1
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
2
|
Hatokova P, Sestak V, Piskackova HB, Melnikova I, Roh J, Sterbova-Kovarikova P. The UHPLC-UV method applied for the forced degradation study of ixazomib and HRMS identification of its degradation products. J Pharm Biomed Anal 2023; 225:115220. [PMID: 36610173 DOI: 10.1016/j.jpba.2022.115220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Ixazomib is the only orally active proteasome inhibitor used in clinical practice as an anticancer drug. The novel, rapid UHPLC-UV assay for ixazomib was developed and applied to the forced degradation study followed by HRMS identification of the main degradation products. Oxidative deboronation and hydrolysis of the amid bond were found to be the principal degradation pathways. The chemical standards of the main degradation products were prepared. The method was validated for the simultaneous assay of ixazomib and its degradation products within the concentration ranges of 2.50-100.00 µg/mL (ixazomib); 0.75-60.00 μg/mL (Impurity A and B) and 1.25-60.00 μg/mL (Impurity C). The stability study revealed that ixazomib in solution is: 1) relatively stable in neutral and acidic environments, 2) its decomposition is accelerated at higher pH, 3) it is sensitive to the effects of oxidants and light, and 4) the degradation of ixazomib follows the first-order kinetics under neutral, acidic, alkaline, and UV stress. Contrary, the solid substance of ixazomib citrate was relatively resistant to heat (70 °C), heat/humidity (70 °C/75 % RH), and UV irradiation for 24 h. This study presents the first MS-compatible UHPLC method for the quantification of ixazomib and its degradation products. Furthermore, it provides data about the inherent stability and kinetics of degradation of ixazomib in a solution that may be useful in further investigation of this drug, or the development of novel proteasome inhibitors based on the ixazomib structure.
Collapse
Affiliation(s)
- Paulina Hatokova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis
| | - Vit Sestak
- Department of Clinical Biochemistry and Diagnostics, University Hospital and Faculty of Medicine in Hradec Kralove, University Hospital, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | | | - Iuliia Melnikova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Jaroslav Roh
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | | |
Collapse
|
3
|
Goel U, Kumar S. An update on the safety of ixazomib for the treatment of multiple myeloma. Expert Opin Drug Saf 2022; 21:1143-1160. [PMID: 36178708 DOI: 10.1080/14740338.2022.2130892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Treatment options for multiple myeloma (MM) have rapidly expanded over the past few years with several newly approved drugs. While there is need to explore treatments that lead to longer responses and survival, special consideration should be given on reducing treatment burden, reducing toxicities, and improving quality of life. Ixazomib is the first oral proteasome inhibitor for the treatment of MM, combining clinical efficacy with a favorable safety profile. AREAS COVERED Here, we discuss the clinical efficacy and safety of ixazomib. Pharmacokinetic considerations, management of common toxicities, and the impact of the drug on the current and future treatment strategies are also discussed. EXPERT OPINION Ixazomib is an effective and welltolerated MM drug. It is also being studied in combination with other newer agents. It does not have long-term cumulative toxicities, and the most adverse events are mild and manageable. These findings, along with the ease of oral administration, make it a possible option for long-term treatment approaches for MM patients, as well as in the frail/elderly patient population.
Collapse
Affiliation(s)
- Utkarsh Goel
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shaji Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Wang J, Fang Y, Fan RA, Kirk CJ. Proteasome Inhibitors and Their Pharmacokinetics, Pharmacodynamics, and Metabolism. Int J Mol Sci 2021; 22:ijms222111595. [PMID: 34769030 PMCID: PMC8583966 DOI: 10.3390/ijms222111595] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
The proteasome is responsible for mediating intracellular protein degradation and regulating cellular function with impact on tumor and immune effector cell biology. The proteasome is found predominantly in two forms, the constitutive proteasome and the immunoproteasome. It has been validated as a therapeutic drug target through regulatory approval with 2 distinct chemical classes of small molecular inhibitors (boronic acid derivatives and peptide epoxyketones), including 3 compounds, bortezomib (VELCADE), carfilzomib (KYPROLIS), and ixazomib (NINLARO), for use in the treatment of the plasma cell neoplasm, multiple myeloma. Additionally, a selective inhibitor of immunoproteasome (KZR-616) is being developed for the treatment of autoimmune diseases. Here, we compare and contrast the pharmacokinetics (PK), pharmacodynamics (PD), and metabolism of these 2 classes of compounds in preclinical models and clinical studies. The distinct metabolism of peptide epoxyketones, which is primarily mediated by microsomal epoxide hydrolase, is highlighted and postulated as a favorable property for the development of this class of compound in chronic conditions.
Collapse
|
5
|
Kingston C, Wallace MA, Allentoff AJ, deGruyter JN, Chen JS, Gong SX, Bonacorsi S, Baran PS. Direct Carbon Isotope Exchange through Decarboxylative Carboxylation. J Am Chem Soc 2019; 141:774-779. [PMID: 30605319 DOI: 10.1021/jacs.8b12035] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A two-step degradation-reconstruction approach to the carbon-14 radiolabeling of alkyl carboxylic acids is presented. Simple activation via redox-active ester formation was followed by nickel-mediated decarboxylative carboxylation to afford a range of complex compounds with ample isotopic incorporations for drug metabolism and pharmacokinetic studies. The practicality and operational simplicity of the protocol were demonstrated by its use in an industrial carbon-14 radiolabeling setting.
Collapse
Affiliation(s)
- Cian Kingston
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Michael A Wallace
- Radiochemistry , Bristol-Myers Squibb Company , P.O. Box 4000, Princeton , New Jersey 08543 , United States
| | - Alban J Allentoff
- Radiochemistry , Bristol-Myers Squibb Company , P.O. Box 4000, Princeton , New Jersey 08543 , United States
| | - Justine N deGruyter
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Jason S Chen
- Automated Synthesis Facility , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Sharon X Gong
- Radiochemistry , Bristol-Myers Squibb Company , P.O. Box 4000, Princeton , New Jersey 08543 , United States
| | - Samuel Bonacorsi
- Radiochemistry , Bristol-Myers Squibb Company , P.O. Box 4000, Princeton , New Jersey 08543 , United States
| | - Phil S Baran
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
6
|
Luo K, Xing Y. Metabolic profile analysis of Zhi-zi-chi decoction in feces of normal and chronic unpredictable mild stress-induced depression rats based on UHPLC-ESI-Q-TOF-MS/MS and multiple analytical strategies. RSC Adv 2019; 9:40037-40050. [PMID: 35541428 PMCID: PMC9076205 DOI: 10.1039/c9ra06486a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Zhi-zi-chi decoction (ZZCD) has been verified by clinical application that it has definite curative effects and low side effects on depression. Because it is administered orally, the metabolites of ZZCD in the intestinal tract may influence the curative effects significantly. In this study, UHPLC-ESI-Q-TOF-MS/MS was used in combination with untargeted metabolomics-driven strategy, series product ion filtering and diagnostic fragment ion strategy for acquiring the comprehensive metabolic profile of ZZCD in feces of normal and chronic unpredictable mild stress (CUMS)-induced depression rats after oral administration, while the rat depression model was evaluated by behavior tests and plasma biochemical indices. Finally, a total of 56 compounds, including 35 prototype compounds and 21 metabolites, were identified or tentatively characterized in fecal samples. Among these, ten compounds were sieved as potential chemical markers that would reflect the antidepressant effect of ZZCD, which may offer important information for quality assessment, pharmacokinetic study and clinical security. In conclusion, the metabolic profile of ZZCD in normal and CUMS-induced depression rats would be helpful for the further study of anti-depression material basis and mechanism. A total of 56 compounds from ZZCD were identified in feces of normal and depression rats. Then ten compounds were sieved as potential chemical markers that would reflect the antidepressant effect of ZZCD.![]()
Collapse
Affiliation(s)
- Kaiwen Luo
- School of Pharmacy
- Bengbu Medical University
- Bengbu
- China
| | - Yadong Xing
- School of Pharmacy
- Bengbu Medical University
- Bengbu
- China
| |
Collapse
|