1
|
Chen QX, Zhang YB, Zeng WM, Cai YC, Lv CB, Lian MQ, Huang RJ, Lian MJ, Lian WL, Xu QH, Sun YQ, Cai LS. Efficacy and safety of sintilimab combined with nab-paclitaxel plus S-1 for neoadjuvant treatment of locally advanced gastric cancer. World J Gastrointest Surg 2025; 17:106361. [DOI: 10.4240/wjgs.v17.i6.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/28/2025] [Accepted: 05/13/2025] [Indexed: 05/30/2025] Open
Abstract
BACKGROUND Gastric cancer is a leading global cause of cancer mortality, with poor survival in locally advanced stages. While immune checkpoint inhibitors (ICIs) like sintilimab have improved outcomes in advanced disease, their role as neoadjuvant therapy remains understudied. This study investigates sintilimab combined with nab-paclitaxel/S-1 as preoperative treatment for locally advanced gastric cancer (LAGC), addressing an unmet need for effective neoadjuvant strategies.
AIM To explore the efficacy and safety of combination treatment with sintilimab and nab-paclitaxel plus S-1 as neoadjuvant therapy for LAGC.
METHODS Clinical data from 82 patients diagnosed with LAGC, who underwent preoperative treatment and surgery between April 2020 and December 2022, were included. Patients were divided into 2 groups according to treatment regimen: ICI (sintilimab + nab-paclitaxel + S-1; and non-ICI (nab-paclitaxel + S-1). Imaging and pathological efficacy, intra- and postoperative conditions, molecular subtypes, short-term survival outcomes, and safety were compared between the 2 groups.
RESULTS Imaging evaluation of therapeutic efficacy revealed that the inclusion of ICI yielded a significantly higher complete response rate (13.2% vs 0.0%; P = 0.048), and objective response rate (69.8% vs 31.0%, P = 0.001) compared with non-ICI treatment. Pathological evaluation revealed that the ICI group exhibited a significantly higher pathological complete response rate (13.2% vs 0.0%; P = 0.048) and major pathological response rate (35.8% vs 13.8%; P = 0.041) than those in the non-ICI group. The two-year disease-free survival rate in the ICI group was greater than that in the non-ICI group (83.0% vs 55.2%; P = 0.043). The use of ICI did not increase the incidence of adverse reactions (47.2% vs 41.4%; P = 0.614) or perioperative adverse events (18.9% vs 13.8%; P = 0.761).
CONCLUSION The combination of sintilimab with nab-paclitaxel + S-1 for neoadjuvant treatment of LAGC improved efficacy in patients without increasing adverse drug reactions and perioperative adverse events, suggesting that this treatment regimen is safe and feasible.
Collapse
Affiliation(s)
- Qiu-Xian Chen
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Yong-Bin Zhang
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Wei-Ming Zeng
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Yi-Chen Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Chen-Bin Lv
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Ming-Qiao Lian
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Rong-Jie Huang
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Ming-Jie Lian
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Wei-Long Lian
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Qian-Hui Xu
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Yu-Qin Sun
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Li-Sheng Cai
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| |
Collapse
|
2
|
Evangelista L, Bianchi A, Annovazzi A, Sciuto R, Di Traglia S, Bauckneht M, Lanfranchi F, Morbelli S, Nappi AG, Ferrari C, Rubini G, Panareo S, Urso L, Bartolomei M, D’Arienzo D, Valente T, Rossetti V, Caroli P, Matteucci F, Aricò D, Bombaci M, Caponnetto D, Bertagna F, Albano D, Dondi F, Gusella S, Spimpolo A, Carriere C, Balma M, Buschiazzo A, Gallicchio R, Storto G, Ruffini L, Cervati V, Ledda RE, Cervino AR, Cuppari L, Burei M, Trifirò G, Brugola E, Zanini CA, Alessi A, Fuoco V, Seregni E, Deandreis D, Liberini V, Moreci AM, Ialuna S, Pulizzi S, De Rimini ML. ITA-IMMUNO-PET: The Role of [18F]FDG PET/CT for Assessing Response to Immunotherapy in Patients with Some Solid Tumors. Cancers (Basel) 2023; 15:cancers15030878. [PMID: 36765835 PMCID: PMC9913289 DOI: 10.3390/cancers15030878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
AIM To examine the role of [18F]FDG PET/CT for assessing response to immunotherapy in patients with some solid tumors. METHODS Data recorded in a multicenter (n = 17), retrospective database between March and November 2021 were analyzed. The sample included patients with a confirmed diagnosis of a solid tumor who underwent serial [18F]FDG PET/CT (before and after one or more cycles of immunotherapy), who were >18 years of age, and had a follow-up of at least 12 months after their first PET/CT scan. Patients enrolled in clinical trials or without a confirmed diagnosis of cancer were excluded. The authors classified cases as having a complete or partial metabolic response to immunotherapy, or stable or progressive metabolic disease, based on a visual and semiquantitative analysis according to the EORTC criteria. Clinical response to immunotherapy was assessed at much the same time points as the serial PET scans, and both the obtained responses were compared. RESULTS The study concerned 311 patients (median age: 67; range: 31-89 years) in all. The most common neoplasm was lung cancer (56.9%), followed by malignant melanoma (32.5%). Nivolumab was administered in 46.3%, and pembrolizumab in 40.5% of patients. Baseline PET and a first PET scan performed at a median 3 months after starting immunotherapy were available for all 311 patients, while subsequent PET scans were obtained after a median 6, 12, 16, and 21 months for 199 (64%), 102 (33%), 46 (15%), and 23 (7%) patients, respectively. Clinical response to therapy was recorded at around the same time points after starting immunotherapy for 252 (81%), 173 (56%), 85 (27%), 40 (13%), and 22 (7%) patients, respectively. After a median 18 (1-137) months, 113 (36.3%) patients had died. On Kaplan-Meier analysis, metabolic responders on the first two serial PET scans showed a better prognosis than non-responders, while clinical response became prognostically informative from the second assessment after starting immunotherapy onwards. CONCLUSIONS [18F]FDG PET/CT could have a role in the assessment of response to immunotherapy in patients with some solid tumors. It can provide prognostic information and thus contribute to a patient's appropriate treatment. Prospective randomized controlled trials are mandatory.
Collapse
Affiliation(s)
- Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine DIMED, University of Padua, 35129 Padua, Italy
- Correspondence:
| | - Andrea Bianchi
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
| | - Alessio Annovazzi
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Rosa Sciuto
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Silvia Di Traglia
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Matteo Bauckneht
- Department of Health Sciences (DISSAL), University of Genova, 16126 Genova, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Lanfranchi
- Department of Health Sciences (DISSAL), University of Genova, 16126 Genova, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Morbelli
- Department of Health Sciences (DISSAL), University of Genova, 16126 Genova, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Anna Giulia Nappi
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Cristina Ferrari
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Giuseppe Rubini
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Luca Urso
- Nuclear Medicine Unit, University of Ferrara, 44121 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, University of Ferrara, 44121 Ferrara, Italy
| | - Davide D’Arienzo
- Nuclear Medicine Unit, Dept Servizi Sanitari, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Tullio Valente
- Radiology Department, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Virginia Rossetti
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), 47014 Meldola, Italy
| | - Paola Caroli
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), 47014 Meldola, Italy
| | - Federica Matteucci
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), 47014 Meldola, Italy
| | - Demetrio Aricò
- Nuclear Medicine Unit, Humanitas Istituto Clinico Catanese, 95045 Misterbianco, Italy
| | - Michelangelo Bombaci
- Nuclear Medicine Unit, Humanitas Istituto Clinico Catanese, 95045 Misterbianco, Italy
| | - Domenica Caponnetto
- Nuclear Medicine Unit, Humanitas Istituto Clinico Catanese, 95045 Misterbianco, Italy
| | | | - Domenico Albano
- Nuclear Medicine Unit, University of Brescia, 25123 Brescia, Italy
| | - Francesco Dondi
- Nuclear Medicine Unit, University of Brescia, 25123 Brescia, Italy
| | - Sara Gusella
- Nuclear Medicine Department, Central Hospital Bolzano (SABES-ASDAA), 39100 Bolzano-Bozen, Italy
| | - Alessandro Spimpolo
- Nuclear Medicine Department, Central Hospital Bolzano (SABES-ASDAA), 39100 Bolzano-Bozen, Italy
| | - Cinzia Carriere
- Dermatology Department, Central Hospital Bolzano (SABES-ASDAA), 39100 Bolzano-Bozen, Italy
| | - Michele Balma
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
| | - Rosj Gallicchio
- Nuclear Medicine Unit, IRCCS CROB Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Giovanni Storto
- Nuclear Medicine Unit, IRCCS CROB Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Livia Ruffini
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Veronica Cervati
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Roberta Eufrasia Ledda
- Department of Medicine and Surgery, Unit of Radiological Sciences, University of Parma, 43126 Parma, Italy
| | - Anna Rita Cervino
- Nuclear Medicine Unit, Veneto Institute Of Oncology IOV—IRCSS, 35128 Padua, Italy
| | - Lea Cuppari
- Nuclear Medicine Unit, Veneto Institute Of Oncology IOV—IRCSS, 35128 Padua, Italy
| | - Marta Burei
- Nuclear Medicine Unit, Veneto Institute Of Oncology IOV—IRCSS, 35128 Padua, Italy
| | - Giuseppe Trifirò
- Nuclear Medicine Unit, ICS MAUGERI SPA SB—IRCCS, 35128 Padua, Italy
| | | | | | - Alessandra Alessi
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Valentina Fuoco
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Ettore Seregni
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Désirée Deandreis
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Virginia Liberini
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Antonino Maria Moreci
- Nuclear Medicine Unit, Az. Ospedaliera Ospedali Riuniti Villa Sofia-Cervello di Palermo, 90100 Palermo, Italy
| | - Salvatore Ialuna
- Nuclear Medicine Unit, Az. Ospedaliera Ospedali Riuniti Villa Sofia-Cervello di Palermo, 90100 Palermo, Italy
| | - Sabina Pulizzi
- Nuclear Medicine Unit, Az. Ospedaliera Ospedali Riuniti Villa Sofia-Cervello di Palermo, 90100 Palermo, Italy
| | - Maria Luisa De Rimini
- Nuclear Medicine Unit, Dept Servizi Sanitari, AORN Ospedali dei Colli, 80131 Naples, Italy
| |
Collapse
|
3
|
Strauss DS, Sachpekidis C, Kopka K, Pan L, Haberkorn U, Dimitrakopoulou-Strauss A. Pharmacokinetic studies of [ 68 Ga]Ga-PSMA-11 in patients with biochemical recurrence of prostate cancer: detection, differences in temporal distribution and kinetic modelling by tissue type. Eur J Nucl Med Mol Imaging 2021; 48:4472-4482. [PMID: 34110436 PMCID: PMC8566392 DOI: 10.1007/s00259-021-05420-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Purpose [68 Ga]Ga-PSMA-11 is a promising radiopharmaceutical for detecting tumour lesions in prostate cancer, but knowledge of the pharmacokinetics is limited. Dynamic PET-CT was performed to investigate the tumour detection and differences in temporal distribution, as well as in kinetic modelling of [68 Ga]Ga-PSMA-11 by tissue type. Methods Dynamic PET-CT over the lower abdomen and static whole-body PET-CT 80–90 min p.i. from 142 patients with biochemical recurrence were retrospectively analysed. Detection rates were compared to PSA levels. Average time-activity curves were calculated from tumour lesions and normal tissue. A three-compartment model and non-compartment model were used to calculate tumour kinetics. Results Overall detection rate was 70.42%, and in patients with PSA > 0.4 ng/mL 76.67%. All tumour lesions presented the steepest standardised uptake value (SUV) incline in the first 7–8 min before decreasing to different degrees. Normal tissue presented with a low uptake, except for the bladder, which accumulated activity the steepest 15–16 min. p.i.. While all tumour lesions continuously increased, bone metastases showed the steepest decline, resulting in a significantly lower SUV than lymph node metastases (60 and 80–90 min). Transport rate from the blood and tracer binding and internalisation rate were lower in bone metastases. Heterogeneity (fractal dimension) and vascular density were significantly lower in bone metastases. Conclusion Even at low PSA between 0.51 and 0.99 ng/mL, detection rate was 57%. Dynamic imaging showed a time window in the first 10 min where tumour uptake is high, but no bladder activity is measured, aiding accuracy in distinction of local recurrence. Kinetic modelling provided additional information for tumour characterisation by tissue type. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05420-1.
Collapse
Affiliation(s)
- Dimitrios S Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
| | - C Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - K Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Heidelberg and partner site Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Dresden, Germany
| | - L Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - U Haberkorn
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and partner site Dresden, Germany.,Division of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| | - A Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| |
Collapse
|
4
|
Liu Q, Zang J, Sui H, Ren J, Guo H, Wang H, Wang R, Jacobson O, Zhang J, Cheng Y, Zhu Z, Chen X. Peptide Receptor Radionuclide Therapy of Late-Stage Neuroendocrine Tumor Patients with Multiple Cycles of 177Lu-DOTA-EB-TATE. J Nucl Med 2021; 62:386-392. [PMID: 32826319 PMCID: PMC8049339 DOI: 10.2967/jnumed.120.248658] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/03/2020] [Indexed: 01/23/2023] Open
Abstract
This study aimed to evaluate the safety and efficacy of multiple cycles of 177Lu-DOTA-Evans blue (EB)-TATE peptide receptor radionuclide therapy (PRRT) at escalating doses in neuroendocrine tumors (NETs). Methods: Thirty-two NET patients were randomly divided into 3 groups and treated with escalating doses. Group A received 1.17 ± 0.09 GBq/cycle; group B, 1.89 ± 0.53 GBq/cycle; and group C, 3.97 ± 0.84 GBq/cycle. The treatment was planned for up to 3 cycles. Treatment-related adverse events were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), version 5.0. Treatment response was evaluated according to the European Organisation for Research and Treatment of Cancer criteria and modified PERCIST. Results: Administration of PRRT was well tolerated, without life-threatening adverse events (CTCAE grade 4). CTCAE grade 3 hematotoxicity was recorded in 1 patient (16.6%) in group B (thrombocytopenia) and 3 patients (21.4%) in group C (thrombocytopenia in 3, anemia in 1). CTCAE grade 3 hepatotoxicity (elevated aspartate aminotransferase) was recorded in 1 patient in group A (8.3%) and 1 patient in group C (7.1%). No nephrotoxicity was observed. According to the criteria of the European Organisation for Research and Treatment of Cancer, the overall disease response rates were similar in groups A, B, and C (50.0%, 50.0%, and 42.9%, respectively), and the overall disease control rates were higher in groups B (83.3%) and C (71.5%) than in group A (66.7%). According to modified PERCIST, a lower disease response rate but a similar disease control rate were found. When a comparable baseline SUVmax ranging from 15 to 40 was selected, the percentage change in SUVmax increased slightly in group A (2.1% ± 40.8%) but decreased significantly in groups B and C (-38.7% ± 10.0% and -14.7% ± 20.0%, respectively) after the first PRRT (P = 0.001) and decreased in all 3 groups after the third PRRT (groups A, B, and C: -6.9% ± 42.3%, -49.2% ± 30.9%, -11.9% ± 37.9%, respectively; P = 0.044). Conclusion: Dose escalations of up to 3.97 GBq/cycle seem to be well tolerated for 177Lu-DOTA-EB-TATE. 177Lu-DOTA-EB-TATE doses of 1.89 and 3.97 GBq/cycle were effective in tumor control and more effective than 1.17 GBq/cycle.
Collapse
Affiliation(s)
- Qingxing Liu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Jie Zang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Huimin Sui
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Jiakun Ren
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Hua Guo
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Hao Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Orit Jacobson
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Jingjing Zhang
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany; and
| | - Yuejuan Cheng
- Division of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Bu L, Sun Y, Han G, Tu N, Xiao J, Wang Q. Outcome Prediction and Evaluation by Imaging the Key Elements of Therapeutic Responses to Cancer Immunotherapies Using PET. Curr Pharm Des 2020; 26:675-687. [PMID: 31465273 DOI: 10.2174/1381612825666190829150302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapy (also known as immuno-oncology), a promising anti-cancer strategy by harnessing the body's own immune system against cancer, has emerged as the "fifth therapeutic pilla" in the field of cancer treatment since surgery, chemotherapy, radiation and targeted therapy. Clinical efficacy of several immunotherapies has been demonstrated in clinical settings, however, only a small subset of patients exhibit dramatic or durable responses, with the highest reported frequency about 10-40% from single-agent PD-L1/PD-1 inhibitors, suggesting the urgent need of consistent objective response biomarkers for monitoring therapeutic response accurately, predicting therapeutic efficacy and selecting responders. Key elements of therapeutic responses to cancer immunotherapies contain the cancer cell response and the alternation of inherent immunological characteristics. Here, we document the literature regarding imaging the key elements of therapeutic responses to cancer immunotherapies using PET. We discussed PET imaging approaches according to different response mechanisms underlying diverse immune-therapeutic categories, and also highlight the ongoing efforts to identify novel immunotherapeutic PET imaging biomarkers. In this article, we show that PET imaging of the key elements of therapeutic responses to cancer immunotherapies using PET can allow for more precise prediction, earlier therapy response monitoring, and improved management. However, all of these strategies need more preclinical study and clinical validation before further development as imaging indicators of the immune response.
Collapse
Affiliation(s)
- Lihong Bu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Yanqiu Sun
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Guang Han
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Tu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Jiachao Xiao
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Qi Wang
- The 1st Department of Gastrointestinal Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| |
Collapse
|
6
|
Fu T, Lin Y, Zeng Q, Yao W, Han L. Thoracic perfusion of recombinant mutant human tumor necrosis factor (rmhTNF) can be considered as a good adjunct in the treatment of malignant pleural effusion caused by lung cancer. BMC Pulm Med 2020; 20:175. [PMID: 32552897 PMCID: PMC7301477 DOI: 10.1186/s12890-020-01210-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor necrosis factor (TNF) has been investigated to be correlated with the occurrence and progression of lung cancer. This investigation was to assess the efficacy and safety of recombinant mutant human tumor necrosis factor (rmhTNF) for controlling malignant pleural effusion (MPE) through thoracic perfusion. METHODS Through searching from MEDLINE, Web of Science, EMBASE, Cochrance Library, OVID and China National Knowledge Infrastructure (CNKI), a total of 12 studies with 694 patients were included in this study. A series of meta-analysis methods were used to analyze the extracted data. RESULTS Thoracic perfusion of rmhTNF combined with cisplatin promoted the objective response rate (ORR) (P < 0.001; odds ratio = 4.49) and the quality of life (QOL) of patients with MPE (P < 0.001; odds ratio = 10.33), as compared with cisplatin alone. Although the participation of rmhTNF increased the incidence of fever (P < 0.001), it seemed to relieve the adverse reactions in the digestive tract (P = 0.017). CONCLUSIONS Thoracic perfusion of rmhTNF contributes to the treatment of MPE and improves the QOL of MPE patients.
Collapse
Affiliation(s)
- Tian Fu
- Department of Respiration, Jining NO.1 People's Hospital, Jining, 272011, Shandong Province, China
| | - Yong Lin
- Department of Respiration, Jining NO.1 People's Hospital, Jining, 272011, Shandong Province, China
| | - Qingdi Zeng
- Department of Clinical Laboratory, Jining NO.1 People's Hospital, Jining, 272011, Shandong Province, China
| | - Wei Yao
- General surgery, Zoucheng Kanzhuang Township Health Center, Zoucheng, 273502, Shandong Province, China
| | - Liping Han
- Department of Respiration, Jining NO.1 People's Hospital, Jining, 272011, Shandong Province, China.
| |
Collapse
|
7
|
Aykan NF, Özatlı T. Objective response rate assessment in oncology: Current situation and future expectations. World J Clin Oncol 2020; 11:53-73. [PMID: 32133275 PMCID: PMC7046919 DOI: 10.5306/wjco.v11.i2.53] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor objective response rate (ORR) is an important parameter to demonstrate the efficacy of a treatment in oncology. The ORR is valuable for clinical decision making in routine practice and a significant end-point for reporting the results of clinical trials. World Health Organization and Response Evaluation Criteria in Solid Tumors (RECIST) are anatomic response criteria developed mainly for cytotoxic chemotherapy. These criteria are based on the visual assessment of tumor size in morphological images provided by computed tomography (CT) or magnetic resonance imaging. Anatomic response criteria may not be optimal for biologic agents, some disease sites, and some regional therapies. Consequently, modifications of RECIST, Choi criteria and Morphologic response criteria were developed based on the concept of the evaluation of viable tumors. Despite its limitations, RECIST v1.1 is validated in prospective studies, is widely accepted by regulatory agencies and has recently shown good performance for targeted cancer agents. Finally, some alternatives of RECIST were developed as immune-specific response criteria for checkpoint inhibitors. Immune RECIST criteria are based essentially on defining true progressive disease after a confirmatory imaging. Some graphical methods may be useful to show longitudinal change in the tumor burden over time. Tumor tissue is a tridimensional heterogenous mass, and tumor shrinkage is not always symmetrical; thus, metabolic response assessments using positron emission tomography (PET) or PET/CT may reflect the viability of cancer cells or functional changes evolving after anticancer treatments. The metabolic response can show the benefit of a treatment earlier than anatomic shrinkage, possibly preventing delays in drug approval. Computer-assisted automated volumetric assessments, quantitative multimodality imaging in radiology, new tracers in nuclear medicine and finally artificial intelligence have great potential in future evaluations.
Collapse
Affiliation(s)
- Nuri Faruk Aykan
- Department of Medical Oncology, Istinye University Medical School, Bahcesehir Liv Hospital, Istanbul 34510, Turkey
| | - Tahsin Özatlı
- Department of Medical Oncology, Istinye University Medical School, Bahcesehir Liv Hospital, Istanbul 34510, Turkey
| |
Collapse
|
8
|
Singh J, Suh EH, Sharma G, Khemtong C, Sherry AD, Kovacs Z. Probing carbohydrate metabolism using hyperpolarized 13 C-labeled molecules. NMR IN BIOMEDICINE 2019; 32:e4018. [PMID: 30474153 PMCID: PMC6579721 DOI: 10.1002/nbm.4018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/03/2018] [Accepted: 08/11/2018] [Indexed: 05/05/2023]
Abstract
Glycolysis is a fundamental metabolic process in all organisms. Anomalies in glucose metabolism are linked to various pathological conditions. In particular, elevated aerobic glycolysis is a characteristic feature of rapidly growing cells. Glycolysis and the closely related pentose phosphate pathway can be monitored in real time by hyperpolarized 13 C-labeled metabolic substrates such as 13 C-enriched, deuterated D-glucose derivatives, [2-13 C]-D-fructose, [2-13 C] dihydroxyacetone, [1-13 C]-D-glycerate, [1-13 C]-D-glucono-δ-lactone and [1-13 C] pyruvate in healthy and diseased tissues. Elevated glycolysis in tumors (the Warburg effect) was also successfully imaged using hyperpolarized [U-13 C6 , U-2 H7 ]-D-glucose, while the size of the preexisting lactate pool can be measured by 13 C MRS and/or MRI with hyperpolarized [1-13 C]pyruvate. This review summarizes the application of various hyperpolarized 13 C-labeled metabolites to the real-time monitoring of glycolysis and related metabolic processes in normal and diseased tissues.
Collapse
Affiliation(s)
- Jaspal Singh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eul Hyun Suh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaurav Sharma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Mellhammar E, Dahlbom M, Evans-Axelsson S, Strand SE. Preserving Preclinical PET Quality During Intratherapeutic Imaging in Radionuclide Therapy with Rose Metal Shielding Reducing Photon Flux. J Nucl Med 2018; 60:710-715. [PMID: 30389819 DOI: 10.2967/jnumed.118.217117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022] Open
Abstract
Performing PET imaging during ongoing radionuclide therapy can be a promising method to follow tumor response in vivo. However, the high therapeutic activity can interfere with the PET camera performance and degrade both image quality and quantitative capabilities. As a solution, low-energy photon emissions from the therapeutic radionuclide can be highly attenuated, still allowing sufficient detection of annihilation photons in coincidence. Methods: Hollow Rose metal cylinders with walls 2-4 mm thick were used to shield a 22Na point source and a uniform phantom filled with 18F as they were imaged on a preclinical PET camera with increasing activities of 177Lu. A mouse with a subcutaneous tumor was injected with 18F-FDG and imaged with an additional 120 MBq of 177Lu and repeated with shields surrounding the animal. Results: The addition of 177Lu to the volume imaged continuously degraded the image quality with increasing activity. The image quality was improved when shielding was introduced. The shields showed a high ability to produce stable and reproducible results for both spatial resolution and quantification of up to 120 MBq of 177Lu activity (maximum activity tested). Conclusion: Without shielding, the activity quantification will be inaccurate for time points at which therapeutic activities are high. The suggested method shows that the shields reduce the noise induced by the 177Lu and therefore enable longitudinal quantitative intratherapeutic imaging studies.
Collapse
Affiliation(s)
- Emma Mellhammar
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Magnus Dahlbom
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Susan Evans-Axelsson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Sven-Erik Strand
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.,Division of Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Lenzo NP, Meyrick D, Turner JH. Review of Gallium-68 PSMA PET/CT Imaging in the Management of Prostate Cancer. Diagnostics (Basel) 2018; 8:E16. [PMID: 29439481 PMCID: PMC5871999 DOI: 10.3390/diagnostics8010016] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 01/13/2023] Open
Abstract
Over 90% of prostate cancers over-express prostate specific membrane antigen (PSMA) and these tumor cells may be accurately targeted for diagnosis by 68Ga-PSMA-positron emission tomography/computed tomography (68Ga-PSMA-PET/CT) imaging. This novel molecular imaging modality appears clinically to have superseded CT, and appears superior to MR imaging, for the detection of metastatic disease. 68Ga-PSMA PET/CT has the ability to reliably stage prostate cancer at presentation and can help inform an optimal treatment approach. Novel diagnostic applications of 68Ga-PSMA PET/CT include guiding biopsy to improve sampling accuracy, and guiding surgery and radiotherapy. In addition to facilitating the management of metastatic castrate resistant prostate cancer (mCRPC), 68Ga-PSMA can select patients who may benefit from targeted systemic radionuclide therapy. 68Ga-PSMA is the diagnostic positron-emitting theranostic pair with the beta emitter Lutetium-177 PSMA (177Lu-PSMA) and alpha-emitter Actinium-225 PSMA (225Ac-PSMA) which can both be used to treat PSMA-avid metastases of prostate cancer in the molecular tumor-targeted approach of theranostic nuclear oncology.
Collapse
Affiliation(s)
- Nat P Lenzo
- Nuclear Oncology, Theranostics Australia, 106/1 Silas Street, Richmond Quarter Building, East Fremantle, WA 6158, Australia.
- School of Medicine and Pharmacology, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009, Australia.
| | - Danielle Meyrick
- Nuclear Oncology, Theranostics Australia, 106/1 Silas Street, Richmond Quarter Building, East Fremantle, WA 6158, Australia.
| | - J Harvey Turner
- School of Medicine and Pharmacology, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009, Australia.
| |
Collapse
|