1
|
Campos-Parra AD, Sánchez-Marín D, Acevedo-Sánchez V. MicroRNAs as Sensitizers of Tyrosine Kinase Inhibitor Resistance in Cancer: Small Molecule Partnerships. Pharmaceuticals (Basel) 2025; 18:492. [PMID: 40283927 PMCID: PMC12030540 DOI: 10.3390/ph18040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized cancer treatments by being less toxic and improving the survival of cancer patients. The greatest challenge to their success is the resistance exhibited by cancer patients. However, the potential of microRNAs (miRNAs) for sensitizing molecules to TKIs has been well recognized, with several reports publishing promising results. Nonetheless, this therapeutic window faces challenges and several often-overlooked limitations. One of the most fundamental challenges is selecting the optimal miRNA candidates for clinical trials, as miRNAs are promiscuous and regulate hundreds of targets. In this review, we describe how miRNAs enhance sensitivity to TKIs across various types of cancer. We highlight several challenges and limitations in achieving a successful collaboration between small molecules (TKIs-miRNAs). Our focus is on proposing a workflow to select the most suitable miRNA candidate, recommending several available bioinformatics tools to develop a successful therapeutic partnership between TKIs and miRNAs. We hope that this initial proposal will provide valuable support for future research.
Collapse
Affiliation(s)
| | - David Sánchez-Marín
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04360, Mexico;
| | | |
Collapse
|
2
|
Kumari B, Tiwari A, Meena S, Ahirwar DK. Inflammation-Associated Stem Cells in Gastrointestinal Cancers: Their Utility as Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:3134. [PMID: 39335106 PMCID: PMC11429849 DOI: 10.3390/cancers16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Stem cells are critical for the development and homeostasis of the gastrointestinal (GI) tract. Inflammatory molecules are known to regulate the activity of stem cells. A comprehensive review specifically describing the role of inflammatory molecules in the regulation of stem cells within the GI tract and in GI cancers (GICs) is not available. This review focuses on understanding the role of inflammatory molecules and stem cells in maintaining homeostasis of the GI tract. We further discuss how inflammatory conditions contribute to the transformation of stem cells into tumor-initiating cells. We also describe the molecular mechanisms of inflammation and stem cell-driven progression and metastasis of GICs. Furthermore, we report on studies describing the prognostic value of cancer stem cells and the clinical trials evaluating their therapeutic utility. This review provides a detailed overview on the role of inflammatory molecules and stem cells in maintaining GI tract homeostasis and their implications for GI-related malignancies.
Collapse
Affiliation(s)
- Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Sakshi Meena
- School of Life Sciences, Devi Ahilya Vishwavidyalaya Indore, Indore 452001, Madhya Pradesh, India;
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| |
Collapse
|
3
|
Gou S, Wu A, Luo Z. Integrins in cancer stem cells. Front Cell Dev Biol 2024; 12:1434378. [PMID: 39239559 PMCID: PMC11375753 DOI: 10.3389/fcell.2024.1434378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Integrins are a class of adhesion receptors on cell membranes, consisting of α and β subunits. By binding to the extracellular matrix, integrins activate intracellular signaling pathways, participating in every step of cancer initiation and progression. Tumor stem cells possess self-renewal and self-differentiation abilities, along with strong tumorigenic potential. In this review, we discussed the role of integrins in cancer, with a focus on their impact on tumor stem cells and tumor stemness. This will aid in targeting tumor stem cells as a therapeutic approach, leading to the exploration of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Siqi Gou
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Wu
- The Second Affiliated Hospital, Department of Clinical Research Center, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhigang Luo
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Neuendorf HM, Simmons JL, Boyle GM. Therapeutic targeting of anoikis resistance in cutaneous melanoma metastasis. Front Cell Dev Biol 2023; 11:1183328. [PMID: 37181747 PMCID: PMC10169659 DOI: 10.3389/fcell.2023.1183328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
The acquisition of resistance to anoikis, the cell death induced by loss of adhesion to the extracellular matrix, is an absolute requirement for the survival of disseminating and circulating tumour cells (CTCs), and for the seeding of metastatic lesions. In melanoma, a range of intracellular signalling cascades have been identified as potential drivers of anoikis resistance, however a full understanding of the process is yet to be attained. Mechanisms of anoikis resistance pose an attractive target for the therapeutic treatment of disseminating and circulating melanoma cells. This review explores the range of small molecule, peptide and antibody inhibitors targeting molecules involved in anoikis resistance in melanoma, and may be repurposed to prevent metastatic melanoma prior to its initiation, potentially improving the prognosis for patients.
Collapse
Affiliation(s)
- Hannah M. Neuendorf
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Integrin αvβ3 Is a Master Regulator of Resistance to TKI-Induced Ferroptosis in HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041216. [PMID: 36831558 PMCID: PMC9954089 DOI: 10.3390/cancers15041216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Human epidermal growth factor receptor-2 (HER2)-targeting therapies provide clinical benefits for patients with HER2-positive breast cancer. However, the resistance to monotherapies invariably develops and leads to disease relapse and treatment failure. Previous studies have demonstrated a link between the potency of HER2-targeting tyrosine kinase inhibitors (TKIs) and their ability to induce an iron-dependent form of cell death called ferroptosis. The aim of this study was to understand the mechanisms of resistance to TKI-induced ferroptosis and identify novel approaches to overcome treatment resistance. We used mouse and human HER2-positive models of acquired TKI resistance to demonstrate an intimate link between the resistance to TKIs and to ferroptosis and present the first evidence that the cell adhesion receptor αvβ3 integrin is a critical mediator of resistance to TKI-induced ferroptosis. Our findings indicate that αvβ3 integrin-mediated resistance is associated with the re-wiring of the iron/antioxidant metabolism and persistent activation of AKT signalling. Moreover, using gene manipulation approaches and pharmacological inhibitors, we show that this "αvβ3 integrin addiction" can be targeted to reverse TKI resistance. Collectively, these findings provide critical insights into new therapeutic strategies to improve the treatment of advanced HER2-positive breast cancer patients.
Collapse
|
6
|
Wen X, Chen S, Chen X, Qiu H, Wang W, Zhang N, Liu W, Wang T, Ding X, Zhang L. ITGB5 promotes innate radiation resistance in pancreatic adenocarcinoma by promoting DNA damage repair and the MEK/ERK signaling pathway. Front Oncol 2022; 12:887068. [PMID: 36249018 PMCID: PMC9563233 DOI: 10.3389/fonc.2022.887068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most aggressive digestive system tumors in the world, with a low early diagnosis rate and a high mortality. Integrin beta 5 (ITGB5) is demonstrated to be a potent tumor promoter in several carcinomas. However, it is unknown whether ITGB5 participates in the occurrence and development of PAAD. In this study, we confirmed a high expression of ITGB5 in PAAD and its role in promoting invasiveness and transitivity in PAAD. Besides, the knockdown of ITGB5 increased cell sensitivity to radiation by promoting DNA damage repair and the MEK/ERK signaling pathway. Collectively, these results show that ITGB5 plays an essential role in pancreatic cancer growth and survival.
Collapse
Affiliation(s)
- Xin Wen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Cancer Institute of Xuzhou Medical University, Xuzhou, China
| | - Si Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Radiation Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xueting Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Qiu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Wang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nie Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanming Liu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tingting Wang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xin Ding
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Cancer Institute of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou, China
| |
Collapse
|
7
|
Huang W, Wen F, Gu P, Liu J, Xia Y, Li Y, Zhou J, Song S, Ruan S, Gu S, Chen X, Shu P. The inhibitory effect and mechanism of Yi-qi-hua-yu-jie-du decoction on the drug resistance of gastric cancer stem cells based on ABC transporters. Chin Med 2022; 17:93. [PMID: 35941687 PMCID: PMC9361523 DOI: 10.1186/s13020-022-00647-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/29/2022] [Indexed: 01/12/2023] Open
Abstract
Background The drug resistance of tumor stem cells is an obstacle in gastric cancer (GC) treatment and the high expression of ABC transporters is a classic reason for drug resistance. This study aimed to construct a reliable GC drug-resistant stem cell model and explore the inhibitory effect and mechanism of Yi-qi-hua-yu-jie-du medicated serum (YQHY) on the drug resistance of GC stem cells based on ABC transporters. Methods The tumor stemness biomarker CD44 was primary identification from WGCNA. The magnetic-activated cell sorting (MACS) method was used to separate CD44( +)BGC823/5-Fu (BGC823/5–Fu-CSCs) cells and the stemness characteristics were verified from multiple dimensions. Then, the drug resistance index and expression of ABC transporter genes MDR1 and MRP1 were detected in CD44(−)/CD44(+) cells. The inhibition and apoptosis rates of the cells administrated with YQHY or/and 5-Fu were calculated to confirm that YQHY can suppress the drug resistance of BGC823/5-Fu-CSCs. Afterwards, the effects of YQHY on the expression of MDR1 and MRP1 and the activation of the PI3K/Akt/Nrf2 pathway were observed. Finally, under the administration of IGF-1 (the activator of PI3K/Akt pathway) and Nrf2 siRNA, the mechanism of YQHY on reversing the drug resistance of BGC823/5–Fu-CSCs through inhibiting the expression of MDR1 and MRP1 via PI3K/Akt/Nrf2 was verified. Results CD44 was a reliable GC stemness biomarker and can be applied to construct the drug-resistant GC stem cell model CD44(+)BGC823/5-Fu. The growth rate, cell proliferation index, soft agar colony formation, expression of stemness specific genes and tumorigenesis ability of CD44(+)BGC823/5-Fu cells were significantly higher than those of CD44(−)BGC823/5-Fu cells. BGC823/5–Fu-CSCs exhibited strong drug resistance to 5-Fu and high expression of ABC transporter genes MDR1 and MRP1 compared to CD44(-) cells. YQHY increased the inhibition and apoptosis rates to efficiently inhibit the drug resistance of BGC823/5–Fu-CSCs. Meanwhile, it suppressed the expression of MDR1 and MRP1 and restrained the activation of PI3K/Akt/Nrf2 signaling pathway. Finally, it was found that IGF-1 partially restored the activation of PI3K/Akt/Nrf2 pathway, alleviated the inhibition of MDR1 and MRP1, blocked the proliferation-inhibitory and apoptosis-promotion effects. YQHY and si-Nrf2 synergistically suppressed the MDR1/MRP1 expression and the drug resistance of BGC823/5–Fu-CSCs. Conclusions CD44 was a reliable GC stemness biomarker, and the high expression of ABC transporter genes MDR1 and MRP1 was an important feature of drug-resistant stem cells. YQHY inhibited the MDR1 and MRP1 expression via PI3K/Akt/Nrf2 pathway, thus reversing the drug resistance of BGC823/5–Fu-CSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00647-y.
Collapse
Affiliation(s)
- Wenjie Huang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Wen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peixing Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiatong Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Xia
- Department of Respiratory, Wujin Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Ye Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayu Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Song
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Ruan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suping Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoxue Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Shu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China. .,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
8
|
Intermittent treatment of BRAF V600E melanoma cells delays resistance by adaptive resensitization to drug rechallenge. Proc Natl Acad Sci U S A 2022; 119:e2113535119. [PMID: 35290123 PMCID: PMC8944661 DOI: 10.1073/pnas.2113535119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Preclinical studies of metastatic melanoma treated with targeted therapeutics have suggested that alternating periods of treatment and withdrawal might delay the onset of resistance. This has been attributed to drug addiction, where cells lose fitness upon drug removal due to the resulting hyperactivation of mitogen-activated protein (MAP) kinase signaling. This study presents evidence that the intermittent treatment response can also be explained by the resensitization of cells following drug removal and enhanced cell loss upon drug rechallenge. Resensitization is accompanied by adaptive transcriptomic switching and occurs despite the sustained expression of resistance genes throughout the intermittent treatment. Patients with melanoma receiving drugs targeting BRAFV600E and mitogen-activated protein (MAP) kinase kinases 1 and 2 (MEK1/2) invariably develop resistance and face continued progression. Based on preclinical studies, intermittent treatment involving alternating periods of drug withdrawal and rechallenge has been proposed as a method to delay the onset of resistance. The beneficial effect of intermittent treatment has been attributed to drug addiction, where drug withdrawal reduces the viability of resistant cells due to MAP kinase pathway hyperactivation. However, the mechanistic basis of the intermittent effect is incompletely understood. We show that intermittent treatment with the BRAFV600E inhibitor, LGX818/encorafenib, suppresses growth compared with continuous treatment in human melanoma cells engineered to express BRAFV600E, p61-BRAFV600E, or MEK2C125 oncogenes. Analysis of the BRAFV600E-overexpressing cells shows that, while drug addiction clearly occurs, it fails to account for the advantageous effect of intermittent treatment. Instead, growth suppression is best explained by resensitization during periods of drug removal, followed by cell death after drug readdition. Continuous treatment leads to transcriptional responses prominently associated with chemoresistance in melanoma. By contrast, cells treated intermittently reveal a subset of transcripts that reverse expression between successive cycles of drug removal and rechallenge and include mediators of cell invasiveness and the epithelial-to-mesenchymal transition. These transcripts change during periods of drug removal by adaptive switching, rather than selection pressure. Resensitization occurs against a background of sustained expression of melanoma resistance genes, producing a transcriptome distinct from that of the initial drug-naive cell state. We conclude that phenotypic plasticity leading to drug resensitization can underlie the beneficial effect of intermittent treatment.
Collapse
|
9
|
Wang C, Jiang X, Huang B, Zhou W, Cui X, Zheng C, Liu F, Bi J, Zhang Y, Luo H, Yuan L, Yang J, Yu Y. Inhibition of matrix stiffness relating integrin β1 signaling pathway inhibits tumor growth in vitro and in hepatocellular cancer xenografts. BMC Cancer 2021; 21:1276. [PMID: 34823500 PMCID: PMC8620230 DOI: 10.1186/s12885-021-08982-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer development is strictly correlated to composition and physical properties of the extracellular matrix. Particularly, a higher matrix stiffness has been demonstrated to promote tumor sustained growth. Our purpose was to explore the role of matrix stiffness in liver cancer development. Methods The matrix stiffness of tumor tissues was determined by atomic force microscopy (AFM) analysis. In vitro, we used a tunable Polyacrylamide (PA) hydrogels culture system for liver cancer cells culture. The expression level of integrin β1, phosphorylated FAK, ERK1/2, and NF-κB in SMMC-7721 cells was measured by western blotting analysis. We performed MTT, colony formation and transwell assay to examine the tumorigenic and metastatic potential of SMMC-7721 cells cultured on the tunable PA hydrogels. SMMC-7721 cancer xenografts were established to explore the anticancer effects of integrin inhibitors. Results Our study provided evidence that liver tumor tissues from metastatic patients possessed a higher matrix stiffness, when compared to the non-metastatic group. Liver cancer cells cultured on high stiffness PA hydrogels displayed enhanced tumorigenic potential and migrative properties. Mechanistically, activation of integrin β1/FAK/ ERK1/2/NF-κB signaling pathway was observed in SMMC-7721 cells cultured on high stiffness PA hydrogels. Inhibition of ERK1/2, FAK, and NF-κB signaling suppressed the pro-tumor effects induced by matrix stiffness. Combination of chemotherapy and integrin β1 inhibitor suppressed the tumor growth and prolonged survival time in hepatocellular cancer xenografts. Conclusion A higher matrix stiffness equipped tumor cells with enhanced stemness and proliferative characteristics, which was dependent on the activation of integrin β1/FAK/ERK1/2/NF-κB signaling pathway. Blockade of integrin signals efficiently improved the outcome of chemotherapy, which described an innovative approach for liver cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08982-3.
Collapse
Affiliation(s)
- Changsong Wang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Xiaozhong Jiang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Bin Huang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Wenhao Zhou
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Xiao Cui
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Chenghong Zheng
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Fenghao Liu
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Jieling Bi
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Yi Zhang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Hong Luo
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Lin Yuan
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Jianyong Yang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Yu Yu
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China. .,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.
| |
Collapse
|
10
|
Deng S, Li L, Xu S, Wang X, Han T. Promotion of gastric tumor initiating cells in a 3D collagen gel culture model via YBX1/SPP1/NF-κB signaling. Cancer Cell Int 2021; 21:599. [PMID: 34758833 PMCID: PMC8579534 DOI: 10.1186/s12935-021-02307-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 01/07/2023] Open
Abstract
Background The high potential for tumor recurrence and chemoresistance is a major challenge of clinical gastric cancer treatment. Increasing evidence suggests that the presence of tumor initiating cells (TICs) is the principal cause of tumor recurrence and chemoresistance. However, the underlying mechanism of TIC development remains controversial. Methods To identify novel molecular pathways in gastric cancer, we screened the genomic expression profile of 155 gastric cancer patients from the TCGA database. We then described an improved 3D collagen I gels and tested the effects of collagen on the TIC phenotype of gastric cells using colony formation assay, transwell assay, and nude mouse models. Additionally, cell apoptosis assay was performed to examine the cytotoxicity of 5-fluorine and paclitaxel on gastric cancer cells cultured in 3D collagen I gels. Results Elevated expression of type I collagen was observed in tumor tissues from high stage patients (stage T3–T4) when compared to the low stage group (n=10, stage T1–T2). Furthermore, tumor cells seeded in a low concentration of collagen gels acquired TIC-like phenotypes and revealed enhanced resistance to chemotherapeutic agents, which was dependent on an integrin β1 (ITGB1)/Y-box Binding Protein 1 (YBX1)/Secreted Phosphoprotein 1 (SPP1)/NF-κB signaling pathway. Importantly, inhibition of ITGB1/NF-κB signaling efficiently reversed the chemoresistance induced by collagen and promoted anticancer effects in vivo. Conclusions Our findings demonstrated that type I collagen promoted TIC-like phenotypes and chemoresistance through ITGB1/YBX1/SPP1/NF-κB pathway, which may provide novel insights into gastric cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02307-x.
Collapse
Affiliation(s)
- Shuangya Deng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lun Li
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shu Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaobo Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tong Han
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
11
|
D’Arcy C, Kiel C. Cell Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021; 11:biom11081213. [PMID: 34439879 PMCID: PMC8391223 DOI: 10.3390/biom11081213] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, especially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier formation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and strategies for novel anti-melanoma therapies.
Collapse
|
12
|
Dzobo K. Integrins Within the Tumor Microenvironment: Biological Functions, Importance for Molecular Targeting, and Cancer Therapeutics Innovation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:417-430. [PMID: 34191612 DOI: 10.1089/omi.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cellular functions important for solid tumor initiation and progression are mediated by members of the integrin family, a diverse family of cell attachment receptors. With recent studies emphasizing the role of the tumor microenvironment (TME) in tumor initiation and progression, it is not surprising that considerable attention is being paid to integrins. Several integrin antagonists are under clinical trials, with many demonstrating promising activity in patients with different cancers. A deeper knowledge of the functions of integrins within the TME is still required and might lead to better inhibitors being discovered. Integrin expression is commonly dysregulated in many tumors with integrins playing key roles in signaling as well as promotion of tumor cell invasion and migration. Integrins also play a major role in adhesion of circulating tumor cells to new sites and the resulting formation of secondary tumors. Furthermore, integrins have demonstrated the ability to promoting stem cell-like properties in tumor cells as well as drug resistance. Anti-integrin therapies rely heavily on the doses or concentrations used as these determine whether the drugs act as antagonists or as integrin agonists. This expert review offers the latest synthesis in terms of the current knowledge of integrins functions within the TME and as potential molecular targets for cancer therapeutics innovation.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Fox GC, Su X, Davis JL, Xu Y, Kwakwa KA, Ross MH, Fontana F, Xiang J, Esser AK, Cordell E, Pagliai K, Dang HX, Sivapackiam J, Stewart SA, Maher CA, Bakewell SJ, Fitzpatrick JAJ, Sharma V, Achilefu S, Veis DJ, Lanza GM, Weilbaecher KN. Targeted Therapy to β3 Integrin Reduces Chemoresistance in Breast Cancer Bone Metastases. Mol Cancer Ther 2021; 20:1183-1198. [PMID: 33785647 PMCID: PMC8442608 DOI: 10.1158/1535-7163.mct-20-0931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/04/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Breast cancer bone metastases are common and incurable. Tumoral integrin β3 (β3) expression is induced through interaction with the bone microenvironment. Although β3 is known to promote bone colonization, its functional role during therapy of established bone metastases is not known. We found increased numbers of β3+ tumor cells in murine bone metastases after docetaxel chemotherapy. β3+ tumor cells were present in 97% of post-neoadjuvant chemotherapy triple-negative breast cancer patient samples (n = 38). High tumoral β3 expression was associated with worse outcomes in both pre- and postchemotherapy triple-negative breast cancer groups. Genetic deletion of tumoral β3 had minimal effect in vitro, but significantly enhanced in vivo docetaxel activity, particularly in the bone. Rescue experiments confirmed that this effect required intact β3 signaling. Ultrastructural, transcriptomic, and functional analyses revealed an alternative metabolic response to chemotherapy in β3-expressing cells characterized by enhanced oxygen consumption, reactive oxygen species generation, and protein production. We identified mTORC1 as a candidate for therapeutic targeting of this β3-mediated, chemotherapy-induced metabolic response. mTORC1 inhibition in combination with docetaxel synergistically attenuated murine bone metastases. Furthermore, micelle nanoparticle delivery of mTORC1 inhibitor to cells expressing activated αvβ3 integrins enhanced docetaxel efficacy in bone metastases. Taken together, we show that β3 integrin induction by the bone microenvironment promotes resistance to chemotherapy through an altered metabolic response that can be defused by combination with αvβ3-targeted mTORC1 inhibitor nanotherapy. Our work demonstrates the importance of the metastatic microenvironment when designing treatments and presents new, bone-specific strategies for enhancing chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Gregory C Fox
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Xinming Su
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer L Davis
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Yalin Xu
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Kristin A Kwakwa
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael H Ross
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Francesca Fontana
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jingyu Xiang
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Alison K Esser
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Elizabeth Cordell
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Kristen Pagliai
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Ha X Dang
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Sheila A Stewart
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher A Maher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
| | - Suzanne J Bakewell
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
- Deparment of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel Achilefu
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah J Veis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Musculoskeletal Research Center, Histology and Morphometry Core, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory M Lanza
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
14
|
Su CY, Li JQ, Zhang LL, Wang H, Wang FH, Tao YW, Wang YQ, Guo QR, Li JJ, Liu Y, Yan YY, Zhang JY. The Biological Functions and Clinical Applications of Integrins in Cancers. Front Pharmacol 2020; 11:579068. [PMID: 33041823 PMCID: PMC7522798 DOI: 10.3389/fphar.2020.579068] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are the adhesion molecules and receptors of extracellular matrix (ECM). They mediate the interactions between cells-cells and cells-ECM. The crosstalk between cancer cells and their microenvironment triggers a variety of critical signaling cues and promotes the malignant phenotype of cancer. As a type of transmembrane protein, integrin-mediated cell adhesion is essential in regulating various biological functions of cancer cells. Recent evidence has shown that integrins present on tumor cells or tumor-associated stromal cells are involved in ECM remodeling, and as mechanotransducers sensing changes in the biophysical properties of the ECM, which contribute to cancer metastasis, stemness and drug resistance. In this review, we outline the mechanism of integrin-mediated effects on biological changes of cancers and highlight the current status of clinical treatments by targeting integrins.
Collapse
Affiliation(s)
- Chao-yue Su
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing-quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ling-ling Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Feng-hua Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi-wen Tao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu-qing Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qiao-ru Guo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jia-jun Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan-yan Yan
- Institute of Immunology and School of Medicine, Shanxi Datong University, Datong, China
| | - Jian-ye Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
15
|
Im H, Lee J, Ryu KY, Yi JY. Integrin αvβ3-Akt signalling plays a role in radioresistance of melanoma. Exp Dermatol 2020; 29:562-569. [PMID: 32298492 DOI: 10.1111/exd.14102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Melanoma is a deadly type of skin cancer that is particularly difficult to treat owing to its resistance to radiation therapy. Here, we attempted to determine the key proteins responsible for melanoma radioresistance, with the aim of improving disease response to radiation therapy. Two melanoma cell lines, SK-Mel5 and SK-Mel28, with different radiosensitivities were analysed via RNA-Seq (Quant-Seq) and target proteins with higher abundance in the more radioresistant cell line, SK-Mel28, identified. Among these proteins, integrin αvβ3, a well-known molecule in cell adhesion, was selected for analysis. Treatment of SK-Mel28 cells with cilengitide, an integrin αvβ3 inhibitor, as well as γ-irradiation resulted in more significant cell death than γ-irradiation alone. In addition, Akt, a downstream signal transducer of integrin αvβ3, showed high basic activation in SK-Mel28 and was significantly decreased upon co-treatment with cilengitide and γ-irradiation. MK-2206, an Akt inhibitor, exerted similar effects on the SK-Mel28 cell line following γ-irradiation. Our results collectively demonstrate that the integrin αvβ3-Akt signalling pathway contributes to radioresistance in SK-Mel28 cells, which may be manipulated to improve therapeutic options for melanoma.
Collapse
Affiliation(s)
- Hyuntaik Im
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Life Science, University of Seoul, Seoul, Korea
| | - Jeeyong Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Jae Youn Yi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|