1
|
Takata T, Inoue S, Masauji T, Miyazawa K, Motoo Y. Generation and Accumulation of Various Advanced Glycation End-Products in Cardiomyocytes May Induce Cardiovascular Disease. Int J Mol Sci 2024; 25:7319. [PMID: 39000424 PMCID: PMC11242264 DOI: 10.3390/ijms25137319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan;
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.I.); (K.M.)
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan;
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.I.); (K.M.)
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanaka, Fukui 918-8503, Japan
| |
Collapse
|
2
|
Huang W, Zhang J, Luo L, Yu Y, Sun T. Nitric Oxide and Tumors: From Small-Molecule Donor to Combination Therapy. ACS Biomater Sci Eng 2023; 9:139-152. [PMID: 36576226 DOI: 10.1021/acsbiomaterials.2c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As an important endogenous signaling molecule, nitric oxide (NO) is involved in various physiological and pathological activities in living organisms. It is proved that NO plays a critical role in tumor therapy, while the extremely short half-life and nonspecific distribution of NO greatly limit its further clinical applications. Thus, the past few decades have witnessed the progress made in conquering these shortcomings, including developing innovative NO donors, especially smart and multimodal nanoplatforms. These platforms can precisely control the spatiotemporal distribution of therapeutic agents in the organism, which make big differences in tumor treatment. Here current NO therapeutic mechanisms for cancer, NO donors from small molecules to smart-responsive nanodrug delivery platforms, and NO-based combination therapy are comprehensively reviewed, emphasizing outstanding breakthroughs in these fields and hoping to bring new insights into NO-based tumor treatments.
Collapse
Affiliation(s)
- Wan Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Li Luo
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Yao Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Xu L, Wu X, Liu H, Dong G, Zhan J, Li G, Wang G, Liu T. Effects of combination docetaxel with NO treatment to enhance the anti-nasopharyngeal carcinoma efficiency in vitro and in vivo. Eur J Pharm Sci 2022; 178:106281. [PMID: 35995348 DOI: 10.1016/j.ejps.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the major causes of death in Southern China. Due to the insidious location of NPC, the therapeutic effect of locoregionally advanced NPC is still unsatisfactory. In this work, to improve the treatment efficiency, combining DOC and JS-K to inhibit NPC cells (HNE-1) in vitro was investigated, as well as its possible mechanisms. Moreover, the in vivo effects of DOC and JS-K combination treatment were also evaluated in a xenograft model with HNE-1 cells. In vitro experiments including cell proliferation, migration ability, apoptosis, and expression levels of apoptosis-associated proteins revealed that the combination of DOC and JS-K was able to enhance antitumor effects. In vivo results further confirmed a significant treatment effect without obvious toxicity on mice. The present work provides a promising idea for the treatment of locally advanced NPC.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xidong Wu
- Department of Drug Safety Evaluation, Jiangxi Testing Center of Medical Instruments, Nanchang, 330029, China
| | - Huiqin Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China; Shantou University Medical College, Shantou, 515063, China
| | - Guangyuan Dong
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China; Shantou University Medical College, Shantou, 515063, China
| | - Jiandong Zhan
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Guanxue Li
- Pediatric Critical Care Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Guanhai Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Jiang L, Wang K, Qiu L. Doxorubicin hydrochloride and L-arginine co-loaded nanovesicle for drug resistance reversal stimulated by near-infrared light. Asian J Pharm Sci 2022; 17:924-937. [PMID: 36600902 PMCID: PMC9800955 DOI: 10.1016/j.ajps.2022.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug resistance is accountable for the inadequate outcome of chemotherapy in clinics. The newly emerging role of nitric oxide (NO) to conquer drug resistance has been recognized as a potential strategy. However, it remains a great challenge to realize targeted delivery as well as accurate release of NO at desired sites. Herein, we developed a PEGylated indocyanine green (mPEG-ICG) integrated nanovesicle system (PIDA) to simultaneously load doxorubicin hydrochloride (DOX⋅HCl) and the NO donor L-arginine (L-Arg), which can produce NO triggered by NIR light irradiation and exert multimodal therapy to sensitize drug-resistant cancers. Upon 808 nm irradiation, the NO released from PIDA led to a decrease in mitochondrial membrane potential, an increase in ROS and significant ATP depletion in K562/ADR cells, thus inhibiting cell growth and resolving the problem of drug resistance. Consequently, the in vivo experiment on K562/ADR-bearing nude mice indicated that PIDA nanovesicles achieved significant anticancer efficacy with a tumor inhibition rate of 80.8%. Above all, PIDA nanovesicles offer guidance for designing nanoplatforms for drug-resistant cancer treatment.
Collapse
Affiliation(s)
- Linping Jiang
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kesi Wang
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
6
|
Liu L, Xu J, Zhai Z, Cao M, Huang Z, Xing Y, Chen J. O2-(2,4-dinitrophenyl) diazeniumdiolate derivative induces G2/M arrest via PTEN-mediated inhibition of PI3K/Akt pathway in hepatocellular carcinoma cells. J Pharm Pharmacol 2021; 73:1330-1339. [PMID: 34190329 DOI: 10.1093/jpp/rgab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/02/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The study aimed to investigate whether G2/M arrest caused by O2-(2,4-dinitrophenyl) diazeniumdiolate derivative (JS-K) was related to PTEN-mediated inhibition of PI3K/Akt pathway in hepatocellular carcinoma cells. METHODS The cell apoptosis was detected by DAPI staining and Annexin V-FITC/PI dual staining. The cell cycle was analysed by PI staining. The expressions of cell cycle-related proteins, PTEN and PI3K/AKT pathway were measured by Western blot. The rat model of primary hepatic carcinoma was established with diethylnitrosamine to verify the antitumour effects of JS-K. KEY FINDINGS The morphological features of apoptosis were obviously reversed when the cells were pre-treated with bpv(pic), followed by treatment with JS-K. JS-K mediated G2/M arrest and down-regulated expressions of cyclin B1. Meanwhile, it up-regulated the expression of p-Cdk1, p-Chk2 and p-CDC25C while down-regulated that of Cdk1 and CDC25C. Furthermore, JS-K also enhanced the expressions of p21 and p27, PTEN and p53 while decreased the expressions of p-PTEN, PI3K and p-AKT. However, bpv(pic) and Carboxy-PTIO could reverse JS-K-induced G2/M cell arrest and PTEN-mediated inhibition of the PI3K/AKT pathway. The same results were also testified in the rat model of primary hepatic carcinoma. CONCLUSIONS JS-K caused G2/M arrest through PTEN-mediated inhibition of the PI3K/AKT pathway involving Chk2/CDC25C/Cdk1 checkpoint.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Jinglei Xu
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Ziyu Zhai
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Mengyao Cao
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Zile Huang
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yihao Xing
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Jingjing Chen
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
7
|
Zhao Y, Li Z, Tang H, Lin S, Zeng W, Ye D, Zeng X, Luo Q, Li J, Ao Z, Mo J, Chen L, Yang Y, Huang Y, Liu J. [Mn(PaPy2Q)(NO)]ClO 4, a Near-Infrared Light activated release of Nitric Oxide drug as a nitric oxide donor for therapy of human prostate cancer cells in vitro and in vivo. Biomed Pharmacother 2021; 137:111388. [PMID: 33761607 DOI: 10.1016/j.biopha.2021.111388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
This study was the first to investigate the synthesis of near-infrared light-sensitive NO prodrug [Mn(PaPy2Q)(NO)]ClO4, and detection the amount of NO released by the drug in different time and near infrared light (10 mW, 20 mW). It showed that with the increase of light power, the time required for the drug to release NO was shortened, and we selected 20 mW, 10 min as a follow-up study of light power and irradiation time while ensuring the near-infrared light did not affect tumor cells. The cells were irradiated with 20 mW of near-infrared light for 10 min at 6 h after treatment with the drug on PC-3, LNCaP and 22RV1 cells, and NO concentration and cell survival rate were tested at 12 h, 24 h and 48 h. Experiments showed that NO concentration remained stable within 48 h and [Mn(PaPy2Q)(NO)]ClO4 inhibited the proliferation of cells in a concentration and time-dependent manner. Then we also found that [Mn(PaPy2Q)(NO)]ClO4 increased the expression of apoptosis-related proteins (PARP, Bax, Caspase 3/9), inhibited the expression of BCl-2 and increased the activity level of Caspase 3/7, which showed [Mn(PaPy2Q)(NO)]ClO4 promoted prostate cancer cells apoptosis. Next, the results in xenograft mouse model showed that [Mn(PaPy2Q)(NO)]ClO4 also had anti-prostate cancer effects in vivo, and the NO concentration increased in the tumor after near-infrared light irradiation. After [Mn(PaPy2Q)(NO)]ClO4 treatment 6 weeks, tumor volume was significantly reduced, Ki67 and BrdU protein expression was significantly reduced. TUNEL assay results showed that [Mn(PaPy2Q)(NO)]ClO4 could promote the apoptosis of solid tumors in vivo and in a concentration-dependent manner.
Collapse
Affiliation(s)
- Yuwan Zhao
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhuo Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Huancheng Tang
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Shanhong Lin
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Wenfeng Zeng
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Dongcai Ye
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xin Zeng
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qiuming Luo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jianwei Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhixian Ao
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jierong Mo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lixin Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yiqiu Yang
- School of Pharmacy, Guangdong Medical University, Xincheng Ave, Songshan Lake Technology Park, Dongguan 523808, China
| | - Yunsheng Huang
- School of Pharmacy, Guangdong Medical University, Xincheng Ave, Songshan Lake Technology Park, Dongguan 523808, China.
| | - Jianjun Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
8
|
Zhao Y, Luo Q, Mo J, Li J, Ye D, Ao Z, Chen L, Liu J. Metformin in combination with JS-K inhibits growth of renal cell carcinoma cells via reactive oxygen species activation and inducing DNA breaks. J Cancer 2020; 11:3701-3712. [PMID: 32328174 PMCID: PMC7171495 DOI: 10.7150/jca.36372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Metformin (MET) is taken as a principal medication for remedying Type 2 diabetes mellitus. Its anti-tumor effect has been reported increasingly, but the precise mechanism of it remains unclear. This study aims to explore the efficacy of MET and MET combined with nitric oxide donor prodrug JS-K on the proliferation, apoptosis, and DNA damage in human renal cell carcinoma (RCC) cells, and investigate the possible molecular mechanism involved. The cell proliferation was tested through methyl-tetrazolium assay and cell apoptosis was ascertained by flow cytometry. The dihydroethidium and JC-1 fluorescent methods were used to detect Reactive oxygen species (ROS) and mitochondrial transmembrane potential (Δψm), respectively. Proteins associated with apoptosis and DNA damage were evaluated by Western blotting. Results showed that MET and JS-K could suppress cell growth, and the inhibition concentration 50 of treatment with MET combined with JS-K (MET + JS-K) showed more toxicity than individual agents on RCC cells. This augmented toxicity was associated with intracellular reactive oxygen species (ROS) level, mitochondrial membrane potential alteration, and induced DNA breaks. The results of Western blotting showed that the expression level of pro-apoptotic proteins, such as Bax, Bak, caspase-3, and caspase-9, was up-regulated, and the anti-apoptotic protein Bcl-2 was down-regulated after treatment using MET alone and MET + JS-K, correspondingly. Moreover, MET + JS-K inhibited the expression of cellular PCNA and Rad51, and immunofluorescence analysis of γH2AX proved that MET + JS-K enhanced DNA damage. In summary, the results of this research indicated that MET and JS-K inhibited RCC cell growth by activating ROS, targeting mitochondria-dependent apoptotic pathways, and inducing DNA breaks.
Collapse
Affiliation(s)
- Yuwan Zhao
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Qiuming Luo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jierong Mo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jianwei Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dongcai Ye
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhixian Ao
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Lixin Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jianjun Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
9
|
Bonavida B. Sensitizing activities of nitric oxide donors for cancer resistance to anticancer therapeutic drugs. Biochem Pharmacol 2020; 176:113913. [PMID: 32173364 DOI: 10.1016/j.bcp.2020.113913] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/10/2020] [Indexed: 02/08/2023]
Abstract
Cancer is not a single disease but it constitutes a large variety of different types that are also different from each other phenotypically and molecularly. Although the standard treatments have resulted in clinical responses in a subset of patients, though, many patients relapse and no longer respond to further treatments. Hence, both the innate and adaptive resistance to treatments are the main challenges in today's treatment strategies. Noteworthy, several novel treatment strategies, particularly immunotherapies, used alone or in combination, have been developed and that have significantly improved the therapeutic response of many unresponsive cancer patients. Nevertheless, even with the latest new developments of therapeutics that were effective in a larger subset of patients, there is still an urgent need to treat the remaining unresponsive subset of patients. This requires the development of new targeting agents of superior antitumor activities that will lead to overcoming the unaffected resistance by current treatments. There has been accumulating evidence suggesting nitric oxide donors as such targeting agents and considering their pleiotropic antitumor activities, including both the reversal of chemo and immuno-resistance of various unresponsive resistant cancers. The in vitro and in vivo preclinical findings corroborate the sensitizing antitumor activities of nitric oxide donors. In addition, a few clinical findings with NO donors that have been applied in patients have corroborated their antitumor and sensitizing activities in combination with standard therapies. In this review, the role and underlying mechanisms by which nitric oxide donors sensitize cancer resistant cells to both chemotherapy and immunotherapy are briefly described.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
10
|
Gaseous signaling molecules and their application in resistant cancer treatment: from invisible to visible. Future Med Chem 2019; 11:323-336. [PMID: 30802141 DOI: 10.4155/fmc-2018-0403] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in cancer remains a critical obstacle for efficient chemotherapy. Many MDR reversal agents have been discovered but failed in clinical trials due to severe toxic effects. Gaseous signaling molecules (GSMs), such as oxygen, nitric oxide, hydrogen sulfide and carbon monoxide, play key roles in regulating cell biological function and MDR. Compared with other toxic chemosensitizing agents, GSMs are endogenous and biocompatible molecules with little side effects. Research show that GSM modulators, including pharmaceutical formulations of GSMs (combined with conventional chemotherapeutic drugs) and GSM-donors (small molecules with GSMs releasing property), can overcome or reverse MDR. This review discusses the roles of these four GSMs in modulating MDR, and summarizes GSMs modulators in treating cancers with drug resistance.
Collapse
|
11
|
Qiu M, Zhang S, Ke L, Tang H, Zeng X, Liu J. JS-K enhances chemosensitivity of prostate cancer cells to Taxol via reactive oxygen species activation. Oncol Lett 2018; 17:757-764. [PMID: 30655827 PMCID: PMC6312932 DOI: 10.3892/ol.2018.9684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/15/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the influence of the nitric oxide donor prodrug JS-K (C13H16N6O8) on Taxol-induced apoptosis in prostate cancer cells, and to investigate a potential reactive oxygen species (ROS)-associated mechanism. The effect of JS-K on the anticancer activity of Taxol was assessed in prostate cancer cells; cell viability, colony formation, apoptosis, ROS generation and expression levels of apoptosis-associated proteins were investigated. The function of ROS accumulation in the combined effects of JS-K and Taxol was determined using the antioxidant N-acetylcysteine (NAC) and the pro-oxidant oxidized glutathione (GSSG). The results of the present study demonstrated that JS-K was able to increase Taxol-induced suppression of prostate cancer cell proliferation, apoptosis, ROS accumulation and upregulation of apoptosis-associated proteins. Furthermore, NAC reversed the effect of JS-K on Taxol-induced apoptosis and conversely, the pro-oxidant GSSG exacerbated the effect of JS-K on Taxol-induced apoptosis in prostate cancer cells. In conclusion, JS-K enhances the chemosensitivity of prostate cancer cells to Taxol, via the upregulation of intracellular ROS.
Collapse
Affiliation(s)
- Mingning Qiu
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Sai Zhang
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Longzhi Ke
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Huancheng Tang
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xin Zeng
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianjun Liu
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
12
|
Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther 2018; 12:3535-3547. [PMID: 30425455 PMCID: PMC6204874 DOI: 10.2147/dddt.s169833] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glutathione S-transferase π (GSTπ) is a Phase II metabolic enzyme that is an important facilitator of cellular detoxification. Traditional dogma asserts that GSTπ functions to catalyze glutathione (GSH)-substrate conjunction to preserve the macromolecule upon exposure to oxidative stress, thus defending cells against various toxic compounds. Over the past 20 years, abnormal GSTπ expression has been linked to the occurrence of tumor resistance to chemotherapy drugs, demonstrating that this enzyme possesses functions beyond metabolism. This revelation reveals exciting possibilities in the realm of drug discovery, as GSTπ inhibitors and its prodrugs offer a feasible strategy in designing anticancer drugs with the primary purpose of reversing tumor resistance. In connection with the authors' current research, we provide a review on the biological function of GSTπ and current developments in GSTπ-targeting drugs, as well as the prospects of future strategies.
Collapse
Affiliation(s)
- Shu-Chen Dong
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huan-Huan Sha
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Xiao-Yue Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Tian-Mu Hu
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Rui Lou
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huizi Li
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jian-Zhong Wu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Chen Dan
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jifeng Feng
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| |
Collapse
|
13
|
Protein phosphatase 2A activation mechanism contributes to JS-K induced caspase-dependent apoptosis in human hepatocellular carcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:142. [PMID: 29986744 PMCID: PMC6038275 DOI: 10.1186/s13046-018-0823-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022]
Abstract
Background JS-K is a nitric oxide (NO) donor and could generate intracellularly high levels of NO. The study explores PP2A as a tumor suppressor is a major determinant mediating JS-K-caused apoptosis in human hepatocellular carcinoma (HCC) cells. Methods The human HCC cell lines (PLC5, Huh-7, Bel-7402, SMMC-7721 and HepG2) were used to assess effects of JS-K on cell viability, apoptosis induction and PP2A activation. Effects of JS-K on cell morphology, mitochondrial membrane potential, apoptosis and NO levels were determined in HCC cells expressing PP2A. Simultaneously, the expression of PP2A family including PP2A-A(α/β), PP2A-B55, PP2A-C(α/β) and the substrates of PP2A, such as β-catenin, c-Myc and p-Bcl-2 (Ser70) were detected in sensitive HCC cells. Furthermore, the role of NO in mediating the expression of PP2A was further validated with Z-VAD-FMK (a caspase inhibitor), Carboxy-PTIO (a NO scavenger), okadaic acid (OA, a PP2A inhibitor) and FTY720 (a PP2A agonist) in JS-K treated cells. In addition, the genetic manuplation of PP2A including overexpression and knockdown have been also performed in JS-K treated cells. Moreover, the rat model of primary hepatic carcinoma was established with diethylnitrosamine for 16 weeks to verify the anti-tumor effects of JS-K in vivo. Immunohistochemical and Western blot analysis were used to determine the expression of proteins in rat primary hepatic carcinoma tissues. Results JS-K significantly inhibited cell proliferation, increased apoptosis rate and activated PP2A activity in five HCC cells viability, especially SMMC7721 and HepG2 cells. It was characterized by loss of mitochondrial membrane potential, significant externalization of phosphatidylserine, nuclear morphological changes. Moreover, JS-K enhanced Bax-to-Bcl-2 ratio, released cytochrome c (Cyt c) from mitochondria, activated cleaved-caspase-9/3 and the cleavage of PARP, and decreased the expression of X-linked inhibitor of apoptosis protein (XIAP). Both Z-VAD-FMK and Carboxy-PTIO suppressed the activation of cleaved-caspase-9/3 and of cleaved-PARP in JS-K-treated sensitive HCC cells. Simultaneously, JS-K treatment could lead to the activation of protein phosphatase 2A-C (PP2A-C) but not PP2A-A and PP2A-B55, which subsequently inactivated and dephosphorylated the PP2A substrates including β-catenin, c-Myc, and p-Bcl-2 (Ser70). However, silencing PP2A-C could abolish both the activation of PP2A-C and down-regulation of β-catenin, c-Myc and p-Bcl-2 (Ser70) in sensitive HCC cells. Conversely, PP2A overexpression could enhance the effects of JS-K on activation of PP2A and down-regulation of β-catenin, c-Myc and p-Bcl-2 (Ser70). In addition, adding okadaic acid (OA), a PP2A inhibitor, abolished the effects of JS-K on apoptosis induction, PP2A activation and the substrates of PP2A dephosphorylation; FTY720, a PP2A agonist, enhanced the effects of JS-K including apoptosis induction, PP2A activation and the substrates of PP2A dephosphorylation. The mice exhibited a lower number and smaller tumor nodules in response to JS-K-treated group. A marked increase in the number of hepatocytes with PCNA-positive nuclei (proliferating cells) was evident in DEN group and tended to decrease with JS-K treatment. Furthermore, JS-K treatment could induce PP2A activation and the substrates of PP2A inactivation such as β-catenin, c-Myc and p-Bcl-2(Ser70) in DEN-induced hepatocarcinogenesis. Conclusions High levels of NO released from JS-K induces a caspase-dependent apoptosis through PP2A activation.
Collapse
|
14
|
Chen JM, Bai JY, Yang KX. Effect of resveratrol on doxorubicin resistance in breast neoplasm cells by modulating PI3K/Akt signaling pathway. IUBMB Life 2018; 70:491-500. [PMID: 29637742 DOI: 10.1002/iub.1749] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/17/2018] [Indexed: 11/08/2022]
Abstract
In the study, we probed into the effect of Resveratrol (RES) on Doxorubicin (DOX)-resistant breast neoplasm cell line MCF-7/DOX as well as the mechanism of RES underlying the DOX-resistant breast cancer. CCK-8 assay was utilized to assess the survival rates and sensitivity of breast neoplasm cell lines MCF-7 or MDA-MB-231 to DOX and RES. DOX-resistant MCF-7 cell line was successfully cultivated with DOX dose increasing and was named MCF-7/DOX. Afterwards, wound healing and Transwell assays were performed to measure the migration and invasion capabilities of MCF-7/DOX cells, while cell propagation and apoptosis were determined by colony formation assay and flow cytometry analysis. Both western blotting and immunohistochemistry were conducted to examine the expression of proteins involved in PI3K/Akt signaling pathway. Nude mice xenograft model was constructed to further verify the effects of DOX and RES on breast neoplasm in vivo. RES restored DOX sensitivity in MCF-7/DOX cells, inhibiting biological functions of MCF-7/DOX cells and promoting cell apoptosis in vitro and impeding tumor growth in vivo. It was revealed by the mechanistic studies that MCF-7/DOX cells could regain the drug sensibility with RES treatment through inactivating the PI3K/Akt signal transduction pathway. RES could reverse DOX resistance in breast neoplasm cells and inhibited DOX-resistant breast cancer cell propagation and metastasis and facilitated cell apoptosis by modulating PI3K/Akt signaling pathway. © 2018 IUBMB Life, 70(6):491-500, 2018.
Collapse
Affiliation(s)
- Ju-Min Chen
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Jun-Yun Bai
- Department of Geriatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Kun-Xian Yang
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| |
Collapse
|