1
|
Zhang T, Peng H, Li Y, Zhou X, Pu W, Zhang Y, Du Z, Wei F, Li S, Zhou Q. Indirubin regulates T cell differentiation by promoting αVβ8 expression in bone marrow-derived dendritic cells to alleviate inflammatory bowel disease. Phytother Res 2023; 37:89-100. [PMID: 36161389 DOI: 10.1002/ptr.7595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
Inflammatory bowel disease is a disease that can invade the whole digestive tract and is accompanied by immune abnormalities. Immune dysfunction involving dendritic cells (DCs) and T cells is recognized as a key factor in diseases. Indirubin (IDRB) exerts antiinflammatory effects and can help in treating immune diseases. This study aimed to isolate bone marrow-derived dendritic cells (BMDCs) using lipopolysaccharide (LPS) to obtain mature DCs (mDCs). The expression of CD80, CD86, CD40, and MHC-II was detected using flow cytometry after treatment with IDRB. αVβ8 siRNA was used to knock down αVβ8 in mDCs, and the expression of CD80, CD86, CD40, and MHC-II was detected. Meanwhile, DCs were co-cultured with T cells. Then, T cell differentiation was detected using flow cytometry, and the cytokine levels were detected using enzyme-linked immunosorbent assay. The animal model of dextran sulfate sodium (DSS)-induced inflammatory bowel disease was established in mice. After intervention with IDRB and αVβ8 shRNA, the intestinal tissues were evaluated using H&E staining, disease activity index (DAI) score, and histological damage index, and the corresponding factors and cytokines to regulatory T cells (Treg) and Th17 were measured. The results showed that αVβ8 was expressed in immature DCs and mDCs. CD80, CD86, CD40, and MHC-II expression decreased after IDRB treatment in mDCs. Meanwhile, the expression of TNF-α and TGF-β also decreased after IDRB treatment. The effect of IDRB on the expression of CD80, CD86, CD40, MHC-II, TNF-α, and TGF-β in mDCs was reversed by αVβ8 siRNA. The Treg differentiation increased after IDRB treatment, while the differentiation of Th17 cells was inhibited. This effect of IDRB was reversed by mDCs after treatment with αVβ8 siRNA. In vivo experiments showed that IDRB alleviated the symptoms of inflammatory bowel disease in animals. Enteritis significantly reduced, and the effect of IDRB was reversed by αVβ8 shRNA. The results suggested that IDRB regulated the differentiation of T cells by mediating the maturation of BMDCs through αVβ8. This study confirmed the therapeutic effect of IDRB in inflammatory bowel disease and suggested that IDRB might serve as a potential drug.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hong Peng
- Department of Anorectal Surgery, Nanchong Central Hospital, The Second clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yunxiang Li
- Department of Urology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoqing Zhou
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wenfeng Pu
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Zhang
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhonghan Du
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fuxia Wei
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Siqing Li
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qian Zhou
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Švajger U, Rožman PJ. Synergistic Effects of Interferon-γ and Vitamin D 3 Signaling in Induction of ILT-3 highPDL-1 high Tolerogenic Dendritic Cells. Front Immunol 2019; 10:2627. [PMID: 31798578 PMCID: PMC6863965 DOI: 10.3389/fimmu.2019.02627] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
In the past, interferon (IFN)-γ and vitamin D3 (vit D3) have both been associated with induction of tolerogenic characteristics in human dendritic cells (DCs). Although there are only a few reports on interdependency of their actions, the interplay between IFN-γ and vit D3 has been clearly demonstrated in certain aspects of immune reactivity. Since both agents have been associated with regulation of immune responses, we set out to examine their functional and mechanistic interactions in context of principal regulators of immunity, the DCs. Combined treatment with vit D3 and IFN-γ caused an extensive expression of immunoglobulin-like transcript (ILT)-3 and programmed death ligand (PDL)-1 on γ/D3DCs, significantly greater than that caused by vit D3 alone. Such γ/D3DCs retained all general DC characteristics. After CD40 ligand-induced activation, they produced increased amounts of IL-10 with almost absent production of IL-12p70. On the other hand, the co-stimulatory potential of γ/D3DCs was weak, with cells possessing the capacity to inhibit CD4+ T cell, CD8+ T cell, as well as memory T cell responses. Naive CD4+ T cells stimulated with γ/D3DCs produced increased amounts of IL-10 with concomitantly low IFN-γ production, upon T cell receptor activation. Additionally, γ/D3DCs completely inhibited granzyme B expression by CD8+ T cells. The percentage of FoxP3-positive cells in co-cultures with naive CD4+ T cells was significantly higher where γ/D3DCs were used as stimulators compared to DCs treated with vit D3 alone and it could be partially reversed by PDL-1 blockade. Interestingly, γ/D3DCs were inefficient at suppressing mDC-induced CD4+ T cell proliferation, but were twice as effective as D3DCs at suppressing mDC-induced CD8+ T cell proliferation. Blockade of indoleamine-2,3-dioxygenase did not reduce the tolerogenic phenotype induced by IFN-γ and vit D3 treatment. Examination of signaling pathways activation revealed a tendency toward increased ERK and Akt phosphorylation in γ/D3DCs. Inhibition of MEK/ERK and PI3K/mTOR pathways significantly reduced the expression of ILT-3 and PDL-1 on γ/D3DCs. In summary, we present the first evidence for existing synergy between IFN-γ and vit D3 in shaping a unique tolerogenic DC activation state.
Collapse
Affiliation(s)
- Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
3
|
Qiu CC, Atencio AE, Gallucci S. Inhibition of fatty acid metabolism by etomoxir or TOFA suppresses murine dendritic cell activation without affecting viability. Immunopharmacol Immunotoxicol 2019; 41:361-369. [PMID: 31155984 PMCID: PMC10724852 DOI: 10.1080/08923973.2019.1616754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023]
Abstract
Objective: Dendritic cells (DCs) are important players in immunity against pathogens, but overactive DCs have been implicated in autoimmune diseases, like lupus, in which a paucity of targeted therapies remains. Recent research shows that DCs upregulate their immunometabolism when activating. We explored whether modulating fatty acid (FA) metabolism needed for oxidative phosphorylation can affect the activation of two main DC subsets. Material and methods: Sorted murine plasmacytoid DCs (pDCs) and conventional DCs (cDCs), generated in FLT3-L medium, were treated with etomoxir, an inhibitor of FA oxidation, or TOFA, an inhibitor of FA synthesis, then stimulated with TLR9 agonist CpGA. Surface activation markers and viability were analyzed by flow cytometry, cytokine, and chemokine production and were measured by ELISA. Results: Modulation of FA metabolism suppressed the upregulation of costimulatory molecules and the production of proinflammatory cytokine IL-6 and type I Interferon-dependent chemokine CXCL10 by both subsets of DCs, without affecting DC viability, neither of resting DCs or upon activation. Etomoxir inhibited pDCs at lower doses than cDCs, suggesting that pDCs may be more susceptible to FA metabolic modulation. Conclusions: Both cDCs, the primary antigen presenting cell, and pDCs, the primary type I IFN producer, exhibit a suppressed ability to activate but normal viability when their FA metabolism is inhibited by etomoxir or TOFA. Our findings indicate that FA metabolism plays an important role in the activation of both pDCs and cDCs and suggest that its modulation is an exploitable therapeutic target to suppress DC activation in inflammation or autoimmunity.
Collapse
Affiliation(s)
- Connie C Qiu
- a Laboratory of Dendritic Cell Biology, Department of Microbiology & Immunology , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| | - Atilio E Atencio
- a Laboratory of Dendritic Cell Biology, Department of Microbiology & Immunology , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| | - Stefania Gallucci
- a Laboratory of Dendritic Cell Biology, Department of Microbiology & Immunology , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| |
Collapse
|
4
|
Study on the Inhibitory Effects of Ephedra Aconite Asarum Decoction on LPS-Induced Dendritic Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2017:3272649. [PMID: 29333181 PMCID: PMC5733235 DOI: 10.1155/2017/3272649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 11/17/2022]
Abstract
Dendritic cells (DCs) can secrete cytokines stimulated by lipopolysaccharide (LPS), which leads to not just acute inflammatory responses but also Th1 polarization. Furtherly, chronic inflammation or autoimmune diseases could be triggered. As a classic Traditional Chinese Medicine formula, Ephedra Aconite Asarum Decoction with the main ingredients of ephedrine and hypaconitine can show effect on anti-inflammation and immunoregulation. But it remains unclear whether Ephedra Aconite Asarum Decoction controls DCs. In this study, we investigated the effects of Ephedra Aconite Asarum Decoction on LPS-induced bone marrow-derived DCs (BMDCs) in vitro. We found that Ephedra Aconite Asarum Decoction lowered surface costimulators on DCs and reduced the expression of Th1 type cytokines. Yet it is slightly beneficial for shifting to Th2. Our work reveals that the Ephedra Aconite Asarum Decoction can regulate Th1 inflammation through intervening DCs.
Collapse
|