1
|
Fatima N, Fatima H, Ahmad S, Hashmi MATS, Sheikh N. Understanding the role of Hedgehog signaling pathway and gut dysbiosis in fueling liver cancer. Mol Biol Rep 2025; 52:411. [PMID: 40261446 DOI: 10.1007/s11033-025-10504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Liver cancer is one of the most prevalent types of cancer worldwide with less than 20% of patients surviving in the past half a decade. Several molecular pathways have been uncovered that may lead to the development of liver cancer but more recently the Hedgehog pathway (HH) and its interactions with the gut microbiota has emerged as an underlying cause of the development of liver cancer. Gut-liver axis is vital to maintaining homeostasis. The HH pathway controls cellular differentiation, proliferation, and apoptosis evasions, its abnormal activation can lead to uncontrolled proliferation of liver cancer stem cells. Additionally, the intricate interplay between HH signaling and the gut microbiota introduces a novel dimension. Recent investigations suggest that potential modulation of HH activity by gut microbiota influence HCC progression. This review explores a crosstalk between HH signaling and the gut microbiota, uncovering intricate mechanisms by which it fuels liver cancer development. This interplay provides insights into gut dysbiosis, HCC etiology and potential therapeutic avenues, highlighting the cooperative role of HH signaling and gut microbiota in shaping the overall HCC landscape.
Collapse
Affiliation(s)
- Naz Fatima
- Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
- Department of Internal Medicine & Gastroenterology, University of Michigan, Ann Arbor, 48109, USA.
| | - Hooriya Fatima
- Institute of Zoology, University of Punjab (Quaid-i-Azam Campus), Lahore, 54590, Pakistan
| | - Sadia Ahmad
- Institute of Zoology, University of Punjab (Quaid-i-Azam Campus), Lahore, 54590, Pakistan
| | | | - Nadeem Sheikh
- Institute of Zoology, University of Punjab (Quaid-i-Azam Campus), Lahore, 54590, Pakistan
| |
Collapse
|
2
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
3
|
Luo X, He X, Zhang X, Zhao X, Zhang Y, Shi Y, Hua S. Hepatocellular carcinoma: signaling pathways, targeted therapy, and immunotherapy. MedComm (Beijing) 2024; 5:e474. [PMID: 38318160 PMCID: PMC10838672 DOI: 10.1002/mco2.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a high mortality rate. It is regarded as a significant public health issue because of its complicated pathophysiology, high metastasis, and recurrence rates. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Traditional treatment methods such as surgical resection, radiotherapy, chemotherapy, and interventional therapies have limited therapeutic effects for HCC patients with recurrence or metastasis. With the development of molecular biology and immunology, molecular signaling pathways and immune checkpoint were identified as the main mechanism of HCC progression. Targeting these molecules has become a new direction for the treatment of HCC. At present, the combination of targeted drugs and immune checkpoint inhibitors is the first choice for advanced HCC patients. In this review, we mainly focus on the cutting-edge research of signaling pathways and corresponding targeted therapy and immunotherapy in HCC. It is of great significance to comprehensively understand the pathogenesis of HCC, search for potential therapeutic targets, and optimize the treatment strategies of HCC.
Collapse
Affiliation(s)
- Xiaoting Luo
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xin He
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xingmei Zhang
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiaohui Zhao
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yuzhe Zhang
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yusheng Shi
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Shengni Hua
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| |
Collapse
|
4
|
Chen J, Zhu Y, Zhao D, Zhang L, Zhang J, Xiao Y, Wu Q, Wang Y, Zhan Q. Co-targeting FAK and Gli1 inhibits the tumor-associated macrophages-released CCL22-mediated esophageal squamous cell carcinoma malignancy. MedComm (Beijing) 2023; 4:e381. [PMID: 37846367 PMCID: PMC10576977 DOI: 10.1002/mco2.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 10/18/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a frequently seen esophageal tumor type in China. Activation of signaling proteins and relevant molecular mechanisms in ESCC are partially explored, impairing the antitumor efficiency of targeted therapy in ESCC treatment. Tumor-associated macrophages (TAMs)-released C-C motif chemokine 22 (CCL22) can activate intratumoral focal adhesion kinase (FAK), thus promoting the progression of ESCC. Here, we demonstrated that highly secreted CCL22 by TAMs (CCL22-positive TAMs) induced ESCC cell stemness and invasion through facilitating transcriptional activity of intratumoral glioma-associated oncogene 1 (Gli1), a downstream effector for Hedgehog (HH) pathway. Mechanistically, FAK-activated protein kinase B (AKT) mediated Gli1 phosphorylation at its Ser112/Thr115/Ser116 sites and released Gli1 from suppressor of fused homolog, the endogenous inhibitor of Gli1 to activate downstream stemness-associated factors, such as SRY-box transcription factor 2 (SOX2), Nanog homeobox (Nanog), or POU class 5 homeobox (OCT4). Furthermore, inhibition of FAK activity by VS-4718, the FAK inhibitor, enhanced antitumor effect of GDC-0449, the HH inhibitor, both in xenografted models and in vitro assays. Clinically, CCL22/Gli1 axis is used to evaluate ESCC prognosis. Overall, our study establishes the communication of FAK with HH pathway and offers the novel mechanism related to Gli1 activation independent of Smoothened as well as the rationale for the anti-ESCC combination treatment.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Peking University International Cancer InstitutePeking UniversityBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
- Soochow University Cancer InstituteSuzhouChina
| | - Yanmeng Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Di Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Peking University International Cancer InstitutePeking UniversityBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Lingyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Jing Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yuanfan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Peking University International Cancer InstitutePeking UniversityBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Peking University International Cancer InstitutePeking UniversityBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Peking University International Cancer InstitutePeking UniversityBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
- Soochow University Cancer InstituteSuzhouChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
5
|
Lear JT, Morris LM, Ness DB, Lewis LD. Pharmacokinetics and pharmacodynamics of Hedgehog pathway inhibitors used in the treatment of advanced or treatment-refractory basal cell carcinoma. Expert Rev Clin Pharmacol 2023; 16:1211-1220. [PMID: 37975712 DOI: 10.1080/17512433.2023.2285849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Sonidegib and vismodegib are currently the only US Food and Drug Administration and European Medicines Agency-approved small-molecule Hedgehog pathway inhibitors (HHIs)for treating adults with advanced or refractory basal cell carcinoma (BCC) that is not amenable to conventional surgery or radiotherapy. At this time, there are no head-to-head clinical trials comparing these two HHIs for efficacy and safety to assist clinicians with determining which HHI may be best suited for their patients. AREAS COVERED This review briefly describes the pathogenesis of BCC, provides a detailed overview of the key pharmacokinetic profile differences between sonidegib and vismodegib, explains their pharmacodynamics, and highlights the therapeutic considerations when either HHI is used to treat special patient populations. EXPERT OPINION Although both HHIs act at the same molecular target in the Hedgehog pathway, there are significant differences in their pharmacokinetic profiles that may play a potential role in their efficacy and safety. Evidence-based recommendations serve to inform clinicians until direct comparative clinical trials of sonidegib versus vismodegib are conducted to determine the clinical relevance of the reported differences in their pharmacokinetic properties.
Collapse
Affiliation(s)
- John T Lear
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Dermatology Center, Salford Royal NHS Foundation Trust, Salford, UK
| | - Linda M Morris
- Department of Medicine, The Geisel School of Medicine & The Dartmouth Cancer Center, Lebanon, NH, USA
| | - Dylan B Ness
- Department of Medicine, The Geisel School of Medicine & The Dartmouth Cancer Center, Lebanon, NH, USA
| | - Lionel D Lewis
- Department of Medicine, The Geisel School of Medicine & The Dartmouth Cancer Center, Lebanon, NH, USA
| |
Collapse
|
6
|
Shokouhian B, Aboulkheyr Es H, Negahdari B, Tamimi A, Shahdoust M, Shpichka A, Timashev P, Hassan M, Vosough M. Hepatogenesis and hepatocarcinogenesis: Alignment of the main signaling pathways. J Cell Physiol 2022; 237:3984-4000. [PMID: 36037302 DOI: 10.1002/jcp.30862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022]
Abstract
Development is a symphony of cells differentiation in which different signaling pathways are orchestrated at specific times and periods to form mature and functional cells from undifferentiated cells. The similarity of the gene expression profile in malignant and undifferentiated cells is an interesting topic that has been proposed for many years and gave rise to the differentiation-therapy concept, which appears a rational insight and should be reconsidered. Hepatocellular carcinoma (HCC), as the sixth common cancer and the third leading cause of cancer death worldwide, is one of the health-threatening complications in communities where hepatotropic viruses are endemic. Sedentary lifestyle and high intake of calories are other risk factors. HCC is a complex condition in which various dimensions must be addressed, including heterogeneity of cells in the tumor mass, high invasiveness, and underlying diseases that limit the treatment options. Under these restrictions, recognizing, and targeting common signaling pathways during liver development and HCC could expedite to a rational therapeutic approach, reprograming malignant cells to well-differentiated ones in a functional state. Accordingly, in this review, we highlighted the commonalities of signaling pathways in hepatogenesis and hepatocarcinogenesis, and comprised an update on the current status of targeting these pathways in laboratory studies and clinical trials.
Collapse
Affiliation(s)
- Bahare Shokouhian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Shahdoust
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Anastasia Shpichka
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Peter Timashev
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
7
|
Zhu H, Lewis DJ. Topical hedgehog inhibitors for basal cell carcinoma: how far away are we? Expert Opin Pharmacother 2022; 23:739-740. [PMID: 35258366 DOI: 10.1080/14656566.2022.2050215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The standard treatment of basal cell carcinoma (BCC) consists of conventional excision or Mohs micrographic surgery. However, surgical excision is not feasible in specific cases, particularly in patients with several BCCs such as those with Gorlin syndrome or individuals receiving immunosuppression after solid-organ transplantation. Additionally, the geriatric population may not be appropriate candidates for surgery. Thus, alternative therapies are needed for these populations. AREAS COVERED Hedgehog (Hh) inhibitors are approved and effective but are currently available only in oral formulations. These agents such as vismodegib and sonidegib are associated with short-lived responses as well as significant adverse effects including myalgias, dysgeusia, and alopecia. Patidegib and itraconazole are two topical Hh inhibitors agents emerging as alternatives to oral Hh inhibiton for difficult-to-treat BCCs. These agents exhibit limited systemic absorption, leading to improved tolerability; however, an optimal formulation is needed to maximize efficacy and is currently being investigated. EXPERT OPINION Ongoing and recent clinical studies on topical Hedgehog inhibitors show great promise for the development of an agent with a high therapeutic index and limited adverse effects. If patidegib continues to show clinical efficacy in randomized controlled trials, it may become a universal therapy for all subtypes of difficult-to-treat BCC.
Collapse
Affiliation(s)
- Harrison Zhu
- School of Medicine, Baylor College of Medicine, Houston, Tx, USA
| | - Daniel J Lewis
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Garg C, khan H, Kaur A, Singh TG, Sharma VK, Singh SK. Therapeutic Implications of Sonic Hedgehog Pathway in Metabolic Disorders: Novel Target for Effective Treatment. Pharmacol Res 2022; 179:106194. [DOI: 10.1016/j.phrs.2022.106194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
|
9
|
Patidegib in Dermatology: A Current Review. Int J Mol Sci 2021; 22:ijms221910725. [PMID: 34639065 PMCID: PMC8509734 DOI: 10.3390/ijms221910725] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Basal cell carcinoma is one of the most common types of non-melanoma skin cancers, which can be locally destructive despite low-rate metastasis. Surgery is the treatment of choice, but it lacks of efficacy on advanced cases. Hedgehog pathway inhibitors are a class of drugs providing a new therapeutic option for patients affected by advanced disease. Besides systemic therapy, such as vismodegib and sonidegib, also topical inhibitors have been developed. Patidegib is able to decrease tumor burden, reducing the adverse effects induced by systemic targeted therapies. Methods: We performed comprehensive research to summarize the use of patidegib in advanced and recurrent aggressive basal cell carcinomas. Only English language human studies were included in the search. Results: Seven trials reported the application of patidegib. Both topical and systemic patidegib demonstrated safety, tolerability, and efficacy in naïve patients with stage II and III basal cell carcinomas, while stage IV disease and not-naïve patients did not show any benefit. Conclusion: Unlike systemic Hedgehog pathway inhibitors, patidegib 2% gel is not associated with systemic adverse effects and allows a better patient management. Considering the multidisciplinary management of neoplasia, in the era of precision medicine, it is mandatory to confide in pharmacogenomics to obtain personalized combined or sequential therapies.
Collapse
|
10
|
Han AN, Han BR, Zhang T, Heimbach T. Hepatic Impairment Physiologically Based Pharmacokinetic Model Development: Current Challenges. CURRENT PHARMACOLOGY REPORTS 2021; 7:213-226. [DOI: 10.1007/s40495-021-00266-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/03/2025]
|
11
|
Grechko N, Skarbova V, Tomaszewska-Kiecana M, Ramlau R, Centkowski P, Drew Y, Dziadziuszko R, Zemanova M, Beltman J, Nash E, Habeck J, Liao M, Xiao J. Pharmacokinetics and safety of rucaparib in patients with advanced solid tumors and hepatic impairment. Cancer Chemother Pharmacol 2021; 88:259-270. [PMID: 33909097 PMCID: PMC8236452 DOI: 10.1007/s00280-021-04278-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE The poly(ADP-ribose) polymerase inhibitor rucaparib is approved for the treatment of patients with recurrent ovarian and metastatic castration-resistant prostate cancer; however, limited data are available on its use in patients with hepatic dysfunction. This study investigated whether hepatic impairment affects the pharmacokinetics, safety, and tolerability of rucaparib in patients with advanced solid tumors. METHODS Patients with normal hepatic function or moderate hepatic impairment according to the National Cancer Institute Organ Dysfunction Working Group (NCI-ODWG) criteria were enrolled and received a single oral dose of rucaparib 600 mg. Concentrations of rucaparib and its metabolite M324 in plasma and urine were measured. Pharmacokinetic parameters were compared between hepatic function groups, and safety and tolerability were assessed. RESULTS Sixteen patients were enrolled (n = 8 per group). Rucaparib maximum concentration (Cmax) was similar, while the area under the concentration-time curve from time 0 to infinity (AUC0-inf) was mildly higher in the moderate hepatic impairment group than in the normal control group (geometric mean ratio, 1.446 [90% CI 0.668-3.131]); similar trends were observed for M324. Eight (50%) patients experienced ≥ 1 treatment-emergent adverse event (TEAE); 2 had normal hepatic function and 6 had moderate hepatic impairment. CONCLUSION Patients with moderate hepatic impairment showed mildly increased AUC0-inf for rucaparib compared to patients with normal hepatic function. Although more patients with moderate hepatic impairment experienced TEAEs, only 2 TEAEs were considered treatment related. These results suggest no starting dose adjustment is necessary for patients with moderate hepatic impairment; however, close safety monitoring is warranted.
Collapse
Affiliation(s)
| | - Viera Skarbova
- Department of Internal Medicine and Clinical Pharmacology, Summit Clinical Research, Bratislava, Slovakia
| | | | - Rodryg Ramlau
- Department of Oncology and Pulmonology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Centkowski
- Department of Oncology, Provincial Specialist Hospital in Biała Podlaska, Biała Podlaska, Poland
| | - Yvette Drew
- Clinical and Translational Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy and Early Clinical Trials Unit, Medical University of Gdańsk, Gdańsk, Poland
| | - Milada Zemanova
- Department of Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jeri Beltman
- Regulatory Affairs, Clovis Oncology, Inc., Boulder, CO, USA
| | - Eileen Nash
- Clinical Operations, Clovis Oncology, Inc., Boulder, CO, USA
| | - Jenn Habeck
- Biostatistics, Clovis Oncology, Inc., Boulder, CO, USA
| | - Mingxiang Liao
- Clinical Pharmacology, Clovis Oncology, Inc., 5500 Flatiron Pkwy, Boulder, CO, 80301, USA
| | - Jim Xiao
- Clinical Pharmacology, Clovis Oncology, Inc., 5500 Flatiron Pkwy, Boulder, CO, 80301, USA.
| |
Collapse
|
12
|
Solans BP, Garrido MJ, Trocóniz IF. Drug Exposure to Establish Pharmacokinetic-Response Relationships in Oncology. Clin Pharmacokinet 2021; 59:123-135. [PMID: 31654368 DOI: 10.1007/s40262-019-00828-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the oncology field, understanding the relationship between the dose administered and the exerted effect is particularly important because of the narrow therapeutic index associated with anti-cancer drugs and the high interpatient variability. Therefore, in this review, we provide a critical perspective of the different methods of characterising treatment exposure in the oncology setting. The increasing number of modelling applications in oncology reflects the applicability and the impact of pharmacometrics on all phases of the drug development process and patient management as well. Pharmacometric modelling is a worthy component within the current paradigm of model-based drug development, but pharmacometric modelling techniques are also accessible for the clinician in the optimisation of current oncology therapies. Consequently, the application of population models in a hospital setting by generating close collaborations between physicians and pharmacometricians is highly recommended, providing a systematic means of developing and assessing model-based metrics as 'drivers' for various responses to treatments, which can then be evaluated as predictors for treatment success. Characterising the key determinants of variability in exposure is of particular importance for anticancer agents, as efficacy and toxicity are associated with exposure. We present the different strategies to describe and predict drug exposure that can be applied depending on the data available, with the objective of obtaining the most useful information in the patients' favour throughout the full drug cycle. Therefore, the objective of the present article is to review the different approaches used to characterise a patient's exposure to oncology drugs, which will result in a better understanding of the time course of the response and the magnitude of interpatient variability.
Collapse
Affiliation(s)
- Belén P Solans
- Pharmacometrics & Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea s/n, 31008, Pamplona, Navarra, Spain. .,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain.
| | - María Jesús Garrido
- Pharmacometrics & Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea s/n, 31008, Pamplona, Navarra, Spain.,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain
| | - Iñaki F Trocóniz
- Pharmacometrics & Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea s/n, 31008, Pamplona, Navarra, Spain. .,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain.
| |
Collapse
|
13
|
The Role of Smoothened in Cancer. Int J Mol Sci 2020; 21:ijms21186863. [PMID: 32962123 PMCID: PMC7555769 DOI: 10.3390/ijms21186863] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Smoothened (SMO) belongs to the Hedgehog (HH) signaling pathway, which regulates cell growth, migration, invasion and stem cells in cancer. The HH signaling pathway includes both canonical and noncanonical pathways. The canonical HH pathway functions through major HH molecules such as HH ligands, PTCH, SMO and GLI, whereas the noncanonical HH pathway involves the activation of SMO or GLI through other pathways. The role of SMO has been discussed in different types of cancer, including breast, liver, pancreatic and colon cancers. SMO expression correlates with tumor size, invasiveness, metastasis and recurrence. In addition, SMO inhibitors can suppress cancer formation, reduce the proliferation of cancer cells, trigger apoptosis and suppress cancer stem cell activity. A better understanding of the role of SMO in cancer could contribute to the development of novel therapeutic approaches.
Collapse
|
14
|
Chow AKM, Yau SWL, Ng L. Novel molecular targets in hepatocellular carcinoma. World J Clin Oncol 2020; 11:589-605. [PMID: 32879846 PMCID: PMC7443834 DOI: 10.5306/wjco.v11.i8.589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is a leading cause of cancer and cancer-related deaths. The therapeutic efficacy of locoregional and systemic treatment in patients with advanced HCC remains low, which results in a poor prognosis. The development of sorafenib for the treatment of HCC has resulted in a new era of molecular targeted therapy for this disease. However, the median overall survival was reported to be barely higher in the sorafenib treatment group than in the control group. Hence, in this review we describe the importance of developing more effective targeted therapies for the management of advanced HCC. Recent investigations of molecular signaling pathways in several cancers have provided some insights into developing molecular therapies that target critical members of these signaling pathways. Proteins involved in the Hedgehog and Notch signaling pathways, Polo-like kinase 1, arginine, histone deacetylases and Glypican-3 can be potential targets in the treatment of HCC. Monotherapy has limited therapeutic efficacy due to the development of inhibitory feedback mechanisms and induction of chemoresistance. Thus, emphasis is now on the development of personalized and combination molecular targeted therapies that can serve as ideal therapeutic strategies for improved management of HCC.
Collapse
Affiliation(s)
- Ariel Ka-Man Chow
- School of Nursing and Health Studies, The Open University of Hong Kong, Hong Kong, China
| | - Simon Wing-Lung Yau
- School of Nursing and Health Studies, The Open University of Hong Kong, Hong Kong, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Yang Y, Li X, Wang T, Guo Q, Xi T, Zheng L. Emerging agents that target signaling pathways in cancer stem cells. J Hematol Oncol 2020; 13:60. [PMID: 32456660 PMCID: PMC7249421 DOI: 10.1186/s13045-020-00901-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to the initiation, recurrence, and metastasis of cancer; however, there are still no drugs targeting CSCs in clinical application. There are several signaling pathways playing critical roles in CSC progression, such as the Wnt, Hedgehog, Notch, Hippo, and autophagy signaling pathways. Additionally, targeting the ferroptosis signaling pathway was recently shown to specifically kill CSCs. Therefore, targeting these pathways may suppress CSC progression. The structure of small-molecule drugs shows a good spatial dispersion, and its chemical properties determine its good druggability and pharmacokinetic properties. These characteristics make small-molecule drugs show a great advantage in drug development, which is increasingly popular in the market. Thus, in this review, we will summarize the current researches on the small-molecule compounds suppressing CSC progression, including inhibitors of Wnt, Notch, Hedgehog, and autophagy pathways, and activators of Hippo and ferroptosis pathways. These small-molecule compounds emphasize CSC importance in tumor progression and propose a new strategy to treat cancer in clinic via targeting CSCs.
Collapse
Affiliation(s)
- Yue Yang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ting Wang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450003, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
16
|
Kremer L, Hennes E, Brause A, Ursu A, Robke L, Matsubayashi HT, Nihongaki Y, Flegel J, Mejdrová I, Eickhoff J, Baumann M, Nencka R, Janning P, Kordes S, Schöler HR, Sterneckert J, Inoue T, Ziegler S, Waldmann H. Discovery of the Hedgehog Pathway Inhibitor Pipinib that Targets PI4KIIIß. Angew Chem Int Ed Engl 2019; 58:16617-16628. [PMID: 31454140 PMCID: PMC6900058 DOI: 10.1002/anie.201907632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Indexed: 01/20/2023]
Abstract
The Hedgehog (Hh) signaling pathway is crucial for vertebrate embryonic development, tissue homeostasis and regeneration. Hh signaling is upregulated in basal cell carcinoma and medulloblastoma and Hh pathway inhibitors targeting the Smoothened (SMO) protein are in clinical use. However, the signaling cascade is incompletely understood and novel druggable proteins in the pathway are in high demand. We describe the discovery of the Hh-pathway modulator Pipinib by means of cell-based screening. Target identification and validation revealed that Pipinib selectively inhibits phosphatidylinositol 4-kinase IIIβ (PI4KB) and suppresses GLI-mediated transcription and Hh target gene expression by impairing SMO translocation to the cilium. Therefore, inhibition of PI4KB and, consequently, reduction in phosphatidyl-4-phosphate levels may be considered an alternative approach to inhibit SMO function and thus, Hedgehog signaling.
Collapse
Affiliation(s)
- Lea Kremer
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Elisabeth Hennes
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Alexandra Brause
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Andrei Ursu
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644221DortmundGermany
- Current address: Department of ChemistryThe Scripps Research Institute110 Scripps WayJupiterFL33458USA
| | - Lucas Robke
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644221DortmundGermany
| | - Hideaki T. Matsubayashi
- Department of Cell BiologyJohns Hopkins University School of Medicine855 N. Wolfe Street, 453 RangosBaltimoreMD21205USA
| | - Yuta Nihongaki
- Department of Cell BiologyJohns Hopkins University School of Medicine855 N. Wolfe Street, 453 RangosBaltimoreMD21205USA
| | - Jana Flegel
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Ivana Mejdrová
- Institute of Organic Chemistry and BiochemistryFlemingovo nam. 216610Prague 6Czech Republic
| | - Jan Eickhoff
- Lead Discovery Center GmbHOtto-Hahn-Straße 1544227DortmundGermany
| | - Matthias Baumann
- Lead Discovery Center GmbHOtto-Hahn-Straße 1544227DortmundGermany
| | - Radim Nencka
- Institute of Organic Chemistry and BiochemistryFlemingovo nam. 216610Prague 6Czech Republic
| | - Petra Janning
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Susanne Kordes
- Lead Discovery Center GmbHOtto-Hahn-Straße 1544227DortmundGermany
- Department of Cell and Developmental BiologyMax Planck Institute for Molecular BiomedicineRöntgenstr. 2048149MünsterGermany
| | - Hans R. Schöler
- Department of Cell and Developmental BiologyMax Planck Institute for Molecular BiomedicineRöntgenstr. 2048149MünsterGermany
- Medical FacultyUniversity of MünsterDomagkstr. 348149MünsterGermany
| | - Jared Sterneckert
- Department of Cell and Developmental BiologyMax Planck Institute for Molecular BiomedicineRöntgenstr. 2048149MünsterGermany
- Technische Universität DresdenDFG-Research Center for Regenerative Therapies Dresden01307DresdenGermany
| | - Takanari Inoue
- Department of Cell BiologyJohns Hopkins University School of Medicine855 N. Wolfe Street, 453 RangosBaltimoreMD21205USA
| | - Slava Ziegler
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Herbert Waldmann
- Department of Chemical BiologyMax-Planck-Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644221DortmundGermany
| |
Collapse
|
17
|
Kremer L, Hennes E, Brause A, Ursu A, Robke L, Matsubayashi HT, Nihongaki Y, Flegel J, Mejdrová I, Eickhoff J, Baumann M, Nencka R, Janning P, Kordes S, Schöler HR, Sterneckert J, Inoue T, Ziegler S, Waldmann H. Discovery of the Hedgehog Pathway Inhibitor Pipinib that Targets PI4KIIIß. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lea Kremer
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Elisabeth Hennes
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Alexandra Brause
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Andrei Ursu
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44221 Dortmund Germany
- Current address: Department of Chemistry The Scripps Research Institute 110 Scripps Way Jupiter FL 33458 USA
| | - Lucas Robke
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44221 Dortmund Germany
| | - Hideaki T. Matsubayashi
- Department of Cell Biology Johns Hopkins University School of Medicine 855 N. Wolfe Street, 453 Rangos Baltimore MD 21205 USA
| | - Yuta Nihongaki
- Department of Cell Biology Johns Hopkins University School of Medicine 855 N. Wolfe Street, 453 Rangos Baltimore MD 21205 USA
| | - Jana Flegel
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Ivana Mejdrová
- Institute of Organic Chemistry and Biochemistry Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Jan Eickhoff
- Lead Discovery Center GmbH Otto-Hahn-Straße 15 44227 Dortmund Germany
| | - Matthias Baumann
- Lead Discovery Center GmbH Otto-Hahn-Straße 15 44227 Dortmund Germany
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Petra Janning
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Susanne Kordes
- Lead Discovery Center GmbH Otto-Hahn-Straße 15 44227 Dortmund Germany
- Department of Cell and Developmental Biology Max Planck Institute for Molecular Biomedicine Röntgenstr. 20 48149 Münster Germany
| | - Hans R. Schöler
- Department of Cell and Developmental Biology Max Planck Institute for Molecular Biomedicine Röntgenstr. 20 48149 Münster Germany
- Medical Faculty University of Münster Domagkstr. 3 48149 Münster Germany
| | - Jared Sterneckert
- Department of Cell and Developmental Biology Max Planck Institute for Molecular Biomedicine Röntgenstr. 20 48149 Münster Germany
- Technische Universität Dresden DFG-Research Center for Regenerative Therapies Dresden 01307 Dresden Germany
| | - Takanari Inoue
- Department of Cell Biology Johns Hopkins University School of Medicine 855 N. Wolfe Street, 453 Rangos Baltimore MD 21205 USA
| | - Slava Ziegler
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemical Biology Max-Planck-Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44221 Dortmund Germany
| |
Collapse
|
18
|
Prasse A, Ramaswamy M, Mohan S, Pan L, Kenwright A, Neighbors M, Belloni P, LaCamera PP. A Phase 1b Study of Vismodegib with Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. Pulm Ther 2019; 5:151-163. [PMID: 32026407 PMCID: PMC6967289 DOI: 10.1007/s41030-019-0096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Components of the hedgehog signaling pathway are upregulated in patients with idiopathic pulmonary fibrosis (IPF). Vismodegib, a small-molecule inhibitor of hedgehog signaling, when used in combination with currently available antifibrotic therapy, may be more efficacious than antifibrotics alone. The objective of this study was to evaluate the safety and tolerability of vismodegib plus pirfenidone in patients with IPF. METHODS Twenty-one patients were enrolled in a phase 1b open-label trial to receive vismodegib 150 mg plus pirfenidone 2403 mg/day once daily. Key endpoints were safety, tolerability, and pharmacokinetics. Exploratory endpoints included change from baseline to week 24 in % predicted forced vital capacity (FVC) and University of California, San Diego Shortness of Breath Questionnaire (UCSD-SOBQ) scores, as well as pharmacodynamic changes in hedgehog biomarker C-X-C motif chemokine ligand 14 (CXCL14). RESULTS All patients reported at least one treatment-emergent adverse event (AE), most frequently muscle spasms (76.2%). Serious AEs were reported in 14.3% of patients; one event of dehydration was considered related to vismodegib. One patient died due to IPF progression, unrelated to either treatment. More patients discontinued vismodegib than pirfenidone (42.9% vs. 33.3%, respectively). Changes from baseline to week 24 in % predicted FVC and UCSD-SOBQ scores were within known endpoint variability. In contrast to findings in basal cell carcinoma, vismodegib had no effect on circulating CXCL14 levels. CONCLUSION The safety profile was generally consistent with the known profiles of both drugs, with no new safety signals observed in this small cohort. There was no pharmacodynamic effect on CXCL14 levels. Future development of vismodegib for IPF may be limited due to tolerability issues. TRIAL REGISTRATION ClinicalTrials.gov NCT02648048. Plain language summary available for this article. FUNDING F. Hoffmann-La Roche Ltd. and Genentech, Inc.
Collapse
Affiliation(s)
- Antje Prasse
- Hannover Medical School and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| | | | - Shaun Mohan
- Genentech, Inc., South San Francisco, CA, USA
| | - Lin Pan
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
19
|
Janssen JM, de Vries N, Venekamp N, Rosing H, Huitema ADR, Beijnen JH. Development and validation of a liquid chromatography-tandem mass spectrometry assay for nine oral anticancer drugs in human plasma. J Pharm Biomed Anal 2019; 174:561-566. [PMID: 31255856 DOI: 10.1016/j.jpba.2019.06.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
Abstract
A liquid chromatography-tandem mass spectrometry assay was developed and validated for the nine oral anticancer agents alectinib, cobimetinib, lenvatinib, nintedanib, osimertinib, palbociclib, ribociclib, vismodegib and vorinostat in order to support therapeutic drug monitoring (TDM). The assay was based on reversed-phase chromatography coupled with tandem mass spectrometry operating in the positive ion mode. The assay was validated based on the guidelines on bioanalytical methods by the US Food and Drug Administration and European Medicines Agency. The method was validated over a linear range of 10-200 ng/mL for alectinib, lenvatinib, nintedanib and vismodegib; 50-1000 ng/mL for cobimetinib and palbociclib; 100-2000 ng/mL for osimertinib; 5.00-100 ng/mL for ribociclib; 25-500 ng/mL for vorinostat. Intra-assay and inter-assay bias was within ±20% for all analytes at the lower limit of quantification and within ±15% at remaining concentrations. Stability experiments showed that osimertinib is unstable in the biomatrix and should be shipped on dry-ice and stored at -20 °C until analysis. All other compounds were stable in the biomatrix. The described TDM method was successfully validated and applied for TDM in patients treated with these KIs.
Collapse
Affiliation(s)
- Julie M Janssen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Niels de Vries
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nikkie Venekamp
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
20
|
Nguyen L, Chapel S, Tran BD, Lacy S. Updated Population Pharmacokinetic Model of Cabozantinib Integrating Various Cancer Types Including Hepatocellular Carcinoma. J Clin Pharmacol 2019; 59:1551-1561. [PMID: 31187515 PMCID: PMC6790584 DOI: 10.1002/jcph.1467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
An integrated population pharmacokinetic (PPK) model was used to evaluate the effects of liver dysfunction on the pharmacokinetics (PK) of cabozantinib in patients with hepatocellular carcinoma and to determine whether clinical dosage adjustment may be necessary in this population. An integrated PPK model previously developed in healthy volunteers and patients with various cancer types was updated with cabozantinib concentration data from hepatocellular carcinoma patients in phase 2 and 3 studies (total 2023; hepatocellular carcinoma 489 patients). Covariate effects of cancer type including hepatocellular carcinoma population and liver dysfunction per the National Cancer Institute Organ Dysfunction Working Group criteria were evaluated (normal 1425; mild liver dysfunction 558; moderate/severe liver dysfunction 15/1 patients). With hepatocellular carcinoma patients, PK parameter estimates and covariate effects were similar to the previous PPK model (2 compartments with first‐ and zero‐order absorption and first‐order elimination). Only medullary thyroid cancer had appreciable PK differences from healthy volunteers. PK parameter estimates were similar with and without addition of liver dysfunction covariates. Patients with mild liver dysfunction were predicted to have minimal differences in apparent clearance of cabozantinib relative to patients with normal liver function. Therefore, no initial cabozantinib dosage adjustment is recommended for cancer patients with mild liver dysfunction. The small sample size for patients with moderate and severe liver dysfunction limited dosing recommendations in these subpopulations. The results from this PPK analysis were different from those of the single‐dose hepatic impairment study in healthy volunteers and more reflective of exposure in cancer patients following daily cabozantinib dosing.
Collapse
Affiliation(s)
| | - Sunny Chapel
- Ann Arbor Pharmacometrics Group, Inc, Ann Arbor, MI, USA
| | | | | |
Collapse
|
21
|
Abstract
Vismodegib (Erivedge®) is the first-in-class, oral small molecule inhibitor of the Hedgehog (Hh) pathway, abnormal activation of which is associated with basal cell carcinoma (BCC). In the USA, vismodegib is indicated for the treatment of adults with metastatic BCC (mBCC) or with locally-advanced BCC (LaBCC) that has recurred following surgery or who are not candidates for surgery, and who are not candidates for radiation. Similarly, in the EU, vismodegib is indicated for the treatment of adult patients with symptomatic mBCC, or with laBCC inappropriate for surgery or radiotherapy. The full European approval of vismodegib was based on the results of two phase II, open-label, noncomparative, international trials (ERIVANCE BCC and STEVIE), both of which showed high rates of tumour control in the indicated patient populations, including individuals with or without Gorlin syndrome. These studies also showed that vismodegib has an acceptable and manageable tolerability profile characterized by a number of class-related treatment-emergent adverse events, including muscle spasms, taste disturbances, alopecia, weight loss and asthenia (fatigue). Primary and secondary resistance to vismodegib has been documented, albeit at a low rate compared with some other targeted therapies. Vismodegib is therefore an effective and generally well tolerated systemic therapy for patients with mBCC and laBCC that can no longer be suitably controlled with surgery and/or radiotherapy. Historically, it is the first member of a class of drugs (Hh pathway inhibitors) that are now considered to be first-line treatment options for such individuals.
Collapse
|
22
|
Clairet AL, Boiteux-Jurain M, Curtit E, Jeannin M, Gérard B, Nerich V, Limat S. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Med Oncol 2019; 36:45. [PMID: 30993543 DOI: 10.1007/s12032-019-1267-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
Abstract
Cancer is becoming more prevalent in elderly patient. Due to polypharmacy, older adults with cancer are predisposed to drug-drug interactions. There is also an increasing interest in the use of complementary and alternative medicine (CAM). Thirty to seventy percent of patients with cancer have used CAM. Through pharmaceutical counseling sessions, we can provide advices on herb-drug interactions (HDI). All the patients seen in pharmaceutical counseling sessions were prospectively included. Information was collected during these sessions: prescribed medication (oral anticancer agents (OAA) and other drugs), CAM (phytotherapy especially), and use of over-the-counter (OTC) drugs. If pharmacist considered an interaction or an intervention clinically relevant, the oncologist was notified. Then, a literature review was realized to identify the potential HDI (no interactions, precautions for use, contraindication). Among 201 pharmacist counseling sessions, it resulted in 104 interventions related to 46 HDI, 28 drug-drug interactions and 30 others (wrong dosage, omission…). To determine HDI, we review 73 medicinal plants which are used by our patients with cancer and 31 OAA. A total of 1829 recommendations were formulated about 59 (75%) medical plants and their interaction with an OAA. Herb-drug interactions should not be ignored by healthcare providers in their management of cancer patients in daily practice.
Collapse
Affiliation(s)
- Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| | - Marie Boiteux-Jurain
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Elsa Curtit
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France
| | - Marie Jeannin
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Blandine Gérard
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France.
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France.
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| |
Collapse
|
23
|
Girardi D, Barrichello A, Fernandes G, Pereira A. Targeting the Hedgehog Pathway in Cancer: Current Evidence and Future Perspectives. Cells 2019; 8:cells8020153. [PMID: 30759860 PMCID: PMC6406365 DOI: 10.3390/cells8020153] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/05/2023] Open
Abstract
The Hedgehog pathway (HhP) plays an important role in normal embryonic development and its abnormal function has been linked to a variety of neoplasms. Recently, the complex mechanisms involved in this pathway have been deciphered and the cross talks with other important pathways involved in carcinogenesis have been characterized. This knowledge has led to the development of targeted therapies against key components of HhP, which culminated in the approval of vismodegib for the treatment of advanced basal cell carcinoma in 2012. Since then, other compounds have been developed and evaluated in preclinical and clinical studies with interesting results. Today, several medications against components of the HhP have demonstrated clinical activity as monotherapies and in combination with cytotoxic treatment or other targeted therapies against mitogenic pathways that are linked to the HhP. This review aims to clarify the mechanism of the HhP and the complex crosstalk with others pathways involved in carcinogenesis and to discuss both the evidence associated with the growing number of medications and combined therapies addressing this pathway and future perspectives.
Collapse
Affiliation(s)
- Daniel Girardi
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Adriana Barrichello
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Gustavo Fernandes
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Allan Pereira
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| |
Collapse
|
24
|
Machado MV, Diehl AM. Hedgehog signalling in liver pathophysiology. J Hepatol 2018; 68:550-562. [PMID: 29107151 PMCID: PMC5957514 DOI: 10.1016/j.jhep.2017.10.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Liver disease remains a leading cause of mortality worldwide despite recent successes in the field of viral hepatitis, because increases in alcohol consumption and obesity are fuelling an epidemic of chronic fatty liver disease for which there are currently no effective medical therapies. About 20% of individuals with chronic liver injury ultimately develop end-stage liver disease due to cirrhosis. Hence, treatments to prevent and reverse cirrhosis in individuals with ongoing liver injury are desperately needed. The development of successful treatments requires an improved understanding of the mechanisms controlling liver disease progression. The liver responds to diverse insults with a conserved wound healing response, suggesting that it might be generally beneficial to optimise pathways that are crucial for effective liver repair. The Hedgehog pathway has emerged as a potential target based on compelling preclinical and clinical data, which demonstrate that it critically regulates the liver's response to injury. Herein, we will summarise evidence of the Hedgehog pathway's role in liver disease and discuss how modulating pathway activity might be applied to improve liver disease outcomes.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|