1
|
Li H, Tang C, Zhao P, Zhong R, Lu Y, Liu Y, Li R, Lan S, Wu C, Qiang X, Peng P, Wu F, Cheng Y, Liu Y. Multiple Kinase Small Molecule Inhibitor Tinengotinib (TT-00420) Alone or With Chemotherapy Inhibit the Growth of SCLC. Cancer Sci 2025; 116:951-965. [PMID: 39817471 PMCID: PMC11967258 DOI: 10.1111/cas.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025] Open
Abstract
There is an urgent need to develop new targeted treatment agents for small cell lung cancer (SCLC). Tinengotinib (TT-00420) is a novel, multi-targeted, and spectrally selective small-molecule kinase inhibitor that has shown significant inhibitory effects on certain solid tumors in preclinical studies. However, its role and mechanism of action in SCLC remain unclear. In this study, we demonstrated that tinengotinib effectively inhibited SCLC cell proliferation, especially highly expressing NeuroD1 (SCLC-N), in the SCLC cell line-derived xenograft (CDX) model and the malignant pleural effusion cell model of patients with SCLC. When combined with etoposide/cisplatin, it synergistically inhibited SCLC growth. Tinengotinib regulates proliferation, apoptosis, migration, cell cycle and angiogenesis in SCLC cells. Mechanistic studies revealed that c-Myc expression may be a key factor influencing the effect of tinengotinib in SCLC-N. This study provides reliable preclinical data and a new direction for tinengotinib as a promising therapy for SCLC, either alone or in combination with chemotherapy.
Collapse
Affiliation(s)
- Hui Li
- BiobankJilin Cancer HospitalChangchunChina
- Medical Oncology Translational Research LabJilin Cancer HospitalChangchunChina
| | | | - Peiyan Zhao
- Medical Oncology Translational Research LabJilin Cancer HospitalChangchunChina
| | - Rui Zhong
- Medical Oncology Translational Research LabJilin Cancer HospitalChangchunChina
| | - Yuanhua Lu
- Postdoctoral Research WorkstationJilin Cancer HospitalChangchunChina
| | - Yan Liu
- Medical Oncology Translational Research LabJilin Cancer HospitalChangchunChina
| | - Rixin Li
- BiobankJilin Cancer HospitalChangchunChina
| | - Shaowei Lan
- Medical Oncology Translational Research LabJilin Cancer HospitalChangchunChina
| | - Chunjiao Wu
- Department of Medical OncologyJilin Cancer HospitalChangchunChina
| | - Xiaoyan Qiang
- TransThera Sciences (Nanjing). Inc. Fl 3, Bld 9, Phase 2 AcceleratorBiotech and Pharmaceutical Valley, Jiangbei New AreaNanjingJiangsuChina
| | - Peng Peng
- TransThera Sciences (Nanjing). Inc. Fl 3, Bld 9, Phase 2 AcceleratorBiotech and Pharmaceutical Valley, Jiangbei New AreaNanjingJiangsuChina
| | - Frank Wu
- TransThera Sciences (Nanjing). Inc. Fl 3, Bld 9, Phase 2 AcceleratorBiotech and Pharmaceutical Valley, Jiangbei New AreaNanjingJiangsuChina
| | - Ying Cheng
- Medical Oncology Translational Research LabJilin Cancer HospitalChangchunChina
- Department of Medical OncologyJilin Cancer HospitalChangchunChina
| | - Ying Liu
- Department of Medical OncologyJilin Cancer HospitalChangchunChina
| |
Collapse
|
2
|
Chen M, Zhu H, Li J, Luo D, Zhang J, Liu W, Wang J. Research progress on the relationship between AURKA and tumorigenesis: the neglected nuclear function of AURKA. Ann Med 2024; 56:2282184. [PMID: 38738386 PMCID: PMC11095293 DOI: 10.1080/07853890.2023.2282184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/31/2023] [Indexed: 05/14/2024] Open
Abstract
AURKA is a threonine or serine kinase that needs to be activated by TPX2, Bora and other factors. AURKA is located on chromosome 20 and is amplified or overexpressed in many human cancers, such as breast cancer. AURKA regulates some basic cellular processes, and this regulation is realized via the phosphorylation of downstream substrates. AURKA can function in either the cytoplasm or the nucleus. It can promote the transcription and expression of oncogenes together with other transcription factors in the nucleus, including FoxM1, C-Myc, and NF-κB. In addition, it also sustains carcinogenic signaling, such as N-Myc and Wnt signaling. This article will focus on the role of AURKA in the nucleus and its carcinogenic characteristics that are independent of its kinase activity to provide a theoretical explanation for mechanisms of resistance to kinase inhibitors and a reference for future research on targeted inhibitors.
Collapse
Affiliation(s)
- Menghua Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huijun Zhu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danjing Luo
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiaming Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jue Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Zhou Q, Tao C, Yuan J, Pan F, Wang R. Knowledge mapping of AURKA in Oncology:An advanced Bibliometric analysis (1998-2023). Heliyon 2024; 10:e31945. [PMID: 38912486 PMCID: PMC11190563 DOI: 10.1016/j.heliyon.2024.e31945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
AURKA, also known as Aurora kinase A, is a key molecule involved in the occurrence and progression of cancer. It plays crucial roles in various cellular processes, including cell cycle regulation, mitosis, and chromosome segregation. Dysregulation of AURKA has been implicated in tumorigenesis, promoting cell proliferation, genomic instability, and resistance to apoptosis. In this study, we conducted an extensive bibliometric analysis of research focusing on Aurora-A in the context of cancer by utilizing the Web of Science literature database. Various sophisticated computational tools, such as VOSviewer, Citespace, Biblioshiny R, and Cytoscape, were employed for comprehensive literature analysis and big data mining from January 1998 to September 2023.The primary objectives of our study were multi-fold. Firstly, we aimed to explore the chronological development of AURKA research, uncovering the evolution of scientific understanding over time. Secondly, we investigated shifting trends in research topics, elucidating areas of increasing interest and emerging frontiers. Thirdly, we delved into intricate signaling pathways and protein interaction networks associated with AURKA, providing insights into its complex molecular mechanisms. To further enhance the value of our bibliometric analysis, we conducted a meta-analysis on the prognostic value of AURKA in terms of patient survival. The results were visually presented, offering a comprehensive overview and future perspectives on Aurora-A research in the field of oncology. This study not only contributes to the existing body of knowledge but also provides valuable guidance for researchers, clinicians, and pharmaceutical professionals. By harnessing the power of bibliometrics, our findings offer a deeper understanding of the role of AURKA in cancer and pave the way for innovative research directions and clinical applications.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Chunyu Tao
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Jiakai Yuan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Fan Pan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Rui Wang
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| |
Collapse
|
4
|
Rio-Vilariño A, Cenigaonandia-Campillo A, García-Bautista A, Mateos-Gómez PA, Schlaepfer MI, Del Puerto-Nevado L, Aguilera O, García-García L, Galeano C, de Miguel I, Serrano-López J, Baños N, Fernández-Aceñero MJ, Lacal JC, Medico E, García-Foncillas J, Cebrián A. Inhibition of the AURKA/YAP1 axis is a promising therapeutic option for overcoming cetuximab resistance in colorectal cancer stem cells. Br J Cancer 2024; 130:1402-1413. [PMID: 38467828 PMCID: PMC11014903 DOI: 10.1038/s41416-024-02649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Primary resistance to anti-EGFR therapies affects 40% of metastatic colorectal cancer patients harbouring wild-type RAS/RAF. YAP1 activation is associated with this resistance, prompting an investigation into AURKA's role in mediating YAP1 phosphorylation at Ser397, as observed in breast cancer. METHODS We used transcriptomic analysis along with in vitro and in vivo models of RAS/RAF wild-type CRC to study YAP1 Ser397 phosphorylation as a potential biomarker for cetuximab resistance. We assessed cetuximab efficacy using CCK8 proliferation assays and cell cycle analysis. Additionally, we examined the effects of AURKA inhibition with alisertib and created a dominant-negative YAP1 Ser397 mutant to assess its impact on cancer stem cell features. RESULTS The RAS/RAF wild-type CRC models exhibiting primary resistance to cetuximab prominently displayed elevated YAP1 phosphorylation at Ser397 primarily mediated by AURKA. AURKA-induced YAP1 phosphorylation was identified as a key trigger for cancer stem cell reprogramming. Consequently, we found that AURKA inhibition had the capacity to effectively restore cetuximab sensitivity and concurrently suppress the cancer stem cell phenotype. CONCLUSIONS AURKA inhibition holds promise as a therapeutic approach to overcome cetuximab resistance in RAS/RAF wild-type colorectal cancer, offering a potential means to counter the development of cancer stem cell phenotypes associated with cetuximab resistance.
Collapse
Affiliation(s)
- Anxo Rio-Vilariño
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Aiora Cenigaonandia-Campillo
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Ana García-Bautista
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Pedro A Mateos-Gómez
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá. Alcalá de Henares, Madrid, Spain
| | - Marina I Schlaepfer
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Laura Del Puerto-Nevado
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Oscar Aguilera
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Laura García-García
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Carlos Galeano
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, Madrid, Spain
| | - Irene de Miguel
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá. Alcalá de Henares, Madrid, Spain
| | | | - Natalia Baños
- Preclinical program START Madrid-FJD, Hospital Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - María Jesús Fernández-Aceñero
- Department of Pathology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Juan Carlos Lacal
- Instituto de Investigaciones Biomédicas, CSIC/UAM, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz, IDIPAZ, Madrid, Spain
| | - Enzo Medico
- Department of Oncology, Università degli Studi di Torino, Candiolo (TO), Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain.
| | - Arancha Cebrián
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain.
| |
Collapse
|
5
|
Gupta D, Kumar M, Saifi S, Rawat S, Ethayathulla AS, Kaur P. A comprehensive review on role of Aurora kinase inhibitors (AKIs) in cancer therapeutics. Int J Biol Macromol 2024; 265:130913. [PMID: 38508544 DOI: 10.1016/j.ijbiomac.2024.130913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Aurora kinases (AURKs) are a family of serine /threonine protein kinases that have a crucial role in cell cycle process mainly in the event of chromosomal segregation, centrosome maturation and cytokinesis. The family consists of three members including Aurora kinase A (AURK-A), Aurora kinase B (AURK-B) and Aurora kinase C (AURK-C). All AURKs contain a conserved kinase domain for their activity but differ in their cellular localization and functions. AURK-A and AURK-B are expressed mainly in somatic cells while the expression of AURK-C is limited to germ cells. AURK-A promotes G2 to M transition of cell cycle by controlling centrosome maturation and mitotic spindle assembly. AURK-B and AURK-C form the chromosome passenger complex (CPC) that ensures proper chromosomal alignments and segregation. Aberrant expression of AURK-A and AURK-B has been detected in several solid tumours and malignancies. Hence, they have become an attractive therapeutic target against cancer. The first part of this review focuses on AURKs structure, functions, subcellular localization, and their role in tumorigenesis. The review also highlights the functional and clinical impact of selective as well as pan kinase inhibitors. Currently, >60 compounds that target AURKs are in preclinical and clinical studies. The drawbacks of existing inhibitors like selectivity, drug resistance and toxicity have also been addressed. Since, majority of inhibitors are Aurora kinase inhibitor (AKI) type-1 that bind to the active (DFGin and Cin) conformation of the kinase, this information may be utilized to design highly selective kinase inhibitors that can be combined with other therapeutic agents for better clinical outcomes.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Sana Saifi
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Shivani Rawat
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India.
| |
Collapse
|
6
|
Land G, Van Haeringen B, Cooper C, Andelkovic V, O'Rourke T. A Rare Case of Rhabdoid Pancreatic Carcinoma: Prolonged Disease-Free Survival Following Upfront Resection and Adjuvant Chemotherapy. Cureus 2023; 15:e50145. [PMID: 38186431 PMCID: PMC10771581 DOI: 10.7759/cureus.50145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
The rhabdoid subtype of undifferentiated pancreatic carcinoma is rarely reported. The clinical course of this disease is therefore poorly understood, although it is apparently an aggressive malignancy. We herein discuss the case of a 69-year-old man presenting with a rapidly enlarging mass of the pancreatic body and tail who was diagnosed with locally advanced SMARCB1-deficient undifferentiated pancreatic carcinoma with rhabdoid features, treated with radical resection and adjuvant chemotherapy, and has achieved 18-month disease-free survival ongoing at the time of article publication. We identify and contrast our case with 15 similar tumors reported in the English literature, briefly discuss the biology of this tumor, its relationship to malignant rhabdoid tumors of childhood, the role of SMARCB1 and its parent complex switch/sucrose-non-fermentable chromatin remodeling complex (SWI/SNF) in modulating the behavior of pancreatic malignancy, and the potential therapeutic avenues available for SWI/SNF-mutated malignancies.
Collapse
Affiliation(s)
- Gabriel Land
- General Surgery, Princess Alexandra Hospital, Brisbane, AUS
| | | | - Caroline Cooper
- Anatomical Pathology, Princess Alexandra Hospital, Brisbane, AUS
| | | | - Thomas O'Rourke
- Hepatobiliary Surgery, Princess Alexandra Hospital, Brisbane, AUS
| |
Collapse
|
7
|
Saeed H, Leibowitz BJ, Zhang L, Yu J. Targeting Myc-driven stress addiction in colorectal cancer. Drug Resist Updat 2023; 69:100963. [PMID: 37119690 DOI: 10.1016/j.drup.2023.100963] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
MYC is a proto-oncogene that encodes a powerful regulator of transcription and cellular programs essential for normal development, as well as the growth and survival of various types of cancer cells. MYC rearrangement and amplification is a common cause of hematologic malignancies. In epithelial cancers such as colorectal cancer, genetic alterations in MYC are rare. Activation of Wnt, ERK/MAPK, and PI3K/mTOR pathways dramatically increases Myc levels through enhanced transcription, translation, and protein stability. Elevated Myc promotes stress adaptation, metabolic reprogramming, and immune evasion to drive cancer development and therapeutic resistance through broad changes in transcriptional and translational landscapes. Despite intense interest and effort, Myc remains a difficult drug target. Deregulation of Myc and its targets has profound effects that vary depending on the type of cancer and the context. Here, we summarize recent advances in the mechanistic understanding of Myc-driven oncogenesis centered around mRNA translation and proteostress. Promising strategies and agents under development to target Myc are also discussed with a focus on colorectal cancer.
Collapse
Affiliation(s)
- Haris Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Brian J Leibowitz
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Radiation Oncology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Stefani A, Piro G, Schietroma F, Strusi A, Vita E, Fiorani S, Barone D, Monaca F, Sparagna I, Valente G, Ferrara MG, D’Argento E, Di Salvatore M, Carbone C, Tortora G, Bria E. Unweaving the mitotic spindle: A focus on Aurora kinase inhibitors in lung cancer. Front Oncol 2022; 12:1026020. [PMID: 36387232 PMCID: PMC9647054 DOI: 10.3389/fonc.2022.1026020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is one of the most aggressive malignancies, classified into two major histological subtypes: non-small cell lung cancer (NSCLC), that accounts for about 85% of new diagnosis, and small cell lung cancer (SCLC), the other 15%. In the case of NSCLC, comprehensive genome sequencing has allowed the identification of an increasing number of actionable targets, which have become the cornerstone of treatment in the advanced setting. On the other hand, the concept of oncogene-addiction is lacking in SCLC, and the only innovation of the last 30 years has been the introduction of immune checkpoint inhibitors in extensive stage disease. Dysregulation of cell cycle is a fundamental step in carcinogenesis, and Aurora kinases (AURKs) are a family of serine/threonine kinases that play a crucial role in the correct advance through the steps of the cycle. Hyperexpression of Aurora kinases is a common protumorigenic pathway in many cancer types, including NSCLC and SCLC; in addition, different mechanisms of resistance to anticancer drugs rely on AURK expression. Hence, small molecule inhibitors of AURKs have been developed in recent years and tested in several malignancies, with different results. The aim of this review is to analyze the current evidences of AURK inhibition in lung cancer, starting from preclinical rationale to finish with clinical trials available up to now.
Collapse
Affiliation(s)
- Alessio Stefani
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Schietroma
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Strusi
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emanuele Vita
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simone Fiorani
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diletta Barone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federico Monaca
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ileana Sparagna
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giustina Valente
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ettore D’Argento
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mariantonietta Di Salvatore
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
9
|
Chen JA, Huynh JC, Wu CY, Yu AM, Matsukuma K, Semrad TJ, Gandara DR, Li T, Riess JW, Tam K, Mack PC, Martinez A, Mahaffey N, Kelly KL, Kim EJ. A phase I dose escalation, dose expansion and pharmacokinetic trial of gemcitabine and alisertib in advanced solid tumors and pancreatic cancer. Cancer Chemother Pharmacol 2022; 90:217-228. [PMID: 35907014 PMCID: PMC9402746 DOI: 10.1007/s00280-022-04457-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Aurora Kinase A (AKA) inhibition with gemcitabine represents a potentially synergistic cancer treatment strategy via mitotic catastrophe. The feasibility, safety, and preliminary efficacy of alisertib (MLN8237), an oral AKA inhibitor, with gemcitabine was evaluated in this open-label phase I trial with dose escalation and expansion. METHODS Key inclusion criteria included advanced solid tumor with any number of prior chemotherapy regimens in the dose escalation phase, and advanced pancreatic adenocarcinoma with up to two prior chemotherapy regimens. Four dose levels (DLs 1-4) of alisertib (20, 30, 40, or 50 mg) were evaluated in 3 + 3 design with gemcitabine 1000 mg/m2 on days 1, 8, and 15 in 28-day cycles. RESULTS In total, 21 subjects were treated in dose escalation and 5 subjects were treated in dose expansion at DL4. Dose-limiting toxicities were observed in 1 of 6 subjects each in DL3 and DL4. All subjects experienced treatment-related adverse events. Grade ≥ 3 treatment-related adverse events were observed in 73% of subjects, with neutropenia observed in 54%. Out of 22 subjects evaluable for response, 2 subjects (9%) had partial response and 14 subjects (64%) had stable disease. Median PFS was 4.1 months (95% CI 2.1-4.5). No significant changes in pharmacokinetic parameters for gemcitabine or its metabolite dFdU were observed with alisertib co-administration. CONCLUSIONS This trial established the recommended phase 2 dose of alisertib 50 mg to be combined with gemcitabine. Gemcitabine and alisertib are a feasible strategy with potential for disease control in multiple heavily pre-treated tumors, though gastrointestinal and hematologic toxicity was apparent.
Collapse
Affiliation(s)
- Justin A Chen
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Jasmine C Huynh
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Chun-Yi Wu
- Bioanalysis and Pharmacokinetics Core Facility, University of California, Sacramento, CA, 95817, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA, 95817, USA
| | - Karen Matsukuma
- Department of Pathology and Laboratory Medicine, University of California, Sacramento, CA, 95817, USA
| | - Thomas J Semrad
- Gene Upshaw Memorial Tahoe Forest Cancer Center, Truckee, CA, 96161, USA
| | - David R Gandara
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Tianhong Li
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Jonathan W Riess
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Kit Tam
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Philip C Mack
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anthony Martinez
- Office of Clinical Research, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Nichole Mahaffey
- Office of Clinical Research, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Karen L Kelly
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Edward J Kim
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA.
| |
Collapse
|
10
|
Abstract
ABSTRACT The Aurora kinases (AURKA and AURKB) have attracted attention as therapeutic targets in head and neck squamous cell carcinomas. Aurora kinases were first defined as regulators of mitosis that localization to the centrosome (AURKA) and centromere (AURKB), governing formation of the mitotic spindle, chromatin condensation, activation of the core mitotic kinase CDK1, alignment of chromosomes at metaphase, and other processes. Subsequently, additional roles for Aurora kinases have been defined in other phases of cell cycle, including regulation of ciliary disassembly and DNA replication. In cancer, elevated expression and activity of Aurora kinases result in enhanced or neomorphic locations and functions that promote aggressive disease, including promotion of MYC expression, oncogenic signaling, stem cell identity, epithelial-mesenchymal transition, and drug resistance. Numerous Aurora-targeted inhibitors have been developed and are being assessed in preclinical and clinical trials, with the goal of improving head and neck squamous cell carcinoma treatment.
Collapse
|