1
|
Transcriptome Analysis Reveals the Multiple Functions of pBD2 in IPEC-J2 Cells against E. coli. Int J Mol Sci 2022; 23:ijms23179754. [PMID: 36077151 PMCID: PMC9456188 DOI: 10.3390/ijms23179754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Defensins play an important role in fighting bacteria, and are a good candidate for bactericidal agents. However, the function and mechanism of defensins in regulating host responses against bacteria is unclear. In this study, transcriptome analysis was used to study the comprehensive functions of pBD2 in IPEC-J2 cells against E. coli. In total, 230 differentially expressed genes (DEGs) were identified in IPEC-J2 cells between the control and E. coli groups, and were found by KEGG analysis to be involved in many signaling pathways related to immunity. Furthermore, 812 DEGs were observed between E. coli and E. coli +pBD2 groups, involved in the ribosome, oxidative phosphorylation, and certain disease pathways. Among these, 94 overlapping DEGs were in the two DEG groups, and 85 DEGs were reverse expression, which is involved in microRNA in cancer, while PTEN and CDC6 were key genes according to PPI net analysis. The results of qRT-PCR verified those of RNA-seq. The results indicated that pBD2 plays an important role against E. coli by acting on the genes related to immune response, cell cycle, ribosomes, oxidative phosphorylation, etc. The results provide new insights into the potential function and mechanism of pBD2 against E. coli. Meanwhile, this study provides a certain theoretical basis for research and the development of novel peptide drugs.
Collapse
|
2
|
Zhao W, Shi CS, Harrison K, Hwang IY, Nabar NR, Wang M, Kehrl JH. AKT Regulates NLRP3 Inflammasome Activation by Phosphorylating NLRP3 Serine 5. THE JOURNAL OF IMMUNOLOGY 2020; 205:2255-2264. [PMID: 32929041 DOI: 10.4049/jimmunol.2000649] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023]
Abstract
The cytosolic pattern recognition receptor NLRP3 senses host-derived danger signals and certain microbe-derived products in both humans and rodents. NLRP3 activation assembles an inflammasome complex that contains the adapter proteins ASC and caspase-1, whose activation triggers the maturation and release of the proinflammatory cytokines IL-1β and IL-18. S5 phosphorylation of NLRP3 prevents its oligomerization and activation, whereas dephosphorylation of this residue by the phosphatase PP2A allows NLRP3 activation. However, the protein kinase that mediates NLRP3 S5 phosphorylation is unknown. In this study, we show that AKT associates with NLRP3 and phosphorylates it on S5, limiting NLRP3 oligomerization. This phosphorylation event also stabilizes NLRP3 by reducing its ubiquitination on lysine 496, which inhibits its proteasome-mediated degradation by the E3 ligase Trim31. Pharmacologic manipulation of AKT kinase activity reciprocally modulates NLRP3 inflammasome-mediated IL-1β production. Inhibition of AKT reduced IL-1β production following the i.p. injection of LPS into mice. We propose that AKT, Trim31, and PP2A together modulate NLRP3 protein levels and the tendency to oligomerize, thereby setting a tightly regulated threshold for NLRP3 activation.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; and.,Department of Prosthodontics, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chong-Shan Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kathleen Harrison
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Neel R Nabar
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Min Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; and
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
3
|
Chang X, Li J, Niu S, Xue Y, Tang M. Neurotoxicity of metal‐containing nanoparticles and implications in glial cells. J Appl Toxicol 2020; 41:65-81. [DOI: 10.1002/jat.4037] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| |
Collapse
|
4
|
Tsuchiya K. Inflammasome‐associated cell death: Pyroptosis, apoptosis, and physiological implications. Microbiol Immunol 2020; 64:252-269. [DOI: 10.1111/1348-0421.12771] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawa Japan
- Institute for Frontier Science Initiative (InFiniti)Kanazawa UniversityKanazawa Japan
| |
Collapse
|
5
|
The Challenge of the Sponge Suberites domuncula (Olivi, 1792) in the Presence of a Symbiotic Bacterium and a Pathogen Bacterium. Genes (Basel) 2019; 10:genes10070485. [PMID: 31248009 PMCID: PMC6678784 DOI: 10.3390/genes10070485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Sponges, which are in close contact with numerous bacteria in prey/predator, symbiotic and pathogenic relationships, must provide an appropriate response in such situations. This starts with a discriminating recognition of the partner either by a physical contact or through secreted molecules or both. We investigated the expression of the Toll-like receptor, Caspase 3/7, Tumor Necrosis Factor receptor-associated factor 6, Bcl-2 homology protein-2 and macrophage expressed genes of axenic sponge cells in the presence of a symbiotic bacterium (Endozoicomonas sp. Hex311), a pathogen bacterium (Pseudoalteromonas sp. 1A1), their exoproducts and lipopolysaccharides. The vast majority of answers are in line with what could be observed with the symbiotic bacterium. The pathogenic bacterium seems to profit from the eukaryotic cell: suppression of the production of the antibacterial compound, inhibition of the apoptosis caspase-dependent pathway, deregulation of bacterial recognition. This work contributes new scientific knowledge in the field of immunology and apoptosis in early branching metazoan harboring within its tissue and cells a large number of symbiotic bacteria.
Collapse
|
6
|
Sun Y, Ma J, Li D, Li P, Zhou X, Li Y, He Z, Qin L, Liang L, Luo X. Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures. J Neuroinflammation 2019; 16:66. [PMID: 30922332 PMCID: PMC6437919 DOI: 10.1186/s12974-019-1452-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Microglia are important for secreting chemical mediators of inflammatory responses in the central nervous system. Interleukin (IL)-10 and IL-1β secreted by glial cells support neuronal functions, but the related mechanisms remain vague. Our goal was to demonstrate the efficacy of IL-10 in suppressing IL-1β and in inflammasome activation in mice with epileptic seizure based on an epileptic-seizure mouse model. METHODS In this study, mice in which epileptic seizures were induced by administering picrotoxin (PTX) were used as a case group, and mice injected with saline were employed as the control group. The expression of nucleic acids, cytokines, or signaling pathways was detected by reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), flow cytometry, and Western blotting. RESULTS Our results demonstrated that IL-10 inhibits IL-1β production through two distinct mechanisms: (1) Treatment with lipopolysaccharides (LPS) results in IL-10 overexpression in microglia and reduced NLRP3 inflammasome activity, thus inhibiting caspase-1-related IL-1β maturation; (2) next, autocrine IL-10 was found to subsequently promote signal transducer and activator of transcription-3 (STAT-3), reducing amounts of pro-IL-1β. CONCLUSIONS Our results indicate that IL-10 is potentially effective in the treatment of inflammation encephalopathy, and suggest the potential usefulness of IL-10 for treating autoimmune or inflammatory ailments.
Collapse
Affiliation(s)
- Yi Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiangjun Ma
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Dongfang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Pinggan Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaolin Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhanwen He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lijun Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liyang Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiangyang Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
7
|
Guignot J, Tran Van Nhieu G. Bacterial Control of Pores Induced by the Type III Secretion System: Mind the Gap. Front Immunol 2016; 7:84. [PMID: 27014264 PMCID: PMC4783396 DOI: 10.3389/fimmu.2016.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/27/2022] Open
Abstract
Type III secretion systems (T3SSs) are specialized secretion apparatus involved in the virulence of many Gram-negative pathogens, enabling the injection of bacterial type III effectors into host cells. The T3SS-dependent injection of effectors requires the insertion into host cell membranes of a pore-forming "translocon," whose effects on cell responses remain ill-defined. As opposed to pore-forming toxins that damage host cell plasma membranes and induce cell survival mechanisms, T3SS-dependent pore formation is transient, being regulated by cell membrane repair mechanisms or bacterial effectors. Here, we review host cell responses to pore formation induced by T3SSs associated with the loss of plasma membrane integrity and regulation of innate immunity. We will particularly focus on recent advances in mechanisms controlling pore formation and the activity of the T3SS linked to type III effectors or bacterial proteases. The implications of the regulation of the T3SS translocon activity during the infectious process will be discussed.
Collapse
Affiliation(s)
- Julie Guignot
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Centre National de la Recherche Scientifique UMR7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, Paris, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Centre National de la Recherche Scientifique UMR7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, Paris, France
| |
Collapse
|
8
|
DAMPs and neurodegeneration. Ageing Res Rev 2015; 24:17-28. [PMID: 25462192 DOI: 10.1016/j.arr.2014.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/06/2014] [Accepted: 11/16/2014] [Indexed: 12/22/2022]
Abstract
The concept of neuroinflammation has come a full circle; from being initially regarded as a controversial viewpoint to its present day acceptance as an integral component of neurodegenerative processes. A closer look at the etiopathogenesis of many neurodegenerative conditions will reveal a patho-symbiotic relationship between neuroinflammation and neurodegeneration, where the two liaise with each other to form a self-sustaining vicious cycle that facilitates neuronal demise. Here, we focus on damage associated molecular patterns or DAMPs as a potentially important nexus in the context of this lethal neuroinflammation-neurodegeneration alliance. Since their nomenclature as "DAMPs" about a decade ago, these endogenous moieties have consistently been reported as novel players in sterile (non-infective) inflammation. However, their roles in inflammatory responses in the central nervous system (CNS), especially during chronic neurodegenerative disorders are still being actively researched. The aim of this review is to first provide a general overview of the neuroimmune response in the CNS within the purview of DAMPs, its receptors and downstream signaling. This is then followed by discussions on some of the DAMP-mediated neuroinflammatory responses involved in chronic neurodegenerative diseases. Along the way, we also highlighted some important gaps in our existing knowledge regarding the role of DAMPs in neurodegeneration, the clarification of which we believe would aid in the prospects of developing treatment or screening strategies directed at these molecules.
Collapse
|
9
|
Abstract
Pathogenic bacteria produce virulence factors called effectors, which are important components of the infection process. Effectors aid in pathogenesis by facilitating bacterial attachment, pathogen entry into or exit from the host cell, immunoevasion, and immunosuppression. Effectors also have the ability to subvert host cellular processes, such as hijacking cytoskeletal machinery or blocking protein translation. However, host cells possess an evolutionarily conserved innate immune response that can sense the pathogen through the activity of its effectors and mount a robust immune response. This “effector triggered immunity” (ETI) was first discovered in plants but recent evidence suggest that the process is also well conserved in metazoans. We will discuss salient points of the mechanism of ETI in metazoans from recent studies done in mammalian cells and invertebrate model hosts.
Collapse
Affiliation(s)
- Rajmohan Rajamuthiah
- a Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence, RI USA
| | | |
Collapse
|
10
|
Gómez López M, Domínguez López A, Abarca Rojano E, Rojas Hernández S, Martínez Godínez MDLA, Miliar García A, Campos Rodríguez R. 17β-Estradiol transcriptionally modulates Nlrp1 and Nlrp3 inflammasomes in gonadectomized rats with inflammation. Immunopharmacol Immunotoxicol 2015; 37:343-50. [DOI: 10.3109/08923973.2015.1059439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
The peptide toxin amylosin of Bacillus amyloliquefaciens from moisture-damaged buildings is immunotoxic, induces potassium efflux from mammalian cells, and has antimicrobial activity. Appl Environ Microbiol 2015; 81:2939-49. [PMID: 25681192 DOI: 10.1128/aem.03430-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Amylosin, a heat-stable channel-forming non-ribosomally synthesized peptide toxin produced by strains of Bacillus amyloliquefaciens isolated from moisture-damaged buildings, is shown in this paper to have immunotoxic and cytotoxic effects on human cells as well as antagonistic effects on microbes. Human macrophages exposed to 50 ng of amylosin ml(-1) secreted high levels of cytokines interleukin-1β (IL-1β) and IL-18 within 2 h, indicating activation of the NLRP3 inflammasome, an integral part of the innate immune system. At the same exposure level, expression of IL-1β and IL-18 mRNA increased. Amylosin caused dose-dependent potassium ion efflux from all tested mammalian cells (human monocytes and keratinocytes and porcine sperm cells) at 1 to 2 μM exposure. Amylosin also inhibited the motility of porcine sperm cells and depolarized the mitochondria of human keratinocytes. Amylosin may thus trigger the activation of the NLRP3 inflammasome and subsequently cytokine release by causing potassium efflux from exposed cells. The results of this study indicate that exposure to amylosin activates the innate immune system, which could offer an explanation for the inflammatory symptoms experienced by occupants of moisture-damaged buildings. In addition, the amylosin-producing B. amyloliquefaciens inhibited the growth of both prokaryotic and eukaryotic indoor microbes, and purified amylosin also had an antimicrobial effect. These antimicrobial effects could make amylosin producers dominant and therefore significant causal agents of health problems in some moisture-damaged sites.
Collapse
|
12
|
Latvala S, Mäkelä SM, Miettinen M, Charpentier E, Julkunen I. Dynamin inhibition interferes with inflammasome activation and cytokine gene expression in Streptococcus pyogenes-infected human macrophages. Clin Exp Immunol 2014; 178:320-33. [PMID: 25079511 DOI: 10.1111/cei.12425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/21/2022] Open
Abstract
In the present study, we have analysed the ability of Streptococcus pyogenes [Group A streptococcus (GAS)] to activate the NACHT-domain-, leucine-rich repeat- and PYD-containing protein 3 (NALP3) inflammasome complex in human monocyte-derived macrophages and the molecules and signalling pathways involved in GAS-induced inflammatory responses. We focused upon analysing the impact of dynamin-dependent endocytosis and the role of major streptococcal virulence factors streptolysin O (SLO) and streptolysin S (SLS) in the immune responses induced by GAS. These virulence factors are involved in immune evasion by forming pores in host cell membranes, and aid the bacteria to escape from the endosome-lysosome pathway. We analysed cytokine gene expression in human primary macrophages after stimulation with live or inactivated wild-type GAS as well as with live SLO and SLS defective bacteria. Interleukin (IL)-1β, IL-10, tumour necrosis factor (TNF)-α and chemokine (C-X-C motif) ligand (CXCL)-10 cytokines were produced after bacterial stimulation in a dose-dependent manner and no differences in cytokine levels were seen between live, inactivated or mutant bacteria. These data suggest that streptolysins or other secreted bacterial products are not required for the inflammatory responses induced by GAS. Our data indicate that inhibition of dynamin-dependent endocytosis in macrophages attenuates the induction of IL-1β, TNF-α, interferon (IFN)-β and CXCL-10 mRNAs. We also observed that pro-IL-1β protein was expressed and efficiently cleaved into mature-IL-1β via inflammasome activation after bacterial stimulation. Furthermore, we demonstrate that multiple signalling pathways are involved in GAS-stimulated inflammatory responses in human macrophages.
Collapse
Affiliation(s)
- S Latvala
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | |
Collapse
|
13
|
Ha SD, Han CY, Reid C, Kim SO. HDAC8-mediated epigenetic reprogramming plays a key role in resistance to anthrax lethal toxin-induced pyroptosis in macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 193:1333-43. [PMID: 24973453 DOI: 10.4049/jimmunol.1400420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Macrophages pre-exposed to a sublethal dose of anthrax lethal toxin (LeTx) are refractory to subsequent high cytolytic doses of LeTx, termed toxin-induced resistance (TIR). A small population of TIR cells (2-4%) retains TIR characteristics for up to 5-6 wk. Through studying these long-term TIR cells, we found that a high level of histone deacetylase (HDAC)8 expression was crucial for TIR. Knocking down or inhibition of HDAC8 by small interfering RNAs or the HDAC8-specific inhibitor PCI-34051, respectively, induced expression of the mitochondrial death genes Bcl2 adenovirus E1B 19 kDa-interacting protein 3 (BNIP3), BNIP3-like and metastatic lymph node 64, and resensitized TIR cells to LeTx. Among multiple histone acetylations, histone H3 lysine 27 (H3K27) acetylation was most significantly decreased in TIR cells in an HDAC8-dependent manner, and the association of H3K27 acetylation with the genomic regions of BNIP3 and metastatic lymph node 64, where HDAC8 was recruited to, was diminished in TIR cells. Furthermore, overexpression of HDAC8 or knocking down the histone acetyltransferase CREB-binding protein/p300, known to target H3K27, rendered wild-type cells resistant to LeTx. As in RAW264.7 cells, primary bone marrow-derived macrophages exposed to a sublethal dose of LeTx were resistant to LeTx in an HDAC8-dependent manner. Collectively, this study demonstrates that epigenetic reprogramming mediated by HDAC8 plays a key role in determining the susceptibility of LeTx-induced pyroptosis in macrophages.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Chae Young Han
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Chantelle Reid
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Sung Ouk Kim
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6G 2V4, Canada
| |
Collapse
|
14
|
Kanno S, Hirano S, Chiba S, Takeshita H, Nagai T, Takada M, Sakamoto K, Mukai T. The role of Rho-kinases in IL-1β release through phagocytosis of fibrous particles in human monocytes. Arch Toxicol 2014; 89:73-85. [DOI: 10.1007/s00204-014-1238-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
|
15
|
Moquin A, Hutter E, Choi AO, Khatchadourian A, Castonguay A, Winnik FM, Maysinger D. Caspase-1 activity in microglia stimulated by pro-inflammagen nanocrystals. ACS NANO 2013; 7:9585-9598. [PMID: 24107183 DOI: 10.1021/nn404473g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although caspase-1 is a key participant in inflammation, there is no sensitive assay to measure its enzymatic activity in real time in cells or animals. Here we describe a nanosensor for caspase-1 ratiometric measurements, consisting of a rhodamine-labeled, caspase-1 cleavable peptide linked to quantum dots (QDs). Microglia cells were stimulated by lipopolysaccharide (LPS) and by hybrid nanoparticles LPS-QDs. These stimuli activated caspase-1 in microglia monolayers and in the mouse brain, while a selected caspase inhibitor markedly reduced it. LPS-QDs entered into the lysosomal compartment and led to an enlargement of these cellular organelles in the exposed microglia. Both lysosomal swelling and mitochondrial impairment contributed to caspase-1 activation and to the consequent interleukin-1β release. The results from these studies highlight how the unique properties of QDs can be used to create versatile biotools in the study of inflammation in real time in vivo.
Collapse
Affiliation(s)
- Alexandre Moquin
- Faculty of Pharmacy and ‡Department of Chemistry, Université de Montréal , CP 6128 Succursale Centre Ville, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat Rev Immunol 2013; 13:199-206. [PMID: 23411798 DOI: 10.1038/nri3398] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A fundamental question regarding any immune system is how it can discriminate between pathogens and non-pathogens. Here, we discuss how this discrimination can be mediated by a surveillance system distinct from pattern-recognition receptors that recognize conserved microbial patterns. It can be based instead on the ability of the host to sense perturbations in host cells induced by bacterial toxins or 'effectors' that are encoded by pathogenic microorganisms. Such 'effector-triggered immunity' was previously demonstrated mainly in plants, but recent data confirm that animals can also use this strategy.
Collapse
|
17
|
Abstract
The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca(2+) and an efflux of cytoplasmic proteins. In order to ensure cellular survival, lesions have to be identified, plugged and removed from the membrane. The Ca(2+)-driven fusion of lysosomes with the plasma membrane leads to hydrolysis of sphingomyelin by acid sphingomyelinase and a formation of ceramide platforms in the outer leaflet of the lipid bilayer. We propose that the negative curvature, promoted by tighter packing of lipids in the outer layer, leads to an inward vesiculation of the damaged area for its endocytotic uptake and internal degradation. In contrast, the activation of neutral sphingomyelinase triggers the production of ceramide within the inner leaflet of the lipid bilayer, thereby promoting an outward curvature, which enables the cell to shed the membrane-containing toxin pore into the extracellular space. In this process, ceramide is supported by members of the annexin protein family which act as Ca(2+) sensors and as membrane fusion agents.
Collapse
Affiliation(s)
- Annette Draeger
- Department of Cell Biology, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
18
|
von Hoven G, Kloft N, Neukirch C, Ebinger S, Bobkiewicz W, Weis S, Boller K, Janda KD, Husmann M. Modulation of translation and induction of autophagy by bacterial exoproducts. Med Microbiol Immunol 2012; 201:409-18. [PMID: 22991039 PMCID: PMC3470817 DOI: 10.1007/s00430-012-0271-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 12/16/2022]
Abstract
Autophagy is a catabolic process of paramount importance for cellular homeostasis during starvation. Generally, autophagy and translation are inversely regulated. Many kinds of stress lead to attenuation of translation via phosphorylation of eukaryotic translation initiation factor alpha (eIF2α). This response is conserved from yeast to man and can be either protective or detrimental depending on strength and duration of stress, and additional factors. During starvation or viral infection, phosphorylation of eIF2α is required for induction of autophagy. As exemplified here by α-hemolysin, a small pore-forming toxin (PFT) of Staphylococcus aureus and (S)-3-oxo-C12-homoserine lactone [(S)-3-oxo-C12-HSL], a quorum-sensing hormone of Pseudomonas aeruginosa, bacterial exoproducts may also impact translation and autophagy. Thereby, PFT and (S)-3-oxo-C12-HSL act differentially. Damage of the plasma membrane by PFT causes efflux of potassium, which leads to amino acid starvation and energy loss. This triggers amino acid-sensitive eIF2α-kinase GCN2, as well as energy sensor AMPK, and deactivates mTORC1. The output of this response, that is, transient metabolic reprogramming is an essential part of a defense program which enables cells to survive attack by a pore-forming agent. Thus, nutrient/energy sensors serve as sentinels of plasma membrane integrity. In contrast to PFT, (S)-3-oxo-C12-HSL does not cause acute loss of ATP or activation of GCN2, but also triggers phosphorylation of eIF2α and inhibits translation. This response appears not to depend on efflux of potassium and requires eIF2α-kinase PKR. Like α-toxin, (S)-3-oxo-C12-HSL increases lipidation of LC3 and accumulation of autophagosomes in cells. Apart from directly affecting host-cell viability, bacterial exoproducts might galvanize bystander cells to prepare for close combat with microbial offenders or inadvertently accommodate some of them.
Collapse
Affiliation(s)
- Gisela von Hoven
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kloft N, Neukirch C, von Hoven G, Bobkiewicz W, Weis S, Boller K, Husmann M. A subunit of eukaryotic translation initiation factor 2α-phosphatase (CreP/PPP1R15B) regulates membrane traffic. J Biol Chem 2012; 287:35299-35317. [PMID: 22915583 DOI: 10.1074/jbc.m112.379883] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The constitutive reverter of eIF2α phosphorylation (CReP)/PPP1r15B targets the catalytic subunit of protein phosphatase 1 (PP1c) to phosphorylated eIF2α (p-eIF2α) to promote its dephosphorylation and translation initiation. Here, we report a novel role and mode of action of CReP. We found that CReP regulates uptake of the pore-forming Staphylococcus aureus α-toxin by epithelial cells. This function was independent of PP1c and translation, although p-eIF2α was involved. The latter accumulated at sites of toxin attack and appeared conjointly with α-toxin in early endosomes. CReP localized to membranes, interacted with phosphomimetic eIF2α, and, upon overexpression, induced and decorated a population of intracellular vesicles, characterized by accumulation of N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a lipid marker of exosomes and intralumenal vesicles of multivesicular bodies. By truncation analysis, we delineated the CReP vesicle induction/association region, which comprises an amphipathic α-helix and is distinct from the PP1c interaction domain. CReP was also required for exocytosis from erythroleukemia cells and thus appears to play a broader role in membrane traffic. In summary, the mammalian traffic machinery co-opts p-eIF2α and CReP, regulators of translation initiation.
Collapse
Affiliation(s)
- Nicole Kloft
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Claudia Neukirch
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Gisela von Hoven
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Wiesia Bobkiewicz
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Silvia Weis
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Klaus Boller
- Department of Immunology, Morphology Section, Paul Ehrlich-Institute, 63225 Langen, Germany
| | - Matthias Husmann
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany.
| |
Collapse
|
20
|
Kumar S, Ingle H, Prasad DVR, Kumar H. Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol 2012; 39:229-46. [DOI: 10.3109/1040841x.2012.706249] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
LC3-Associated Phagocytosis (LAP): Connections with Host Autophagy. Cells 2012; 1:396-408. [PMID: 24710482 PMCID: PMC3901117 DOI: 10.3390/cells1030396] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 01/03/2023] Open
Abstract
Autophagy is an intracellular degradative process with a number of roles, one of which can be the protection of eukaryotic cells from invading microbes. Microtubule-associated protein light-chain 3 (LC3) is a key autophagy-related protein that is recruited to the double-membrane autophagosome responsible for sequestering material intended for delivery to lysosomes. GFP-LC3 is widely used as a marker of autophagosome formation as denoted by the formation of green puncta when viewed by fluorescence microscopy. Recently, it has been demonstrated that LC3 can be recruited to other membranes including single-membrane phagosomes, in a process termed LC3-associated phagocytosis (LAP). Thus, the observation of green puncta in cells can no longer, by itself, be taken as evidence of autophagy. This review will clarify those features of LAP which serve to distinguish it from autophagy and that make connections with host autophagic responses in terms of infection by microbial pathogens. More specifically, it will refer to concurrent studies of the mechanism by which LAP is triggered in comparison to autophagy.
Collapse
|
22
|
Blander JM, Sander LE. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat Rev Immunol 2012; 12:215-25. [PMID: 22362354 DOI: 10.1038/nri3167] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pattern recognition by the innate immune system enables the detection of microorganisms, but how the level of microbial threat is evaluated - a process that is crucial for eliciting measured antimicrobial responses with minimal inflammatory tissue damage - is less well understood. New evidence has shown that features of microbial viability can be detected by the immune system and thereby induce robust responses that are not warranted for dead microorganisms. Here, we propose five immune checkpoints that, as defined here, collectively determine the gravity of microbial encounters.
Collapse
Affiliation(s)
- J Magarian Blander
- Mount Sinai School of Medicine, Immunology Institute, Department of Medicine, 1425 Madison Avenue, New York, New York 10029, USA.
| | | |
Collapse
|
23
|
Costa A, Gupta R, Signorino G, Malara A, Cardile F, Biondo C, Midiri A, Galbo R, Trieu-Cuot P, Papasergi S, Teti G, Henneke P, Mancuso G, Golenbock DT, Beninati C. Activation of the NLRP3 inflammasome by group B streptococci. THE JOURNAL OF IMMUNOLOGY 2012; 188:1953-60. [PMID: 22250086 DOI: 10.4049/jimmunol.1102543] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Group B Streptococcus (GBS) is a frequent agent of life-threatening sepsis and meningitis in neonates and adults with predisposing conditions. We tested the hypothesis that activation of the inflammasome, an inflammatory signaling complex, is involved in host defenses against this pathogen. We show in this study that murine bone marrow-derived conventional dendritic cells responded to GBS by secreting IL-1β and IL-18. IL-1β release required both pro-IL-1β transcription and caspase-1-dependent proteolytic cleavage of intracellular pro-IL-1β. Dendritic cells lacking the TLR adaptor MyD88, but not those lacking TLR2, were unable to produce pro-IL-1β mRNA in response to GBS. Pro-IL-1β cleavage and secretion of the mature IL-1β form depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) sensor and the apoptosis-associated speck-like protein containing a caspase activation and recruitment domain adaptor. Moreover, activation of the NLRP3 inflammasome required GBS expression of β-hemolysin, an important virulence factor. We further found that mice lacking NLRP3, apoptosis-associated speck-like protein, or caspase-1 were considerably more susceptible to infection than wild-type mice. Our data link the production of a major virulence factor by GBS with the activation of a highly effective anti-GBS response triggered by the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Alessandro Costa
- Elie Metchnikoff Department, University of Messina, Messina I-98125, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Toxins secreted by bacteria can impact the host in a number of different ways. In some infections, toxins play a crucial and central role in pathogenesis (i.e., anthrax), while in other bacterial infections, the role of toxins is less understood. The cholesterol-dependent cytolysins (CDCs), of which streptolysin O is a prototype, are a class of pore-forming toxins produced by many gram-positive bacteria and have only been studied in a few experimental infection models. Our laboratory has demonstrated that CDCs have effects on macrophages that are both pro- and anti-inflammatory. Here, we review evidence that CDCs promote inflammation by driving secretion of IL-1β and HMGB-1 from macrophages in a NLRP3-dependent manner, while also causing shedding of membrane microvesicles from cells that can interact with macrophages and inhibit TNF-α release. CDCs thus impact macrophage function in ways that may be both beneficial and detrimental to the host.
Collapse
|
25
|
Boyer L, Magoc L, Dejardin S, Cappillino M, Paquette N, Hinault C, Charriere GM, Ip WKE, Fracchia S, Hennessy E, Erturk-Hasdemir D, Reichhart JM, Silverman N, Lacy-Hulbert A, Stuart LM. Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway. Immunity 2011; 35:536-49. [PMID: 22018470 PMCID: PMC3258503 DOI: 10.1016/j.immuni.2011.08.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 07/14/2011] [Accepted: 08/02/2011] [Indexed: 01/17/2023]
Abstract
Although infections with virulent pathogens often induce a strong inflammatory reaction, what drives the increased immune response to pathogens compared to nonpathogenic microbes is poorly understood. One possibility is that the immune system senses the level of threat from a microorganism and augments the response accordingly. Here, focusing on cytotoxic necrotizing factor 1 (CNF1), an Escherichia coli-derived effector molecule, we showed the host indirectly sensed the pathogen by monitoring for the effector that modified RhoGTPases. CNF1 modified Rac2, which then interacted with the innate immune adaptors IMD and Rip1-Rip2 in flies and mammalian cells, respectively, to drive an immune response. This response was protective and increased the ability of the host to restrict pathogen growth, thus defining a mechanism of effector-triggered immunity that contributes to how metazoans defend against microbes with pathogenic potential.
Collapse
Affiliation(s)
- Laurent Boyer
- Developmental Immunology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Lorin Magoc
- Developmental Immunology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Stephanie Dejardin
- Developmental Immunology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael Cappillino
- Developmental Immunology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Nicholas Paquette
- Developmental Immunology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Charlotte Hinault
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Guillaume M. Charriere
- Developmental Immunology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - WK Eddie Ip
- Developmental Immunology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Shannon Fracchia
- Developmental Immunology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Elizabeth Hennessy
- Developmental Immunology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Deniz Erturk-Hasdemir
- Division of Infectious Disease, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jean-Marc Reichhart
- Université de Strasbourg, IBMC UPR 9022 CNRS, 15, rue René Descartes, 67084 - Strasbourg Cedex, FRANCE
| | - Neal Silverman
- Division of Infectious Disease, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Adam Lacy-Hulbert
- Developmental Immunology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Lynda M. Stuart
- Developmental Immunology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
26
|
Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM. Non-canonical inflammasome activation targets caspase-11. Nature 2011; 479:117-21. [PMID: 22002608 DOI: 10.1038/nature10558] [Citation(s) in RCA: 2001] [Impact Index Per Article: 142.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/13/2011] [Indexed: 12/11/2022]
Abstract
Caspase-1 activation by inflammasome scaffolds comprised of intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and the adaptor ASC is believed to be essential for production of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 during the innate immune response. Here we show, with C57BL/6 Casp11 gene-targeted mice, that caspase-11 (also known as caspase-4) is critical for caspase-1 activation and IL-1β production in macrophages infected with Escherichia coli, Citrobacter rodentium or Vibrio cholerae. Strain 129 mice, like Casp11(-/-) mice, exhibited defects in IL-1β production and harboured a mutation in the Casp11 locus that attenuated caspase-11 expression. This finding is important because published targeting of the Casp1 gene was done using strain 129 embryonic stem cells. Casp1 and Casp11 are too close in the genome to be segregated by recombination; consequently, the published Casp1(-/-) mice lack both caspase-11 and caspase-1. Interestingly, Casp11(-/-) macrophages secreted IL-1β normally in response to ATP and monosodium urate, indicating that caspase-11 is engaged by a non-canonical inflammasome. Casp1(-/-)Casp11(129mt/129mt) macrophages expressing caspase-11 from a C57BL/6 bacterial artificial chromosome transgene failed to secrete IL-1β regardless of stimulus, confirming an essential role for caspase-1 in IL-1β production. Caspase-11 rather than caspase-1, however, was required for non-canonical inflammasome-triggered macrophage cell death, indicating that caspase-11 orchestrates both caspase-1-dependent and -independent outputs. Caspase-1 activation by non-canonical stimuli required NLRP3 and ASC, but caspase-11 processing and cell death did not, implying that there is a distinct activator of caspase-11. Lastly, loss of caspase-11 rather than caspase-1 protected mice from a lethal dose of lipopolysaccharide. These data highlight a unique pro-inflammatory role for caspase-11 in the innate immune response to clinically significant bacterial infections.
Collapse
Affiliation(s)
- Nobuhiko Kayagaki
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sauter KAD, Wood LJ, Wong J, Iordanov M, Magun BE. Doxorubicin and daunorubicin induce processing and release of interleukin-1β through activation of the NLRP3 inflammasome. Cancer Biol Ther 2011; 11:1008-16. [PMID: 21464611 DOI: 10.4161/cbt.11.12.15540] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Anthracyclines including doxorubicin and daunorubicin are commonly used for the treatment of both hematologic and solid tumors. Dose related adverse effects often limit the effectiveness of anthracyclines in chemotherapy. Drug-related systemic inflammation mediated by interleukin-1beta (IL-1β) has been implicated in contributing to these adverse effects. The molecular mechanisms underlying anthracycline-mediated expression and IL-1β release are not understood. Elucidating the molecular basis by which anthracyclines upregulate IL-1β activity may present opportunities to decrease the inflammatory consequences of these drugs. Here we demonstrate that doxorubicin induces a systemic increase in IL-1β and other inflammatory cytokines, chemokines and growth factors including TNF-α, IL-6, CXCL1/Gro-α, CCL2/MCP-1, granulocyte colony stimulating factor (GCSF), and CXCL10/IP-10. Studies with IL-1R-deficient mice demonstrate that IL-1 signaling plays a role in doxorubicin-induced increases in IL-6 and GCSF. In vitro studies with doxorubicin and daunorubicin failed to induce expression of proIL-1β in unprimed murine bone marrow-derived macrophages (BMDM) but enhanced the expression of proIL-1β in BMDM that had previously been primed with LPS. Furthermore, doxorubicin and daunorubicin induced the processing and release of IL-1β from LPS-primed BMDM by providing danger signals that lead to assembly and activation of the inflammasome. The release of IL-1β required the expression of ASC, caspase-1, and NLRP3, demonstrating that doxorubicin and daunorubicin-induced inflammation is mediated by the NLRP3 inflammasome. As with other agents that induce activation of the NLRP3 inflammasome, the ability of doxorubicin to provide proinflammatory danger signals was inhibited by co-treatment of cells with ROS inhibitors or by incubating cells in high extracellular potassium. These studies suggest that proinflammatory responses to anthracycline chemotherapeutic agents are mediated, at least in part, by promoting the processing and release of IL-1β, and that some of the adverse inflammatory consequences that complicate chemotherapy with anthracyclines may be reduced by suppressing the actions of IL-1β.
Collapse
Affiliation(s)
- Kristin A D Sauter
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
The human interface with the microbial world has so far largely been considered through the somewhat restrictive angle of host-pathogen interactions resulting in disease. It has consequently largely ignored the daily symbiosis with the microbiota, an ensemble of symbiotic microorganisms engaged in a commensal, and for some of them mutualistic, interaction. This microbiota heavily populates essential surfaces such as the oral and intestinal cavity, the upper respiratory tract, the vagina, and the skin. Host response to the pathogens is characterized by quick recognition combined with strong innate (i.e., inflammatory) and adaptive immune responses, causing microbial eradication often at the cost of significant tissue damage. Response to the symbiotic microbiota is characterized by a process called tolerance that encompasses a complex integration of microbial recognition and tightly controlled innate (i.e., physiological inflammation) and adaptive immune responses. This dichotomy in host response is critical at the gut mucosal surface that is massively colonized by a diverse population of bacteria. The host is therefore permanently facing the challenge of discriminating among symbiotic and pathogenic bacteria in order to offer an adapted response. This asks the fundamental existential question: "to be or not to be… a pathogen." This review has attempted to consider this question from the host angle. What do host mucosal sensing systems see in the bacteria to which they become exposed to establish proper discrimination? A new facet of medicine resides in the dysfunction of this complex balance that has likely forged the complexity of the immune system.
Collapse
|
29
|
Jéru I, Amselem S. [Inflammasome and interleukin 1]. Rev Med Interne 2010; 32:218-24. [PMID: 20541850 DOI: 10.1016/j.revmed.2010.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/07/2010] [Accepted: 02/06/2010] [Indexed: 11/27/2022]
Abstract
The innate immune system, which corresponds to the first line of defense against microorganisms, brings into play cell surface and intracellular sensors that detect pathogen ligands and danger signals. Among them, NOD-like receptors (NLRs) are intracellular proteins involved in inflammatory signaling pathways. NLRs are part of multiprotein complexes, called inflammasomes, which usually bring into play a NLR, an adaptor protein called ASC, and the pro-inflammatory caspase 1 protein. The activation of inflammasome by different stimuli triggers the proteolytic cleavage of pro-caspase 1 into active caspase 1, which, in turn, converts pro-interleukin 1β (pro-IL1β) into the mature IL1β. IL1β plays a crucial role in systemic inflammation due to its ability to induce the expression of a large panel of pro-inflammatory genes and to act on various target organs. Mutations in NLR genes are responsible for several autoinflammatory and/or autoimmune disorders. For example, mutations in NLRP3, which are responsible for three Mendelian autoinflammatory disorders called cryopyrinopathies, lead to inflammasome autoactivation. Peripheral blood mononuclear cells from patients carrying NLRP3 mutations secrete high levels of IL1β; in many patients presenting with autoinflammatory disorders, blocking IL1 activity by anti-IL1 therapy significantly improves their manifestations. The mechanisms leading to IL1β hypersecretion in other autoinflammatory disorders remain to be identified, as is the case for the role of each inflammasome in vivo. Better knowledge in this field should also contribute to the development of new anti-inflammatory treatments.
Collapse
Affiliation(s)
- I Jéru
- Inserm, U933, hôpital Armand-Trousseau, 26, avenue du Dr. Arnold-Netter, 75571 Paris cedex 12, France.
| | | |
Collapse
|
30
|
Franchi L, Muñoz-Planillo R, Reimer T, Eigenbrod T, Núñez G. Inflammasomes as microbial sensors. Eur J Immunol 2010; 40:611-5. [PMID: 20201013 DOI: 10.1002/eji.200940180] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Members of the Nod-like receptor family and the adaptor ASC assemble into multiprotein platforms, termed inflammasomes, to mediate the activation of caspase-1 and subsequent secretion of IL-1beta and IL-18. Recent studies have identified microbial and endogenous molecules as well as possible mechanisms involved in inflammasome activation.
Collapse
Affiliation(s)
- Luigi Franchi
- University of Michigan Medical School, Department of Pathology and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
31
|
Bostanci N, Emingil G, Saygan B, Turkoglu O, Atilla G, Curtis MA, Belibasakis GN. Expression and regulation of the NALP3 inflammasome complex in periodontal diseases. Clin Exp Immunol 2009; 157:415-22. [PMID: 19664151 DOI: 10.1111/j.1365-2249.2009.03972.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Periodontitis is an infectious process characterized by inflammation affecting the supporting structures of the teeth. Porphyromonas gingivalis is a major oral bacterial species implicated in the pathogenesis of periodontitis. Processing of interleukin (IL)-1 family cytokines is regulated by an intracellular innate immune response system, known as the NALP3 [nacht domain-, leucine-rich repeat-, and pyrin domain (PYD)-containing protein 3] inflammasome complex. The aim of the present study was to investigate by quantitative real-time polymerase chain reaction (PCR) the mRNA expression of NALP3, its effector molecule apoptosis associated speck-like protein (ASC), its putative antagonist NLRP2 (NLR family, PYD-containing protein 2), IL-1beta and IL-18 (i) in gingival tissues from patients with gingivitis (n = 10), chronic periodontitis (n = 18), generalized aggressive periodontitis (n = 20), as well as in healthy subjects (n = 20), (ii) in vitro in a human monocytic cell line (Mono-Mac-6), in response to P. gingivalis challenge for 6 h. The clinical data indicate that NALP3 and NLRP2, but not ASC, are expressed at significantly higher levels in the three forms of inflammatory periodontal disease compared to health. Furthermore, a positive correlation was revealed between NALP3 and IL-1beta or IL-18 expression levels in these tissues. The in vitro data demonstrate that P. gingivalis deregulates the NALP3 inflammasome complex in Mono-Mac-6 cells by enhancing NALP3 and down-regulating NLRP2 and ASC expression. In conclusion, this study reveals a role for the NALP3 inflammasome complex in inflammatory periodontal disease, and provides a mechanistic insight to the host immune responses involved in the pathogenesis of the disease by demonstrating the modulation of this cytokine-signalling pathway by bacterial challenge.
Collapse
Affiliation(s)
- N Bostanci
- Department of Periodontology, University College London Eastman Dental Institute, London WC1X 8LD, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Harder J, Franchi L, Muñoz-Planillo R, Park JH, Reimer T, Núñez G. Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor. THE JOURNAL OF IMMUNOLOGY 2009; 183:5823-9. [PMID: 19812205 DOI: 10.4049/jimmunol.0900444] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages play a crucial role in the innate immune response against the human pathogen Streptococcus pyogenes, yet the innate immune response against the bacterium is poorly characterized. In the present study, we show that caspase-1 activation and IL-1beta secretion were induced by live, but not killed, S. pyogenes, and required expression of the pore-forming toxin streptolysin O. Using macrophages deficient in inflammasome components, we found that both NLR family pyrin domain-containing 3 (Nlrp3) and apoptosis-associated speck-like protein (Asc) were crucial for caspase-1 activation and IL-1beta secretion, but dispensable for pro-IL-1beta induction, in response to S. pyogenes infection. Conversely, macrophages deficient in the essential TLR adaptors Myd88 and Trif showed normal activation of caspase-1, but impaired induction of pro-IL-1beta and secretion of IL-1beta. Notably, activation of caspase-1 by TLR2 and TLR4 ligands in the presence of streptolysin O required Myd88/Trif, whereas that induced by S. pyogenes was blocked by inhibition of NF-kappaB. Unlike activation of the Nlrp3 inflammasome by TLR ligands, the induction of caspase-1 activation by S. pyogenes did not require exogenous ATP or the P2X7R. In vivo experiments revealed that Nlrp3 was critical for the production of IL-1beta but was not important for survival in a mouse model of S. pyogenes peritoneal infection. These results indicate that caspase-1 activation in response to S. pyogenes infection requires NF-kappaB and the virulence factor streptolysin O, but proceeds independently of P2X7R and TLR signaling.
Collapse
Affiliation(s)
- Jürgen Harder
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
33
|
Campoy E, Colombo MI. Autophagy in intracellular bacterial infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1465-77. [DOI: 10.1016/j.bbamcr.2009.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/06/2009] [Accepted: 03/10/2009] [Indexed: 12/24/2022]
|
34
|
Franchi L, Warner N, Viani K, Nuñez G. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 2009; 227:106-28. [PMID: 19120480 DOI: 10.1111/j.1600-065x.2008.00734.x] [Citation(s) in RCA: 648] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleotide oligomerization domain (NOD)-like receptors (NLRs) are a specialized group of intracellular proteins that play a critical role in the regulation of the host innate immune response. NLRs act as scaffolding proteins that assemble signaling platforms that trigger nuclear factor-kappaB and mitogen-activated protein kinase signaling pathways and control the activation of inflammatory caspases. Importantly, mutations in several members of the NLR family have been linked to a variety of inflammatory diseases consistent with these molecules playing an important role in host-pathogen interactions and the inflammatory response. In this review, we focus on the role of Nod1 and Nod2 in host defense and in particular discuss recent finding regarding the role of Nlrc4, Nlpr1, and Nlrp3 inflammasomes in caspase-1 activation and subsequent release of proinflammatory cytokines such as interleukin-1 beta.
Collapse
Affiliation(s)
- Luigi Franchi
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
35
|
Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 2009; 6:10-21. [PMID: 19616762 PMCID: PMC2777727 DOI: 10.1016/j.chom.2009.06.007] [Citation(s) in RCA: 401] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/19/2009] [Accepted: 06/19/2009] [Indexed: 01/01/2023]
Abstract
The dominant conceptual framework for understanding innate immunity has been that host cells respond to evolutionarily conserved molecular features of pathogens called pathogen-associated molecular patterns (PAMPs). Here, we propose that PAMPs should be understood in the context of how they are naturally presented by pathogens. This can be experimentally challenging, since pathogens, almost by definition, bypass host defense. Nevertheless, in this review, we explore the idea that the immune system responds to PAMPs in the context of additional signals that derive from common "patterns of pathogenesis" employed by pathogens to infect, multiply within, and spread among their hosts.
Collapse
Affiliation(s)
- Russell E Vance
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
36
|
NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 2009; 21:199-207. [PMID: 19539499 DOI: 10.1016/j.smim.2009.05.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 05/06/2009] [Indexed: 12/19/2022]
Abstract
The host response against diverse bacterial pathogens involves activation of specialized immune cells and elaboration of pro-inflammatory cytokines that help to coordinate appropriate host defense. Members of the interleukin-1 (IL-1) cytokine family, IL-1beta and IL-18, are central players in this process. Extracellular release of the mature, active form of these cytokines requires their processing by the cysteine protease caspase-1, which therefore serves as a key regulator of the inflammatory response. In addition to its role in secretion of pro-inflammatory cytokines, caspase-1 is also required for a form of cell death, recently termed pyroptosis, that occurs in macrophages infected by certain bacterial pathogens. Caspase-1 itself is synthesized as a pro-enzyme, which must first be activated by autocatalytic cleavage. This activation requires recruitment of caspase-1 into multiprotein complexes known as inflammasomes. The Nod-like receptor (NLR) family of cytosolic proteins play an important role in detecting inflammatory stimuli and subsequently mediate inflammasome assembly. A common feature of NLR proteins that trigger inflammasome assembly in response to bacterial infection is that they appear to sense membrane perturbation or delivery of bacterial components into the cytosol through bacterial pore-forming toxins or bacterial secretion systems. This review will discuss the recent developments regarding caspase-1 activation in response to bacterial infection, cross-talk between caspase-1 and other pathways involved in regulating cell death, and recent findings that a number of bacterial pathogens possess mechanisms to inhibit caspase-1 activation.
Collapse
|
37
|
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1beta and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
38
|
Kankkunen P, Rintahaka J, Aalto A, Leino M, Majuri ML, Alenius H, Wolff H, Matikainen S. Trichothecene Mycotoxins Activate Inflammatory Response in Human Macrophages. THE JOURNAL OF IMMUNOLOGY 2009; 182:6418-25. [DOI: 10.4049/jimmunol.0803309] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 and 1=2#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
40
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 or(1=2)-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
41
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 and 1=2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
42
|
Martinon F, Mayor A, Tschopp J. The Inflammasomes: Guardians of the Body. Annu Rev Immunol 2009. [DOI: 10.1146/annurev.immunol.021908.132715 and 1=2-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Annick Mayor
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Jürg Tschopp
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
43
|
Abstract
Interleukin-1beta (IL-1beta) is a potent proinflammatory cytokine that initiates and amplifies a wide variety of effects associated with innate immunity and host responses to microbial invasion and tissue injury. Production and release of IL-1beta are stimulated by either pathogen-associated molecular pattern molecules (PAMPs) or damage-associated molecular pattern molecules (DAMPs) and involve several steps. IL-1beta is first synthesized as biologically inactive pro-IL-1beta, then processed into mature, biologically active IL-1beta by caspase-1, and subsequently released into the extracellular milieu. Whereas a large body of recent publications has greatly increased our knowledge of the mechanisms involved in production and processing of IL-1beta, we are only beginning to understand mechanisms of IL-1beta secretion. This review highlights the different models of a non-classical secretory pathway used by monocytes, macrophages and dendritic cells to export the leaderless cytokine IL-1beta. In particular, five different release mechanisms have been suggested, namely (i) exocytosis of IL-1beta-containing secretory lysosomes, (ii) release of IL-1beta from shed plasma membrane microvesicles, (iii) fusion of multivesicular bodies with the plasma membrane and subsequent release of IL-1beta-containing exosomes, (iv) export of IL-1beta through the plasma membrane using specific membrane transporters, and (v) release of IL-1beta upon cell lysis. Reasons for the diversity of IL-1beta secretory pathways remain to be elucidated. A better understanding of IL-1beta release mechanisms is of great therapeutic relevance and may help in the development of strategies aimed at reducing the severity of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Claudia Eder
- Division of Basic Medical Sciences, St. George's, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK.
| |
Collapse
|
44
|
Gekara NO, Dietrich N, Lyszkiewicz M, Lienenklaus S, Weiss S. Signals triggered by a bacterial pore-forming toxin contribute to toll-like receptor redundancy in gram-positive bacterial recognition. J Infect Dis 2009; 199:124-33. [PMID: 19032107 DOI: 10.1086/595562] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Toll-like receptor (TLR) 2 is the principal recognition receptor for gram-positive microbes. However, in some gram-positive bacterial infections, TLR2 is dispensable. One of the outstanding questions regarding host-bacteria interactions is why TLR2 is essential in some infections but dispensable in others. METHODS We used a combination of bacterial plating, flow cytometry, enzyme-linked immunosorbent assay, and reverse-transcriptase polymerase chain reaction to analyze the inflammatory responses induced by Listeria monocytogenes and its toxin listeriolysin O (LLO) in vitro and in vivo. We analyzed wild-type, TLR2(-/-)-, TLR4(-/-)-, MyD88(-/-)-, interleukin (IL)-1beta(-/-)-, and IL-18(-/-)-deficient mice and the bone marrow-derived mast cells obtained from these respective groups. RESULTS TLR2(-/-) mice had unaltered L. monocytogenes clearance and did not experience impairment of cytokine/chemokine induction and neutrophil mobilization by L. monocytogenes or purified LLO, but they were unresponsive to the LLO-deficient mutant L. monocytogenes (LmDeltahly). We show that L. monocytogenes and LLO mediate such responses in part via interleukin (IL)-1beta and IL-18-MyD88 pathways. CONCLUSIONS The results illustrate that signals triggered by LLO contribute to TLR2 redundancy in recognition of L. monocytogenes. Under normal conditions, multiple and, sometimes, redundant pathways cooperate to induce a rapid antimicrobial defense. When one signaling pathway-in this case, TLR2-is removed from the system, the other pathways are still capable of mounting a sufficient response to ensure survival of the host.
Collapse
Affiliation(s)
- Nelson O Gekara
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
45
|
Ichinohe T, Iwasaki A, Hasegawa H. Innate sensors of influenza virus: clues to developing better intranasal vaccines. Expert Rev Vaccines 2008; 7:1435-45. [PMID: 18980544 DOI: 10.1586/14760584.7.9.1435] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mucosal immunity acquired by natural infection with influenza viruses at the respiratory tract is more effective and cross-protective against subsequent variant virus infection than systemic immunity induced by parenteral immunization with inactivated vaccines. To develop an effective influenza vaccine, it is beneficial to mimic the process of natural infection that bridges innate and adaptive immune systems. The innate immune system that recognizes influenza virus infection consists of several classes of pattern-recognition receptors, including the Toll-like receptors, the retinoic acid-inducible gene-I-like receptors and the NOD-like receptors. Here, we review our current understanding of the mechanism of innate recognition of influenza and how the signals emanating from the innate sensors control adaptive immunity. Further, we discuss the potential roles of these receptors in developing intranasal influenza vaccines.
Collapse
Affiliation(s)
- Takeshi Ichinohe
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
46
|
Levin TC, Wickliffe KE, Leppla SH, Moayeri M. Heat shock inhibits caspase-1 activity while also preventing its inflammasome-mediated activation by anthrax lethal toxin. Cell Microbiol 2008; 10:2434-46. [PMID: 18671821 DOI: 10.1111/j.1462-5822.2008.01220.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Anthrax lethal toxin (LT) rapidly kills macrophages from certain mouse strains in a mechanism dependent on the breakdown of unknown protein(s) by the proteasome, formation of the Nalp1b (NLRP1b) inflammasome and subsequent activation of caspase-1. We report that heat-shocking LT-sensitive macrophages rapidly protects them against cytolysis by inhibiting caspase-1 activation without upstream effects on LT endocytosis or cleavage of the toxin's known cytosolic substrates (mitogen-activated protein kinases). Heat shock protection against LT occurred through a mechanism independent of de novo protein synthesis, HSP90 activity, p38 activation or proteasome inhibition and was downstream of mitogen-activated protein kinase cleavage and degradation of an unknown substrate by the proteasome. The heat shock inhibition of LT-mediated caspase-1 activation was not specific to the Nalp1b (NLRP1b) inflammasome, as heat shock also inhibited Nalp3 (NLRP3) inflammasome-mediated caspase-1 activation in macrophages. We found that heat shock induced pro-caspase-1 association with a large cellular complex that could prevent its activation. Additionally, while heat-shocking recombinant caspase-1 did not affect its activity in vitro, lysates from heat-shocked cells completely inhibited recombinant active caspase-1 activity. Our results suggest that heat shock inhibition of active caspase-1 can occur independently of an inflammasome platform, through a titratable factor present within intact, functioning heat-shocked cells.
Collapse
Affiliation(s)
- Tera C Levin
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
47
|
Iacovache I, van der Goot FG, Pernot L. Pore formation: an ancient yet complex form of attack. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1611-23. [PMID: 18298943 DOI: 10.1016/j.bbamem.2008.01.026] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/03/2008] [Accepted: 01/04/2008] [Indexed: 02/07/2023]
Abstract
Bacteria, as well as higher organisms such as sea anemones or earthworms, have developed sophisticated virulence factors such as the pore-forming toxins (PFTs) to mount their attack against the host. One of the most fascinating aspects of PFTs is that they can adopt a water-soluble form at the beginning of their lifetime and become an integral transmembrane protein in the membrane of the target cells. There is a growing understanding of the sequence of events and the various conformational changes undergone by these toxins in order to bind to the host cell surface, to penetrate the cell membranes and to achieve pore formation. These points will be addressed in this review.
Collapse
Affiliation(s)
- Ioan Iacovache
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Station 15, Lausanne, Switzerland
| | | | | |
Collapse
|
48
|
Martinon F. Orchestration of pathogen recognition by inflammasome diversity: Variations on a common theme. Eur J Immunol 2007; 37:3003-6. [PMID: 17960661 DOI: 10.1002/eji.200737871] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Innate immunity is a crucial part of the immune system, capable of mounting specific host responses against distinct pathogens. An integral component of the innate immune system is a network of pathogen recognition receptors, which are present at the surface of the cell or in the cytoplasm. Nucleotide oligomerization domain (Nod)-like receptors form the largest known family of intracellular innate immune sensors of microbes and danger signals that initiate early host responses. Some Nod-like receptors, such as NALP, NAIP and IPAF, form molecular machines termed inflammasomes, which are involved in the activation of inflammatory cytokines such as IL-1beta and IL-18. The diversity and the role of the different types of inflammasomes remain poorly defined. In this issue of the European Journal of Immunology, it is reported that the Gram-negative human pathogen Pseudonomas aeruginosa specifically activates an IPAF inflammasome. This finding, in combination with other recently published reports, reveals how different pathogens engage distinct types of inflammasomes, further highlighting the diversity and plasticity of inflammasomes activation.
Collapse
Affiliation(s)
- Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA-02115, USA.
| |
Collapse
|