and SW480) (p < 0.0001). The expression levels of NF-κB and HIF-1α gradually decreased with increasing propofol concentration in both cell lines. After activation and inhibition of NF-κB, the expression of HIF-1α changed. Further studies showed that propofol inhibited LPS-activated NF-κB-induced expression of HIF-1α, similar to the NF-κB inhibitor Bay17083 (p < 0.0001). CONCLUSION In vitro, propofol inhibited the proliferation, migration, and invasion of CRC cells (HCT116 and SW480) in a dose-dependent manner, possibly by participating in the regulation of the NF-κB/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Liuxu Yao
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wen Zhai
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zongming Jiang
- Department of Anesthesiology, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Rui He
- Department of Anesthesiology, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Weiying Xie
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhong Li
- Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren College, Hangzhou, Zhejiang, China
| | - Yiyang Hu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
D'Alessandris QG, Menna G, Izzo A, D'Ercole M, Della Pepa GM, Lauretti L, Pallini R, Olivi A, Montano N. Neuromodulation for Brain Tumors: Myth or Reality? A Narrative Review. Int J Mol Sci 2023; 24:11738. [PMID: 37511496 PMCID: PMC10380317 DOI: 10.3390/ijms241411738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, research on brain cancers has turned towards the study of the interplay between the tumor and its host, the normal brain. Starting from the establishment of a parallelism between neurogenesis and gliomagenesis, the influence of neuronal activity on the development of brain tumors, particularly gliomas, has been partially unveiled. Notably, direct electrochemical synapses between neurons and glioma cells have been identified, paving the way for new approaches for the cure of brain cancers. Since this novel field of study has been defined "cancer neuroscience", anticancer therapeutic approaches exploiting these discoveries can be referred to as "cancer neuromodulation". In the present review, we provide an up-to-date description of the novel findings and of the therapeutic neuromodulation perspectives in cancer neuroscience. We focus both on more traditional oncologic approaches, aimed at modulating the major pathways involved in cancer neuroscience through drugs or genetic engineering techniques, and on electric stimulation proposals; the latter is at the cutting-edge of neuro-oncology.
Collapse
Affiliation(s)
- Quintino Giorgio D'Alessandris
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Grazia Menna
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Alessandro Izzo
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Manuela D'Ercole
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Liverana Lauretti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Roberto Pallini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Alessandro Olivi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Nicola Montano
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
3
|
Hey G, Rao R, Carter A, Reddy A, Valle D, Patel A, Patel D, Lucke-Wold B, Pomeranz Krummel D, Sengupta S. Ligand-Gated Ion Channels: Prognostic and Therapeutic Implications for Gliomas. J Pers Med 2023; 13:jpm13050853. [PMID: 37241023 DOI: 10.3390/jpm13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Gliomas are common primary brain malignancies that remain difficult to treat due to their overall aggressiveness and heterogeneity. Although a variety of therapeutic strategies have been employed for the treatment of gliomas, there is increasing evidence that suggests ligand-gated ion channels (LGICs) can serve as a valuable biomarker and diagnostic tool in the pathogenesis of gliomas. Various LGICs, including P2X, SYT16, and PANX2, have the potential to become altered in the pathogenesis of glioma, which can disrupt the homeostatic activity of neurons, microglia, and astrocytes, further exacerbating the symptoms and progression of glioma. Consequently, LGICs, including purinoceptors, glutamate-gated receptors, and Cys-loop receptors, have been targeted in clinical trials for their potential therapeutic benefit in the diagnosis and treatment of gliomas. In this review, we discuss the role of LGICs in the pathogenesis of glioma, including genetic factors and the effect of altered LGIC activity on the biological functioning of neuronal cells. Additionally, we discuss current and emerging investigations regarding the use of LGICs as a clinical target and potential therapeutic for gliomas.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan Rao
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ashley Carter
- Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Akshay Reddy
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daisy Valle
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Anjali Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Drashti Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 23608, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Soma Sengupta
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Golubeva EA, Lavrov MI, Radchenko EV, Palyulin VA. Diversity of AMPA Receptor Ligands: Chemotypes, Binding Modes, Mechanisms of Action, and Therapeutic Effects. Biomolecules 2022; 13:biom13010056. [PMID: 36671441 PMCID: PMC9856200 DOI: 10.3390/biom13010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
L-Glutamic acid is the main excitatory neurotransmitter in the central nervous system (CNS). Its associated receptors localized on neuronal and non-neuronal cells mediate rapid excitatory synaptic transmission in the CNS and regulate a wide range of processes in the brain, spinal cord, retina, and peripheral nervous system. In particular, the glutamate receptors selective to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) also play an important role in numerous neurological disorders and attract close attention as targets for the creation of new classes of drugs for the treatment or substantial correction of a number of serious neurodegenerative and neuropsychiatric diseases. For this reason, the search for various types of AMPA receptor ligands and studies of their properties are attracting considerable attention both in academic institutions and in pharmaceutical companies around the world. This review focuses mainly on the advances in this area published since 2017. Particular attention is paid to the structural diversity of new chemotypes of agonists, competitive AMPA receptor antagonists, positive and negative allosteric modulators, transmembrane AMPA regulatory protein (TARP) dependent allosteric modulators, ion channel blockers as well as their binding sites. This review also presents the studies of the mechanisms of action of AMPA receptor ligands that mediate their therapeutic effects.
Collapse
|
5
|
An Overview of the Molecular Cues and Their Intracellular Signaling Shared by Cancer and the Nervous System: From Neurotransmitters to Synaptic Proteins, Anatomy of an All-Inclusive Cooperation. Int J Mol Sci 2022; 23:ijms232314695. [PMID: 36499024 PMCID: PMC9739679 DOI: 10.3390/ijms232314695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
We propose an overview of the molecular cues and their intracellular signaling involved in the crosstalk between cancer and the nervous system. While "cancer neuroscience" as a field is still in its infancy, the relation between cancer and the nervous system has been known for a long time, and a huge body of experimental data provides evidence that tumor-nervous system connections are widespread. They encompass different mechanisms at different tumor progression steps, are multifaceted, and display some intriguing analogies with the nervous system's physiological processes. Overall, we can say that many of the paradigmatic "hallmarks of cancer" depicted by Weinberg and Hanahan are affected by the nervous system in a variety of manners.
Collapse
|
6
|
Chen AS, Liu H, Wu Y, Luo S, Patz EF, Glass C, Su L, Du M, Christiani DC, Wei Q. Genetic variants in DDO and PEX5L in peroxisome-related pathways predict non-small cell lung cancer survival. Mol Carcinog 2022; 61:619-628. [PMID: 35502931 DOI: 10.1002/mc.23400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 01/14/2023]
Abstract
Peroxisomes play a role in lipid metabolism and regulation of reactive oxygen species, but its role in development and progression of non-small cell lung cancer (NSCLC) is not well understood. Here, we investigated the associations between 9708 single-nucleotide polymorphisms (SNPs) in 113 genes in the peroxisome-related pathways and survival of NSCLC patients from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) and the Harvard Lung Cancer Susceptibility (HLCS) study. In 1185 NSCLC patients from the PLCO trial, we found that 213 SNPs were significantly associated with NSCLC overall survival (OS) (p ≤ 0.05, Bayesian false discovery probability [BFDP] ≤ 0.80), of which eight SNPs were validated in the HLCS data set. In a multivariate Cox proportional hazards regression model, two independent SNPs (rs9384742 DDO and rs9825224 PEX5L) were significantly associated with NSCLC survival (hazards ratios [HR] of 1.17 with 95% CI [confidence interval] of 1.06-1.28 and 0.86 with 95% CI of 0.77-0.96, respectively). Patients with one or two protective genotypes had a significantly higher OS (HR: 0.787 [95% CI: 0.620-0.998] and 0.691 [95% CI: 0.543-0.879], respectively). Further expression quantitative trait loci analysis using whole blood and lung tissue showed that the minor allele of rs9384742 DDO was significantly associated with decreased messenger RNA (mRNA) expression levels and that DDO expression was also decreased in NSCLC tumor tissue. Additionally, high PEX5L expression levels were significantly associated with lower survival of NSCLC. Our data suggest that variants in these peroxisome-related genes may influence gene regulation and are potential predictors of NSCLC OS, once validated by additional studies.
Collapse
Affiliation(s)
- Allan S Chen
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yufeng Wu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Edward F Patz
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Departments of Radiology, Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Li Su
- Departments of Environmental Health and Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
7
|
do Nascimento RP, dos Santos BL, Amparo JAO, Soares JRP, da Silva KC, Santana MR, Almeida ÁMAN, da Silva VDA, Costa MDFD, Ulrich H, Moura-Neto V, Lopes GPDF, Costa SL. Neuroimmunomodulatory Properties of Flavonoids and Derivates: A Potential Action as Adjuvants for the Treatment of Glioblastoma. Pharmaceutics 2022; 14:pharmaceutics14010116. [PMID: 35057010 PMCID: PMC8778519 DOI: 10.3390/pharmaceutics14010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Glioblastomas (GBMs) are tumors that have a high ability to migrate, invade and proliferate in the healthy tissue, what greatly impairs their treatment. These characteristics are associated with the complex microenvironment, formed by the perivascular niche, which is also composed of several stromal cells including astrocytes, microglia, fibroblasts, pericytes and endothelial cells, supporting tumor progression. Further microglia and macrophages associated with GBMs infiltrate the tumor. These innate immune cells are meant to participate in tumor surveillance and eradication, but they become compromised by GBM cells and exploited in the process. In this review we discuss the context of the GBM microenvironment together with the actions of flavonoids, which have attracted scientific attention due to their pharmacological properties as possible anti-tumor agents. Flavonoids act on a variety of signaling pathways, counteracting the invasion process. Luteolin and rutin inhibit NFκB activation, reducing IL-6 production. Fisetin promotes tumor apoptosis, while inhibiting ADAM expression, reducing invasion. Naringenin reduces tumor invasion by down-regulating metalloproteinases expression. Apigenin and rutin induce apoptosis in C6 cells increasing TNFα, while decreasing IL-10 production, denoting a shift from the immunosuppressive Th2 to the Th1 profile. Overall, flavonoids should be further exploited for glioma therapy.
Collapse
Affiliation(s)
- Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Balbino Lino dos Santos
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- Academic College of Nurse, Department of Health, Federal University of Vale do São Francisco, Petrolina 56304-205, Pernambuco, Brazil
| | - Jéssika Alves Oliveira Amparo
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Janaina Ribeiro Pereira Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Karina Costa da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Monique Reis Santana
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Áurea Maria Alves Nunes Almeida
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Victor Diógenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Correspondence: (H.U.); (S.L.C.)
| | - Vivaldo Moura-Neto
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
- Paulo Niemeyer State Institute of the Brain, Rio de Janeiro 20230-024, Rio de Janeiro, Brazil
| | - Giselle Pinto de Faria Lopes
- Department of Marine Biotechnology, Admiral Paulo Moreira Institute for Sea Studies (IEAPM), Arraial do Cabo 28930-000, Rio de Janeiro, Brazil;
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
- Correspondence: (H.U.); (S.L.C.)
| |
Collapse
|
8
|
Liang Y, Li H, Gan Y, Tu H. Shedding Light on the Role of Neurotransmitters in the Microenvironment of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:688953. [PMID: 34395421 PMCID: PMC8363299 DOI: 10.3389/fcell.2021.688953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of less than 8%. The fate of PC is determined not only by the malignant behavior of the cancer cells, but also by the surrounding tumor microenvironment (TME), consisting of various cellular (cancer cells, immune cells, stromal cells, endothelial cells, and neurons) and non-cellular (cytokines, neurotransmitters, and extracellular matrix) components. The pancreatic TME has the unique characteristic of exhibiting increased neural density and altered microenvironmental concentration of neurotransmitters. The neurotransmitters, produced by both neuron and non-neuronal cells, can directly regulate the biological behavior of PC cells via binding to their corresponding receptors on tumor cells and activating the intracellular downstream signals. On the other hand, the neurotransmitters can also communicate with other cellular components such as the immune cells in the TME to promote cancer growth. In this review, we will summarize the pleiotropic effects of neurotransmitters on the initiation and progression of PC, and particularly discuss the emerging mechanisms of how neurotransmitters influence the innate and adaptive immune responses in the TME in an autocrine or paracrine manner. A better understanding of the interplay between neurotransmitters and the immune cells in the TME might facilitate the development of new effective therapies for PC.
Collapse
Affiliation(s)
| | | | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Radchenko EV, Tarakanova AS, Karlov DS, Lavrov MI, Palyulin VA. [Ligands of the AMPA-subtype glutamate receptors: mechanisms of action and novel chemotypes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:187-200. [PMID: 34142526 DOI: 10.18097/pbmc20216703187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ionotropic glutamate receptors of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype play a key role in synaptic plasticity representing one of the mechanisms for learning and memory formation. They can also serve as targets for the development of novel classes of pharmaceuticals for the treatment or substantive correction of many serious neurodegenerative and psychoneurological disorders. The search and studies of various types of AMPA receptor ligands attract considerable attention from academic organizations and pharmaceutical companies all over the world. This review mainly focuses on recent advances in this field. The architecture and operational mechanism of the receptor as well as its major binding sites and ligand types are considered. Special attention is paid to the studies of mechanisms of action and novel chemotypes of AMPA receptor agonists and competitive antagonists, positive and negative allosteric modulators, auxiliary protein-dependent allosteric modulators, and ion channel blockers.
Collapse
Affiliation(s)
| | | | - D S Karlov
- Lomonosov Moscow State University, Moscow, Russia
| | - M I Lavrov
- Lomonosov Moscow State University, Moscow, Russia
| | - V A Palyulin
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
10
|
Franco R, Rivas-Santisteban R, Lillo J, Camps J, Navarro G, Reyes-Resina I. 5-Hydroxytryptamine, Glutamate, and ATP: Much More Than Neurotransmitters. Front Cell Dev Biol 2021; 9:667815. [PMID: 33937270 PMCID: PMC8083958 DOI: 10.3389/fcell.2021.667815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
5-hydroxytryptamine (5-HT) is derived from the essential amino acid L-tryptophan. Although the compound has been studied extensively for its neuronal handling and synaptic actions, serotonin 5-HT receptors can be found extra-synaptically and not only in neurons but in many types of mammalian cells, inside and outside the central nervous system (CNS). In sharp contrast, glutamate (Glu) and ATP are better known as metabolism-related molecules, but they also are neurotransmitters, and their receptors are expressed on almost any type of cell inside and outside the nervous system. Whereas 5-hydroxytryptamine and Glu are key regulators of the immune system, ATP actions are more general. 5-hydroxytryptamine, ATP and Glu act through both G protein-coupled receptors (GPCRs), and ionotropic receptors, i.e., ligand gated ion channels. These are the three examples of neurotransmitters whose actions as holistic regulatory molecules are briefly put into perspective here.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,*Correspondence: Rafael Franco, ;
| | - Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Camps
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Irene Reyes-Resina,
| |
Collapse
|
11
|
Sareddy GR, Pratap UP, Venkata PP, Zhou M, Alejo S, Viswanadhapalli S, Tekmal RR, Brenner AJ, Vadlamudi RK. Activation of estrogen receptor beta signaling reduces stemness of glioma stem cells. Stem Cells 2021; 39:536-550. [PMID: 33470499 DOI: 10.1002/stem.3337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/08/2022]
Abstract
Glioblastoma (GBM) is the most common and deadliest tumor of the central nervous system. GBM has poor prognosis and glioma stem cells (GSCs) are implicated in tumor initiation and therapy resistance. Estrogen receptor β (ERβ) is expressed in GBM and exhibit tumor suppressive function. However, the role of ERβ in GSCs and the therapeutic potential of ERβ agonists on GSCs remain largely unknown. Here, we examined whether ERβ modulates GSCs stemness and tested the utility of two ERβ selective agonists (LY500307 and Liquiritigenin) to reduce the stemness of GSCs. The efficacy of ERβ agonists was examined on GSCs isolated from established and patient derived GBMs. Our results suggested that knockout of ERβ increased the proportion of CD133+ and SSEA+ positive GSCs and overexpression of ERβ reduced the proportion of GSCs in GBM cells. Overexpression of ERβ or treatment with ERβ agonists significantly inhibited the GSCs cell viability, neurosphere formation, self-renewal ability, induced the apoptosis and reduced expression of stemness markers in GSCs. RNA sequencing analysis revealed that ERβ agonist modulate pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that ERβ overexpression or agonist treatment reduced glutamate receptor signaling pathway and induced apoptotic pathways. In orthotopic models, ERβ overexpression or ERβ agonists treatment significantly reduced the GSCs mediated tumor growth and improved the mice overall survival. Immunohistochemical studies demonstrated that ERβ overexpression decreased SOX2 and GRM3 expression and increased expression of GFAP in tumors. These results suggest that ERβ activation could be a promising therapeutic strategy to eradicate GSCs.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Mei Zhou
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha Shi, Hunan, People's Republic of China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA.,Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
12
|
Hutchings C, Phillips JA, Djamgoz MBA. Nerve input to tumours: Pathophysiological consequences of a dynamic relationship. Biochim Biophys Acta Rev Cancer 2020; 1874:188411. [PMID: 32828885 DOI: 10.1016/j.bbcan.2020.188411] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
It is well known that tumours arising in different organs are innervated and that 'perineural invasion' (cancer cells escaping from the tumour by following the nerve trunk) is a negative prognostic factor. More surprisingly, increasing evidence suggests that the nerves can provide active inputs to tumours and there is two-way communication between nerves and cancer cells within the tumour microenvironment. Cells of the immune system also interact with the nerves and cancer cells. Thus, the nerve connections can exert significant control over cancer progression and modulating these (physically or chemically) can affect significantly the cancer process. Nerve inputs to tumours are derived mainly from the sympathetic (adrenergic) and the parasympathetic (cholinergic) systems, which are interactive. An important component of the latter is the vagus nerve, the largest of the cranial nerves. Here, we present a two-part review of the nerve inputs to tumours and their effects on tumorigenesis. First, we review briefly some relevant general issues including ultrastructural aspects, stemness, interactions between neurones and primary tumours, and communication between neurones and metastasizing tumour cells. Ultrastructural characteristics include synaptic vesicles, tumour microtubes and gap junctions enabling formation of cellular networks. Second, we evaluate the pathophysiology of the nerve input to five major carcinomas: cancers of prostate, stomach, colon, lung and pancreas. For each cancer, we present (i) the nerve inputs normally present in the cancer organ and (ii) how these interact and influence the cancer process. The best clinical evidence for the role of nerves in promoting tumorigenesis comes from prostate cancer patients where metastatic progression has been shown to be suppressed significantly in cases of spinal cord injury. The balance of the sympathetic and parasympathetic contributions to early versus late tumorigenesis varies amongst the different cancers. Different branches of the vagus provide functional inputs to several of the carcinomas and, in two-way interaction with the sympathetic nervous system, affect different stages of the cancer process. Overall, the impact of the vagus nerve can be 'direct' or 'indirect'. Directly, the effect of the vagus is primarily to promote tumorigenesis and this is mediated through cholinergic receptor mechanisms. Indirectly, pro- and anti-tumour effects can occur by stimulation or inhibition of the sympathetic nervous system, respectively. Less well understood are the 'indirect' anti-tumour effect of the vagus nerve via immunomodulation/inflammation, and the role of sensory innervation. A frequent occurrence in the nerve-tumour interactions is the presence of positive feedback driven by agents like nerve growth factor. We conclude that the nerve inputs to tumours can actively and dynamically impact upon cancer progression and are open to clinical exploitation.
Collapse
Affiliation(s)
- Charlotte Hutchings
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Jade A Phillips
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey.
| |
Collapse
|
13
|
Shi WJ, Zhuang Y, Russell PH, Hobbs BD, Parker MM, Castaldi PJ, Rudra P, Vestal B, Hersh CP, Saba LM, Kechris K. Unsupervised discovery of phenotype-specific multi-omics networks. Bioinformatics 2020; 35:4336-4343. [PMID: 30957844 DOI: 10.1093/bioinformatics/btz226] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/01/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Complex diseases often involve a wide spectrum of phenotypic traits. Better understanding of the biological mechanisms relevant to each trait promotes understanding of the etiology of the disease and the potential for targeted and effective treatment plans. There have been many efforts towards omics data integration and network reconstruction, but limited work has examined the incorporation of relevant (quantitative) phenotypic traits. RESULTS We propose a novel technique, sparse multiple canonical correlation network analysis (SmCCNet), for integrating multiple omics data types along with a quantitative phenotype of interest, and for constructing multi-omics networks that are specific to the phenotype. As a case study, we focus on miRNA-mRNA networks. Through simulations, we demonstrate that SmCCNet has better overall prediction performance compared to popular gene expression network construction and integration approaches under realistic settings. Applying SmCCNet to studies on chronic obstructive pulmonary disease (COPD) and breast cancer, we found enrichment of known relevant pathways (e.g. the Cadherin pathway for COPD and the interferon-gamma signaling pathway for breast cancer) as well as less known omics features that may be important to the diseases. Although those applications focus on miRNA-mRNA co-expression networks, SmCCNet is applicable to a variety of omics and other data types. It can also be easily generalized to incorporate multiple quantitative phenotype simultaneously. The versatility of SmCCNet suggests great potential of the approach in many areas. AVAILABILITY AND IMPLEMENTATION The SmCCNet algorithm is written in R, and is freely available on the web at https://cran.r-project.org/web/packages/SmCCNet/index.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- W Jenny Shi
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yonghua Zhuang
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pamela H Russell
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Statistics, Oklahoma State University, Stillwater, OK
| | - Brian Vestal
- Center for Genes, Environment & Health, National Jewish Health, Denver, CO, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Ignatowska J, Mironiuk-Puchalska E, Grześkowiak P, Wińska P, Wielechowska M, Bretner M, Karatsai O, Rędowicz MJ, Koszytkowska-Stawińska M. New insight into nucleo α-amino acids - Synthesis and SAR studies on cytotoxic activity of β-pyrimidine alanines. Bioorg Chem 2020; 100:103864. [PMID: 32446118 DOI: 10.1016/j.bioorg.2020.103864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Three series of the β-pyrimidine alanines, including willardiine - a naturally occurring amino acid, were prepared from the l-serine-derived sulfamidates. Compounds 3b, 4a and 4b demonstrated antiproliferative activity toward the studied cancer cell lines, albeit the effect of these compounds on human brain astrocytoma MOG-G-CCM cells was more significant than on human neuroblastoma SK-N-AS cells. The cytosine analog of willardiine, compound 4b, reduced viability of MOG-G-CCM cells with EC50 = 36 ± 2 μM, more effectively than AMPA antagonist GYKI 52466. Willardiine showed possible capability of affecting invasiveness of glioblastoma U251 MG cells with no effect on their viability and morphology. Compound 3d, the ethyl ester of willardiine, featured activity toward binding domain hHS1S2I of the GluR2 receptor. Docking analysis revealed that the location mode of compound 3d at the S1S2 domain of hGluR2 (PDB ID: 3R7X) might differ from that of willardiine.
Collapse
Affiliation(s)
- Jolanta Ignatowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ewa Mironiuk-Puchalska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Piotr Grześkowiak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Maria Bretner
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | | |
Collapse
|
15
|
Yool AJ, Ramesh S. Molecular Targets for Combined Therapeutic Strategies to Limit Glioblastoma Cell Migration and Invasion. Front Pharmacol 2020; 11:358. [PMID: 32292341 PMCID: PMC7118801 DOI: 10.3389/fphar.2020.00358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
The highly invasive nature of glioblastoma imposes poor prospects for patient survival. Molecular evidence indicates glioblastoma cells undergo an intriguing expansion of phenotypic properties to include neuron-like signaling using excitable membrane ion channels and synaptic proteins, augmenting survival and motility. Neurotransmitter receptors, membrane signaling, excitatory receptors, and Ca2+ responses are important candidates for the design of customized treatments for cancers within the heterogeneous central nervous system. Relatively few published studies of glioblastoma multiforme (GBM) have evaluated pharmacological agents targeted to signaling pathways in limiting cancer cell motility. Transcriptomic analyses here identified classes of ion channels, ionotropic receptors, and synaptic proteins that are enriched in human glioblastoma biopsy samples. The pattern of GBM-enriched gene expression points to a major role for glutamate signaling. However, the predominant role of AMPA receptors in fast excitatory signaling throughout the central nervous system raises a challenge on how to target inhibitors selectively to cancer cells while maintaining tolerability. This review critically evaluates a panel of ligand- and voltage-gated ion channels and synaptic proteins upregulated in GBM, and the evidence for their potential roles in the pathological disease progress. Evidence suggests combinations of therapies could be more effective than single agents alone. Natural plant products used in traditional medicines for the treatment of glioblastoma contain flavonoids, terpenoids, polyphenols, epigallocatechin gallate, quinones, and saponins, which might serendipitously include agents that modulate some classes of signaling compounds highlighted in this review. New therapeutic strategies are likely to exploit evidence-based combinations of selected agents, each at a low dose, to create new cancer cell-specific therapeutics.
Collapse
Affiliation(s)
- Andrea J. Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sunita Ramesh
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
16
|
Pathway analysis of glutamate-mediated, calcium-related signaling in glioma progression. Biochem Pharmacol 2020; 176:113814. [PMID: 31954716 DOI: 10.1016/j.bcp.2020.113814] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
Brain tumors, particularly high-grade glioblastomas, are a crucial public health issue due to poor prognosis and an extremely low survival rate. The glioblastoma multiforme (GBM) grows rapidly within its unique microenvironment that is characterized by active neural communications. Therefore, diverse neurotransmitters not only maintain normal brain functions but also influence glioma progression. To fully appreciate the relationship between neurotransmitters and glioma progression, we reviewed potential neurotransmitter contributors in human GBM and the much less aggressive Low-grade glioma (LGG) by combining previously published data from gene-mutation/mRNA sequencing databases together with protein-protein interaction (PPI) network analysis results. The summarized results indicate that glutamatergic and calcium signaling may provide positive feedback to promote glioma formation through 1) metabolic reprogramming and genetic switching to accelerate glioma duplication and progression; 2) upregulation of cytoskeleton proteins and elevation of intracellular Ca2+ levels to increase glutamate release and facilitate formation of synaptic-like connections with surrounding cells in their microenvironment. The upregulated glutamatergic neuronal activities in turn stimulate glioma growth and signaling. Importantly, the enhanced electrical and molecular signals from both neurons and glia propagate out to enable glioma symptoms such as epilepsy and migraine. The elevated intracellular Ca2+ also activates nitric oxide synthase to produce nitric oxide (NO) that can either promote or inhibit tumorigenesis. By analyzing the network effects for complex interaction among neurotransmitters such as glutamate, Ca2+ and NO in brain tumor progression, especially GBM, we identified the glutamatergic signaling as the potential therapeutic targets and suggest manipulation of glutamatergic signaling may be an effective treatment strategy for this aggressive brain cancer.
Collapse
|
17
|
Yi H, Talmon G, Wang J. Glutamate in cancers: from metabolism to signaling. J Biomed Res 2019; 34:260-270. [PMID: 32594024 PMCID: PMC7386414 DOI: 10.7555/jbr.34.20190037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/20/2019] [Indexed: 01/31/2023] Open
Abstract
Glutamine and glutamate are major bioenergy substrates for normal and cancer cell growth. Cancer cells need more biofuel than normal tissues for energy supply, anti-oxidation activity and biomass production. Genes related to metabolic chains in many cancers are somehow mutated, which makes cancer cells more glutamate dependent. Meanwhile, glutamate is an excitatory neurotransmitter for conducting signals through binding with different types of receptors in central neuron system. Interestingly, increasing evidences have shown involvement of glutamate signaling, guided through their receptors, in human malignancy. Dysregulation of glutamate transporters, such as excitatory amino acid transporter and cystine/glutamate antiporter system, also generates excessive extracellular glutamate, which in turn, activates glutamate receptors on cancer cells and results in malignant growth. These features make glutamate an attractive target for anti-cancer drug development with some glutamate targeted but blood brain barrier impermeable anti-psychosis drugs under consideration. We discussed the relevant progressions and drawbacks in this field herein.
Collapse
Affiliation(s)
- Haowei Yi
- Department of Genetics, Cell Biology and Anatomy
| | | | - Jing Wang
- Department of Genetics, Cell Biology and Anatomy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Jiang SH, Hu LP, Wang X, Li J, Zhang ZG. Neurotransmitters: emerging targets in cancer. Oncogene 2019; 39:503-515. [PMID: 31527667 DOI: 10.1038/s41388-019-1006-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Neurotransmitters are conventionally viewed as nerve-secreted substances that mediate the stimulatory or inhibitory neuronal functions through binding to their respective receptors. In the past decades, many novel discoveries come to light elucidating the regulatory roles of neurotransmitters in the physiological and pathological functions of tissues and organs. Notably, emerging data suggest that cancer cells take advantage of the neurotransmitters-initiated signaling pathway to activate uncontrolled proliferation and dissemination. In addition, neurotransmitters can affect immune cells and endothelial cells in the tumor microenvironment to promote tumor progression. Therefore, a better understanding of the mechanisms underlying neurotransmitter function in tumorigenesis, angiogenesis, and inflammation is expected to enable the development of the next generation of antitumor therapies. Here, we summarize the recent important studies on the different neurotransmitters, their respective receptors, target cells, as well as pro/antitumor activity of specific neurotransmitter/receptor axis in cancers and provide perspectives and insights regarding the rationales and strategies of targeting neurotransmitter system to cancer treatment.
Collapse
Affiliation(s)
- Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China.
| |
Collapse
|
19
|
Golovynska I, Golovynskyi S, Stepanov YV, Garmanchuk LV, Stepanova LI, Qu J, Ohulchanskyy TY. Red and near-infrared light induces intracellular Ca 2+ flux via the activation of glutamate N-methyl-D-aspartate receptors. J Cell Physiol 2019; 234:15989-16002. [PMID: 30741423 DOI: 10.1002/jcp.28257] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/06/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Red and near-infrared (NIR) light effect on Ca2+ ions flux through the influence on N-methyl-D-aspartate receptors (NMDARs) and their functioning in HeLa cells was studied in vitro. Cells were irradiated by 650 and 808 nm laser light at different power densities and doses and the obtained effect was compared with that caused by the pharmacological agents. The laser light was found to elevate Ca2+ influx into cell cytoplasm in a dose-dependent manner without changes of the NMDAR functioning. Furthermore, the light of both wavelengths demonstrated the ability to elevate Ca2+ influx under the pharmacological blockade of NMDARs and also might partially abolish the blockade enhancing Ca2+ influx after selective stimulation of the receptors with NMDA. Simultaneously, the light at moderate doses demonstrated a photobiostimulating effect on cells. Based on our experiments and data reported in the literature, we suggest that the low-power visible and NIR light can instigate a cell membrane depolarization via nonthermal activation, resulting in the fast induction of Ca2+ influx into cells. The obtained results also demonstrate that NIR light can be used for nonthermal and nonpharmacological stimulation of NMDARs in cancer cells.
Collapse
Affiliation(s)
- Iuliia Golovynska
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
| | - Sergii Golovynskyi
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
| | - Yurii V Stepanov
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
| | - Liudmyla V Garmanchuk
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Ludmila I Stepanova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
| | - Tymish Y Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
20
|
López-Menéndez C, Simón-García A, Gamir-Morralla A, Pose-Utrilla J, Luján R, Mochizuki N, Díaz-Guerra M, Iglesias T. Excitotoxic targeting of Kidins220 to the Golgi apparatus precedes calpain cleavage of Rap1-activation complexes. Cell Death Dis 2019; 10:535. [PMID: 31296845 PMCID: PMC6624258 DOI: 10.1038/s41419-019-1766-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
Excitotoxic neuronal death induced by high concentrations of glutamate is a pathological event common to multiple acute or chronic neurodegenerative diseases. Excitotoxicity is mediated through overactivation of the N-Methyl-D-aspartate type of ionotropic glutamate receptors (NMDARs). Physiological stimulation of NMDARs triggers their endocytosis from the neuronal surface, inducing synaptic activity and survival. However almost nothing is known about the internalization of overactivated NMDARs and their interacting proteins, and how this endocytic process is connected with neuronal death has been poorly explored. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is a component of NMDAR complexes essential for neuronal viability by the control of ERK activation. Here we have investigated Kidins220 endocytosis induced by NMDAR overstimulation and the participation of this internalization step in the molecular mechanisms of excitotoxicity. We show that excitotoxicity induces Kidins220 and GluN1 traffic to the Golgi apparatus (GA) before Kidins220 is degraded by the protease calpain. We also find that excitotoxicity triggers an early activation of Rap1-GTPase followed by its inactivation. Kidins220 excitotoxic endocytosis and subsequent calpain-mediated downregulation governs this late inactivation of Rap1 that is associated to decreases in ERK activity preceding neuronal death. Furthermore, we identify the molecular mechanisms involved in the excitotoxic shutoff of Kidins220/Rap1/ERK prosurvival cascade that depends on calpain processing of Rap1-activation complexes. Our data fit in a model where Kidins220 targeting to the GA during early excitotoxicity would facilitate Rap1 activation and subsequent stimulation of ERK. At later times, activation of Golgi-associated calpain, would promote the degradation of GA-targeted Kidins220 and two additional components of the specific Rap1 activation complex, PDZ-GEF1, and S-SCAM. In this way, late excitotoxicity would turn off Rap1/ERK cascade and compromise neuronal survival.
Collapse
Affiliation(s)
- Celia López-Menéndez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain
| | - Ana Simón-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain
| | - Andrea Gamir-Morralla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain.,Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany
| | - Julia Pose-Utrilla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Dept. Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, 565-8565, Osaka, Japan
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain.
| |
Collapse
|
21
|
Corsi L, Mescola A, Alessandrini A. Glutamate Receptors and Glioblastoma Multiforme: An Old "Route" for New Perspectives. Int J Mol Sci 2019; 20:ijms20071796. [PMID: 30978987 PMCID: PMC6479730 DOI: 10.3390/ijms20071796] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant tumor of the central nervous system, with poor survival in both treated and untreated patients. Recent studies began to explain the molecular pathway, comprising the dynamic structural and mechanical changes involved in GBM. In this context, some studies showed that the human glioblastoma cells release high levels of glutamate, which regulates the proliferation and survival of neuronal progenitor cells. Considering that cancer cells possess properties in common with neural progenitor cells, it is likely that the functions of glutamate receptors may affect the growth of cancer cells and, therefore, open the road to new and more targeted therapies.
Collapse
Affiliation(s)
- Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy.
| | - Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy.
| | - Andrea Alessandrini
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy.
- Department of Physics, Informatics e Mathematics, Via G. Campi 213/a, 41125 Modena, Italy.
| |
Collapse
|
22
|
NMDA Receptor-Mediated Signaling Pathways Enhance Radiation Resistance, Survival and Migration in Glioblastoma Cells-A Potential Target for Adjuvant Radiotherapy. Cancers (Basel) 2019; 11:cancers11040503. [PMID: 30970642 PMCID: PMC6520759 DOI: 10.3390/cancers11040503] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/22/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma is one of the most aggressive malignant brain tumors, with a survival time less than 15 months and characterized by a high radioresistance and the property of infiltrating the brain. Recent data indicate that the malignancy of glioblastomas depends on glutamatergic signaling via ionotropic glutamate receptors. In this study we revealed functional expression of Ca2+-permeable NMDARs in three glioblastoma cell lines. Therefore, we investigated the impact of this receptor on cell survival, migration and DNA double-strand break (DSB) repair in the presence of both, glutamate and NMDAR antagonists, and after clinically relevant doses of ionizing radiation. Our results indicate that treatment with NMDAR antagonists slowed the growth and migration of glutamate-releasing LN229 cells, suggesting that activation of NMDARs facilitate tumor expansion. Furthermore, we found that DSB-repair upon radiation was more effective in the presence of glutamate. In contrast, antagonizing the NMDAR or the Ca2+-dependent transcription factor CREB impaired DSB-repair similarly and resulted in a radiosensitizing effect in LN229 and U-87MG cells, indicating a common link between NMDAR signaling and CREB activity in glioblastoma. Since the FDA-approved NMDAR antagonists memantine and ifenprodil showed differential radiosensitizing effects, these compounds may constitute novel optimizations for therapeutic interventions in glioblastoma.
Collapse
|
23
|
Aberrant receptor tyrosine kinase signaling in lipofibromatosis: a clinicopathological and molecular genetic study of 20 cases. Mod Pathol 2019; 32:423-434. [PMID: 30310176 DOI: 10.1038/s41379-018-0150-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023]
Abstract
Lipofibromatosis is a rare pediatric soft tissue tumor with predilection for the hands and feet. Previously considered to represent "infantile fibromatosis", lipofibromatosis has distinctive morphological features, with mature adipose tissue, short fascicles of bland fibroblastic cells, and lipoblast-like cells. Very little is known about the genetic underpinnings of lipofibromatosis. Prompted by our finding of the FN1-EGF gene fusion, previously shown to be a characteristic feature of calcifying aponeurotic fibroma (CAF), in a morphologically typical case of lipofibromatosis that recurred showing features of CAF, we studied a cohort of 20 cases of lipofibromatosis for this and other genetic events. The cohort was composed of 14 males and 6 females (median age 3 years; range 1 month-14 years). All primary tumors showed classical lipofibromatosis morphology. Follow-up disclosed three local recurrences, two of which contained calcifying aponeurotic fibroma-like nodular calcifications in addition to areas of classic lipofibromatosis, and no metastases. By FISH and RNA sequencing, four cases were positive for FN1-EGF and one case each showed an EGR1-GRIA1, TPR-ROS1, SPARC-PDGFRB, FN1-TGFA, EGFR-BRAF, VCL-RET, or HBEGF-RBM27 fusion. FN1-EGF was the only recurrent fusion, suggesting that some cases of "lipofibromatosis" may represent calcifying aponeurotic fibroma lacking hallmark calcifications. Several of the genes involved in fusions (BRAF, EGFR, PDGFRB, RET, and ROS1) encode receptor tyrosine kinases (RTK), or ligands to the RTK EGFR (EGF, HBEGF, TGFA), suggesting a shared deregulation of the PI3K-AKT-mTOR pathway in a large subset of lipofibromatosis cases.
Collapse
|
24
|
Quatredeniers M, Nakhleh MK, Dumas SJ, Courboulin A, Vinhas MC, Antigny F, Phan C, Guignabert C, Bendifallah I, Vocelle M, Fadel E, Dorfmüller P, Humbert M, Cohen-Kaminsky S. Functional interaction between PDGFβ and GluN2B-containing NMDA receptors in smooth muscle cell proliferation and migration in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2018; 316:L445-L455. [PMID: 30543306 DOI: 10.1152/ajplung.00537.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we explored the complex interactions between platelet-derived growth factor (PDGF) and N-methyl-d-aspartate receptor (NMDAR) and their effect on the excessive proliferation and migration of smooth muscle cells leading to obstructed arteries in pulmonary arterial hypertension (PAH). We report lower expression of glutamate receptor NMDA-type subunit 2B (GluN2B), a subunit composing NMDARs expected to affect cell survival/proliferation of pulmonary artery smooth muscle cells (PASMCs), in PAH patient lungs. PASMC exposure to PDGF-BB stimulated immediate increased levels of phosphorylated Src family kinases (SFKs) together with increased phosphorylated GluN2B (its active form) and cell surface relocalization, suggesting a cross talk between PDGFR-recruited SFKs and NMDAR. Selective inhibition of PDGFR-β or SFKs with imatinib or A-419259, respectively, on one hand, or with specific small-interfering RNAs (siRNAs) on the other hand, aborted PDGF-induced phosphorylation of GluN2B, thus validating the pathway. Selective inhibition of GluN2B using Rö25-6981 and silencing with specific siRNA, in the presence of PDGF-BB, significantly increased both migration and proliferation of PASMCs, thus strengthening the functional importance of the pathway. Together, these results indicate that GluN2B-type NMDAR activation may confer to PASMCs antiproliferative and antimigratory properties. The decreased levels of GluN2B observed in PAH pulmonary arteries could mediate the excessive proliferation of PASMCs, thus contributing to medial hyperplasia and PAH development.
Collapse
Affiliation(s)
- Marceau Quatredeniers
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Morad K Nakhleh
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sébastien J Dumas
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Audrey Courboulin
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Maria C Vinhas
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Carole Phan
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Imane Bendifallah
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Matthieu Vocelle
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Elie Fadel
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Peter Dorfmüller
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
25
|
Mironiuk-Puchalska E, Buchowicz W, Grześkowiak P, Wińska P, Wielechowska M, Karatsai O, Rędowicz MJ, Bretner M, Koszytkowska-Stawińska M. Potential bioisosteres of β-uracilalanines derived from 1H-1,2,3-triazole-C-carboxylic acids. Bioorg Chem 2018; 83:500-510. [PMID: 30453142 DOI: 10.1016/j.bioorg.2018.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022]
Abstract
The 1H-1,2,3-triazole-originated derivatives of willardiine were obtained by: (i) construction of the 1H-1,2,3-triazole ring in 1,3-dipolar cycloaddition of the uracil-derived azides and the carboxylate-bearing alkynes or α-acylphosphorus ylide, or (ii) N-alkylation of the uracil derivative with the 1H-1,2,3-triazole-4-carboxylate-derived mesylate. The latter method offered: (i) reproducible results, (ii) a significant reduction of amounts of auxiliary materials, (iii) reduction in wastes and (iv) reduction in a number of manual operations required for obtaining the reaction product. Compound 6a exhibited significant binding affinity to hHS1S2I ligand-binding domain of GluR2 receptor (EC50 = 2.90 µM) and decreased viability of human astrocytoma MOG-G-CCM cells in higher extent than known AMPA antagonist GYKI 52466.
Collapse
Affiliation(s)
- Ewa Mironiuk-Puchalska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Włodzimierz Buchowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Piotr Grześkowiak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Maria Bretner
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | |
Collapse
|
26
|
Jantas D, Grygier B, Gołda S, Chwastek J, Zatorska J, Tertil M. An endogenous and ectopic expression of metabotropic glutamate receptor 8 (mGluR8) inhibits proliferation and increases chemosensitivity of human neuroblastoma and glioma cells. Cancer Lett 2018; 432:1-16. [DOI: 10.1016/j.canlet.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
|
27
|
NR1 and NR3B Composed Intranuclear N-methyl-d-aspartate Receptor Complexes in Human Melanoma Cells. Int J Mol Sci 2018; 19:ijms19071929. [PMID: 29966365 PMCID: PMC6073738 DOI: 10.3390/ijms19071929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
Heterotetrameric N-methyl-d-aspartate type glutamate receptors (NMDAR) are cationic channels primarily permeable for Ca2+. NR1 and NR3 subunits bind glycine, while NR2 subunits bind glutamate for full activation. As NR1 may contain a nuclear localization signal (NLS) that is recognized by importin-α, our aim was to investigate if NMDARs are expressed in the nuclei of melanocytes and melanoma cells. A detailed NMDAR subunit expression pattern was examined by RT-PCRs (reverse transcription followed by polymerase chain reaction), fractionated western blots and immunocytochemistry in human epidermal melanocytes and in human melanoma cell lines A2058, HT199, HT168M1, MEL35/0 and WM35. All kind of NMDAR subunits are expressed as mRNAs in melanocytes, as well as in melanoma cells, while NR2B protein remained undetectable in any cell type. Western blots proved the exclusive presence of NR1 and NR3B in nuclear fractions and immunocytochemistry confirmed NR1-NR3B colocalization inside the nuclei of all melanoma cells. The same phenomenon was not observed in melanocytes. Moreover, protein database analysis revealed a putative NLS in NR3B subunit. Our results support that unusual, NR1-NR3B composed NMDAR complexes are present in the nuclei of melanoma cells. This may indicate a new malignancy-related histopathological feature of melanoma cells and raises the possibility of a glycine-driven, NMDA-related nuclear Ca2+-signalling in these cells.
Collapse
|
28
|
Fedoros EI, Orlov AA, Zherebker A, Gubareva EA, Maydin MA, Konstantinov AI, Krasnov KA, Karapetian RN, Izotova EI, Pigarev SE, Panchenko AV, Tyndyk ML, Osolodkin DI, Nikolaev EN, Perminova IV, Anisimov VN. Novel water-soluble lignin derivative BP-Cx-1: identification of components and screening of potential targets in silico and in vitro. Oncotarget 2018; 9:18578-18593. [PMID: 29719628 PMCID: PMC5915095 DOI: 10.18632/oncotarget.24990] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 11/25/2022] Open
Abstract
Identification of molecular targets and mechanism of action is always a challenge, in particular – for natural compounds due to inherent chemical complexity. BP-Cx-1 is a water-soluble modification of hydrolyzed lignin used as the platform for a portfolio of innovative pharmacological products aimed for therapy and supportive care of oncological patients. The present study describes a new approach, which combines in vitro screening of potential molecular targets for BP-Cx-1 using Diversity Profile - P9 panel by Eurofins Cerep (France) with a search of possible active components in silico in ChEMBL - manually curated chemical database of bioactive molecules with drug-like properties. The results of diversity assay demonstrate that BP-Cx-1 has multiple biological effects on neurotransmitters receptors, ligand-gated ion channels and transporters. Of particular importance is that the major part of identified molecular targets are involved in modulation of inflammation and immune response and might be related to tumorigenesis. Characterization of molecular composition of BP-Cx-1 with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and subsequent identification of possible active components by searching for molecular matches in silico in ChEMBL indicated polyphenolic components, nominally, flavonoids, sapogenins, phenanthrenes, as the major carriers of biological activity of BP-Cx-1. In vitro and in silico target screening yielded overlapping lists of proteins: adenosine receptors, dopamine receptor DRD4, glucocorticoid receptor, serotonin receptor 5-HT1, prostaglandin receptors, muscarinic cholinergic receptor, GABAA receptor. The pleiotropic molecular activities of polyphenolic components are beneficial in treatment of multifactorial disorders such as diseases associated with chronic inflammation and cancer.
Collapse
Affiliation(s)
- Elena I Fedoros
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia.,Nobel LTD, Saint-Petersburg 192012, Russia
| | - Alexey A Orlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Zherebker
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | - Mikhail A Maydin
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | | | - Konstantin A Krasnov
- Institute of Toxicology, Federal Medical-Biological Agency, Saint-Petersburg 192019, Russia
| | | | | | | | - Andrey V Panchenko
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | - Margarita L Tyndyk
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | - Dmitry I Osolodkin
- Institute of Poliomyelitis and Viral Encephalitides, Chumakov FSC R&D IBP RAS, Moscow 108819, Russia.,Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia.,Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow 119121, Russia
| | - Irina V Perminova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir N Anisimov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| |
Collapse
|
29
|
Oliveira KA, Dal-Cim TA, Lopes FG, Nedel CB, Tasca CI. Guanosine promotes cytotoxicity via adenosine receptors and induces apoptosis in temozolomide-treated A172 glioma cells. Purinergic Signal 2017; 13:305-318. [PMID: 28536931 DOI: 10.1007/s11302-017-9562-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells. The chemotherapy allied to adjuvant drugs are being suggested as a novel approach in gliomas treatment. In this way, this study evaluated whether GUO presented cytotoxic effects on human glioma cells as well as GUO effects in association with a classical chemotherapeutic compound, TMZ. Classical parameters of tumor aggressiveness, as alterations on cell viability, type of cell death, migration, and parameters of glutamatergic transmission, were evaluated. GUO (500 and 1000 μM) decreases the A172 glioma cell viability after 24, 48, or 72 h of treatment. TMZ alone or GUO plus TMZ also reduced glioma cell viability similarly. GUO combined with TMZ showed a potentiation effect of increasing apoptosis in A172 glioma cells, and a similar pattern was observed in reducing mitochondrial membrane potential. GUO per se did not elevate the acidic vesicular organelles occurrence, but TMZ or GUO plus TMZ increased this autophagy hallmark. GUO did not alter glutamate transport per se, but it prevented TMZ-induced glutamate release. GUO or TMZ did not alter glutamine synthetase activity. Pharmacological blockade of glutamate receptors did not change GUO effect on glioma viability. GUO cytotoxicity was partially prevented by adenosine receptor (A1R and A2AR) ligands. These results point to a cytotoxic effect of GUO on A172 glioma cells and suggest an anticancer effect of GUO as a putative adjuvant treatment, whose mechanism needs to be unraveled.
Collapse
Affiliation(s)
- Karen A Oliveira
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tharine A Dal-Cim
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Flávia G Lopes
- Departamento de Biologia Celular, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cláudia B Nedel
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Departamento de Biologia Celular, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carla Inês Tasca
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|