1
|
Hu S, Shou Z, Xu C, Wang H, Li Z, Zan X, Li N, Xu S. The de novo strategy for bifunctional peptides coating to enhance osteointegration capacity of the implant. Colloids Surf B Biointerfaces 2025; 252:114642. [PMID: 40179641 DOI: 10.1016/j.colsurfb.2025.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/28/2025] [Accepted: 03/16/2025] [Indexed: 04/05/2025]
Abstract
Bone implants represent a significant global market; however, they are plagued by a high long-term failure rate, with approximately 19.2 % of implants failing within 10 years. This leads to considerable physical pain, mental distress for patients, and a substantial financial burden on public healthcare systems. Herein, we propose a novel strategy that using the interactions between positively charged hexa-arginine (R6) and polyphenols in EGC/Fe MPN to present the bifunctional peptides, cellular adhesive peptide (RGD) and osteogenic growth peptide (OGP), onto implant coatings. To thoroughly investigate the preparation process and the physical and chemical properties of the dual-peptide functionalized coatings, several techniques were employed, including dissipation-quartz crystal microbalance (DQCM), ellipsometry, photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). These methods provided insights into the coating's composition, stability, mechanical properties, and surface roughness. In comparison to single-peptide functionalized coatings, the dual-peptide coatings demonstrated significantly improved performance in cellular adhesion at early stages, long-term cell proliferation, migration, antioxidant activity, osteogenic differentiation, inhibition of osteoclastogenesis, and enhanced in vivo osteointegration. This study contributes to the development of multifunctional coatings tailored to the complex biological processes involved in osteointegration.
Collapse
Affiliation(s)
- Siwang Hu
- Department of Spinal Surgery, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling, Zhejiang 317500, China
| | - Zeyu Shou
- Department of Orthopedics, The People's Hospital of Zhuji, Affiliated Zhuji Hospital, Wenzhou Medical University, Shaoxing, Zhejiang 311800, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Chengwei Xu
- Department of Orthopedics, The People's Hospital of Zhuji, Affiliated Zhuji Hospital, Wenzhou Medical University, Shaoxing, Zhejiang 311800, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Hongxiang Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Zhongyun Li
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Shihao Xu
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
2
|
Xiu C, Zhang L, Zhang C, Zhang Y, Luo X, Zhang Z, Zhao H, Ji K, Chen Z, He G, Chen J. Pharmacologically targeting fatty acid synthase-mediated de novo lipogenesis alleviates osteolytic bone loss by directly inhibiting osteoclastogenesis through suppression of STAT3 palmitoylation and ROS signaling. Metabolism 2025; 167:156186. [PMID: 40081616 DOI: 10.1016/j.metabol.2025.156186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Aberrant increases in osteoclast formation and/or activity are the underlying cause of bone loss in a variety of osteolytic diseases. Fatty acid synthase (Fasn)-mediated de novo lipogenesis (DNL) is one of the major lipid metabolic pathways and has been shown to play critical roles in diverse physiological and pathological processes. However, little is known about its role in osteoclastogenesis. Here, we investigate the direct role of DNL in osteoclastogenesis and its therapeutic potential in osteolytic diseases. We found that Fasn expression and DNL levels are upregulated during receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. Inhibition of Fasn by shRNA knockdown or its pharmacological inhibitors (ASC40 and trans-C75) impairs osteoclast differentiation in vitro. Mechanistically, pharmacological inhibition of Fasn suppresses RANKL-induced c-Fos/NFATc1 expression and thus osteoclastogenesis partly by disrupting STAT3 palmitoylation, while promoting ROS scavenging to impair mitogen-activated protein kinase (MAPK) signaling. Finally, the therapeutic potential of ASC40 for the treatment of osteolytic bone loss is tested in two mouse models of osteolytic diseases, i.e. ovariectomy (OVX)-induced osteoporosis and titanium nanoparticle-induced calvarial osteolysis. The results show that ASC40 significantly attenuates bone loss and osteoclastogenesis in both models. In conclusion, our results demonstrate that Fasn-mediated DNL is a novel positive regulator of osteoclastogenesis and may serve as a promising therapeutic target for the treatment of osteoclast-driven osteolytic bone diseases.
Collapse
Affiliation(s)
- Chunmei Xiu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Lei Zhang
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chenxi Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yuannan Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xi Luo
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Ziyi Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hangkai Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Kaizhong Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhiyuan Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Guangxu He
- Department of Orthopedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jianquan Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zeng H, Li D, He Q, Zheng X, Chen X, Jian G, Zhang H, Chen T. A microenvironment responsive nanoparticle regulating osteoclast fate to promote bone repair in osteomyelitis. Mater Today Bio 2025; 32:101777. [PMID: 40321696 PMCID: PMC12049845 DOI: 10.1016/j.mtbio.2025.101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Osteomyelitis exhibits bone defects in an inflammatory and acid microenvironment. As a crucial factor in this inflammation responses, the macrophage-osteoclast axis is absolutely the core to regulate. The research explored a shell-core structured biomaterial, consisting of a gelatin nanoparticle (GNP) platform loaded with bone morphogenetic protein 9 (BMP9) and coated with a metal phenolic network (TA-Ce), which exhibited adaptive sensitivity to pH values. Extracellularly, it rapidly responded to lower pH, achieving specific release in an inflammatory microenvironment. Intracellularly, it impacted the formation, function, and differentiation of osteoclasts through the macrophage-osteoclast axis, thereby promoting bone defect repair. In vivo and in vitro studies showed GNPs-BMP9@TA-Ce regulated osteoclasts to optimize osteomyelitis treatment strategies, highlighting the potential of modified nanobiomaterials for clinical application.
Collapse
Affiliation(s)
- Huan Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Qingqing He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Xinhui Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Xu Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Guangyu Jian
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| |
Collapse
|
4
|
Chlebek C, McNeill TJ, Huang M, Raynor MS, van der Meulen MCH. Bioenergetic programs of cancellous and cortical bone are distinct and differ with age and mechanical loading. Sci Rep 2025; 15:19134. [PMID: 40450018 DOI: 10.1038/s41598-025-02141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/12/2025] [Indexed: 06/03/2025] Open
Abstract
Mechanical loading induces bone formation in young rodents, but mechanoresponsiveness is reduced with age. Glycolytic activity and mitochondrial dysfunction increase with age and may change bone mechanotransduction. To evaluate load-induced changes to bioenergetic activity in young and adult animals, we loaded the tibia of 10-wk and 26-wk female C57BL/6J mice and examined transcriptomic responses at the mid-diaphysis, and metaphyseal cortical shell and cancellous core. Across all biological processes, oxidative phosphorylation and mitochondrial pathways were most often enriched with loading and had contrasting enrichment in young and adult animals. Following loading, young animals had temporally-coordinated differential expression of mitochondrial-associated genes, with greatest expression at the mid-diaphysis. In adults, bioenergetic gene expression was lower compared to young animals. To assess individual contributions of glycolysis and pyruvate-mediated oxidative phosphorylation to load-induced bone formation in vivo, we inhibited each pathway therapeutically and loaded the tibia of young and adult female mice for 2 weeks. In both young and adult mice, loading increased cortical bone mass, but inhibition of oxidative phosphorylation reduced cortical area and moment of inertia in both loaded and control limbs. Conversely, load-induced improvements of adult cancellous bone depended on glycolysis. In summary, mechanical loading transcriptionally activated mitochondrial pathways in an age-specific manner and bioenergetic inhibition revealed unique metabolic programs for cortical and cancellous bone.
Collapse
Affiliation(s)
- Carolyn Chlebek
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA
| | - Tyler J McNeill
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA
| | - Muyin Huang
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA
| | - Maia S Raynor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA.
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
- Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
5
|
Li M, Li F, Zhu C, Zhang C, Le Y, Li Z, Wan Q. The glycolytic enzyme PKM2 regulates inflammatory osteoclastogenesis by modulating STAT3 phosphorylation. J Biol Chem 2025; 301:108389. [PMID: 40057191 PMCID: PMC11999595 DOI: 10.1016/j.jbc.2025.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Periodontitis is a prevalent chronic inflammatory disease characterized by alveolar bone resorption mediated by osteoclasts. Pyruvate kinase M2 (PKM2), a key enzyme in glycolysis and pyruvate metabolism, has recently been recognized for its regulatory roles beyond metabolism, including gene expression and protein kinase activity. However, its exact role in osteoclastogenesis remains unclear. This study investigates the function of PKM2 in inflammatory osteoclastogenesis and explores its potential as a therapeutic target for periodontitis. Using murine bone marrow-derived macrophages (BMMs) stimulated with lipopolysaccharides (LPS) to mimic inflammatory conditions in vitro, we analyzed PKM2 expression and glycolytic activity during osteoclastogenesis through bioinformatics, tartrate-resistant acid phosphatase (TRAP) staining, phalloidin staining, quantitative real-time PCR (RT-qPCR), and Western blotting. Glycolysis was inhibited using 2-deoxy-D-glucose (2-DG), while TEPP-46 was used to activate PKM2. In a mouse model of periodontitis, the effects of TEPP-46 on alveolar bone loss were evaluated using micro-computed tomography, immunohistochemistry, TRAP staining, and hematoxylin-eosin (HE) staining. The results demonstrated that LPS significantly enhanced osteoclastogenesis and glycolysis, increasing PKM2 expression in osteoclasts. Inhibiting glycolysis with 2-DG suppressed osteoclast formation and osteoclast-related gene expression under inflammatory conditions. TEPP-46 treatment reduced nuclear dimeric PKM2 levels, decreased phosphorylated signal transducer and activator of transcription three (p-STAT3) expression, and inhibited osteoclastogenesis and osteoclast-related gene expression. Co-immunoprecipitation confirmed an interaction between nuclear dimeric PKM2 and p-STAT3. In vivo, TEPP-46 effectively reduced alveolar bone loss by preventing PKM2 nuclear translocation and STAT3 phosphorylation. These findings reveal that PKM2 regulates inflammatory osteoclastogenesis through modulation of glycolysis and STAT3 signaling, highlighting its potential as a therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Mingjuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Feng Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chongjie Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yushi Le
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zubing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qilong Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Luo F, Chen T, Chen S, Bai D, Li X. Regulation of osteoclast-mediated bone resorption by lipids. Bone 2025; 193:117423. [PMID: 39933643 DOI: 10.1016/j.bone.2025.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Hyperactivation of osteoclasts has been identified as a significant etiological factor in several bone resorption-related disorders, including osteoporosis, periodontitis, arthritis, and bone metastasis of tumors. It has been demonstrated that the severity of these diseases is influenced by lipids that regulate osteoclast differentiation and activity through specific signaling pathways and cytokine levels. The regulatory mechanisms of different types of lipids on osteoclastogenesis vary across diverse disease contexts in bone resorption regulated by osteoclasts. This review presents an overview of the mechanisms underlying osteoclast formation and summarizes the pathways through which various lipids regulate osteoclastogenesis in different pathological contexts. We also discuss effective therapeutic strategies for osteolytic diseases based on modulation of lipid metabolism.
Collapse
Affiliation(s)
- Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tianyi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Li P, Fan Z, Huang Y, Luo L, Wu X. Mitochondrial dynamics at the intersection of macrophage polarization and metabolism. Front Immunol 2025; 16:1520814. [PMID: 40196123 PMCID: PMC11973336 DOI: 10.3389/fimmu.2025.1520814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Macrophages are vital sentinels in innate immunity, and their functions cannot be performed without internal metabolic reprogramming. Mitochondrial dynamics, especially mitochondrial fusion and fission, contributes to the maintenance of mitochondrial homeostasis. The link between mitochondrial dynamics and macrophages in the past has focused on the immune function of macrophages. We innovatively summarize and propose a link between mitochondrial dynamics and macrophage metabolism. Among them, fusion-related FAM73b, MTCH2, SLP-2 (Stomatin-like protein 2), and mtSIRT, and fission-related Fis1 and MTP18 may be the link between mitochondrial dynamics and macrophage metabolism association. Furthermore, post-translational modifications (PTMs) of mtSIRT play prominent roles in mitochondrial dynamics-macrophage metabolism connection, such as deacetylates and hypersuccinylation. MicroRNAs such as miR-150, miR-15b, and miR-125b are also possible entry points. The metabolic reprogramming of macrophages through the regulation of mitochondrial dynamics helps improve their adaptability and resistance to adverse environments and provides therapeutic possibilities for various diseases.
Collapse
Affiliation(s)
- Pan Li
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Zhengbo Fan
- People’s Government of Huangshui Town, Shizhu Tujia Autonomous County, Chongqing, China
| | - Yanlan Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liang Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Gou H, Wang T, Chen Y, Zhou Y, Li J, Xu Y. Role of Pink1 in Regulating Osteoclast Differentiation during Periodontitis. J Dent Res 2025:220345251315723. [PMID: 40075549 DOI: 10.1177/00220345251315723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Periodontitis has recently been recognized as an inflammatory disease caused by oxidative stress, with mitochondrial dysfunction being a key factor leading to oxidative stress. PTEN-induced kinase 1 (PINK1) is an essential protein for mitochondrial quality control, which protects cells from oxidative stress by inducing mitophagy to degrade damaged mitochondria, but its role in periodontitis has not been elucidated. This study aimed to explore the contribution and underlying mechanisms of Pink1 in regulating the differentiation and function of osteoclasts during periodontitis. Here we observed a significant downregulation of PINK1 expression in periodontitis-affected tissues. Then we constructed a periodontitis model in mice with fluorescently labeled mononuclear/macrophages, and the results showed that as the modeling time extended, the alveolar bone destruction gradually worsened and was accompanied by gradually decreased Pink1 expression in osteoclasts and a significantly increased osteoclast number. In vitro experiments further demonstrated a negative correlation between Pink1 and osteoclast differentiation. In addition, alveolar bone destruction in the Pink1 knockout mice was significantly more advanced than that in the littermate wild type mice after ligature-induced periodontitis and enhanced osteoclastogenesis and bone-resorptive capacity in vitro. RNA-sequencing analysis and in vitro validation revealed that the absence of Pink1 led to a decrease in oxidative phosphorylation levels and an enhancement of calcium-mediated signaling, specifically the calcineurin-NFATc1 pathway, via an intracellular calcium source. Further mechanistic studies found that the deficiency of Pink1 inhibited mitophagy but strengthened mitochondrial-endoplasmic reticulum coupling, which, by promoting the interaction of Mfn2-IP3R-VDAC1 proteins, increased the concentration of mitochondrial calcium ions, thereby triggering more active osteoclast differentiation. The aforementioned process can be reversed by the IP3R channel inhibitor Bcl-XL. These findings unveiled that Pink1 was involved in osteoclast differentiation by regulating mitochondrial calcium transport mediated by mitochondria-associated endoplasmic reticulum membranes, providing a new theoretical basis for the pathogenesis and treatment of periodontitis.
Collapse
Affiliation(s)
- H Gou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - T Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Y Chen
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Y Zhou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - J Li
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Y Xu
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
9
|
Asinas ED, Clark R, Nelson J, Llorens JEA, Mansky K, Tasca A. Mandibular-Derived Monocytes from 1-Year-Old Mice Have Enhanced Osteoclast Differentiation and Differentially Regulated Gene Expression Compared to Femur-Derived Monocytes. BIOLOGY 2025; 14:273. [PMID: 40136529 PMCID: PMC11940643 DOI: 10.3390/biology14030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
It is well established that both men and women lose bone as they age. While recent studies suggest unique molecular signatures of mineral-resorbing cells at different anatomical locations, most studies focus on long bones, and little is known about craniofacial osteoclasts, especially during the aging process. To determine differences between osteoclasts at different skeletal sites, we analyzed the differentiation potential, demineralization activity, and gene expression of osteoclast precursors from 1-year-old male and female C57Bl/6J mice. In our study, we determined that mandibular-derived osteoclasts were larger in size compared to those in the femur but were significantly fewer in number. However, femur-derived osteoclasts demineralized larger and more numerous areas of a calcium phosphate surface compared to mandibular-derived osteoclasts. Bulk RNA sequencing demonstrated that the mandibular-derived monocytes were enriched for genes in the WNT signaling pathway, biomineralization, and osteogenesis pathways, while femur-derived monocytes were enriched for genes in the mitochondrial respiratory complex I. Overall, our data suggest that there are different mechanisms that regulate osteoclasts from different skeletal sites as we age. This information may help to guide the design of treatments to prevent aging-induced bone loss.
Collapse
Affiliation(s)
- Emilyn D. Asinas
- Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Rachel Clark
- Oral Biology Graduate Program, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA;
| | - Jadyn Nelson
- School of Dentistry Summer Research Program, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA;
| | | | - Kim Mansky
- Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Amy Tasca
- Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Kang H, Peng R, Dong Y, Liao F, Zhu M, Wang P, Hu SA, Hu P, Wang J, Liu Z, Song K, Li F. TRAF1 promotes osteoclastogenesis by enhancing metabolic adaptation to oxidative phosphorylation in an AKT-dependent manner. Mol Ther 2025; 33:933-949. [PMID: 39863932 PMCID: PMC11897774 DOI: 10.1016/j.ymthe.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/01/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS). Employing RNA sequencing, we found that TRAF1 is markedly upregulated during osteoclastogenesis and is positively associated with osteoporosis. TRAF1 knockout inhibits osteoclastogenesis and increases bone mass in both normal and ovariectomized adult mice without affecting bone mass in childhood. Furthermore, TRAF1 promotes osteoclast OXPHOS by increasing the phosphorylation level of AKT. Mechanistically, TRAF1 functions to inhibit TRAF2-induced ubiquitination of Gβl, a known activator of AKT, and further upregulates AKT phosphorylation. Rescue experiments revealed that the inhibitory effects of TRAF1 knockout on osteoclastogenesis, OXPHOS, and bone mass are dependent on AKT. Collectively, our findings uncover a previously unrecognized function of TRAF1 in regulating osteoclastogenesis and energy metabolism, and establish a novel TRAF1-AKT-OXPHOS axis in osteoclasts.
Collapse
Affiliation(s)
- Honglei Kang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Institute of Shenzhen Huazhong University of Science and Technology, Shen Zhen, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuben Liao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China
| | - Meipeng Zhu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengju Wang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-An Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peixuan Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China.
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China.
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Conner TS, Baaijens FPT, Bouten CVC, Angeloni L, Smits AIPM. A call for standardization: Evaluating different methodologies to induce in vitro foreign body giant cell formation for biomaterials research and design. Acta Biomater 2025; 194:20-37. [PMID: 39826854 DOI: 10.1016/j.actbio.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Foreign body giant cells (FBGCs) are crucial in the foreign body reaction at the biomaterial-tissue interface, forming through the fusion of cells from the monocyte/macrophage lineage and performing functions such as material degradation and fibrous encapsulation. Yet, their presence and role in biomaterials research is only slowly unveiled. This review analyzed existing FBGC literature identified through a search string and sources from FBGC articles to evaluate the most commonly used methods and highlight the challenges in establishing a standardized protocol. Our findings revealed a fragmented research landscape marked by significant variability in in vitro culture conditions, i.e., cell origin and type, culture media and sera, fusion-inducing factors, seeding density, culture surface, and inconsistencies in the read-outs. This complicates efforts toward standardization and hampers cross-study comparisons. Based on these results, we highlight the need and propose guidelines for standardized culture protocols for FBGC research. Overall, this review aims to underscore the relevance of improving reproducibility and reliability in FBGC research, facilitating effective cross-study comparisons and advancing understanding of FBGC formation and function, ultimately contributing to designing more effective biomaterial-based therapies. STATEMENT OF SIGNIFICANCE: Foreign body giant cells (FBGCs) are crucial in the body's response to implanted biomaterials. Yet, current research addressing their role and impact is highly fragmented. This review comprehensively and systematically examines the diverse methodologies and definitions used in FBGC research and identifies critical gaps and inconsistencies hindering the reproducibility and comparison of findings. By advocating for standardized protocols, we aim to enhance the reliability and equivalence of research, thus providing a stronger foundation for understanding biomaterial-driven FBGC formation and function. Establishing such a framework will impact biomaterial-based therapies, supporting their effectiveness and safety in medical applications, and is thus of relevance for scientists, companies, and clinicians in the biomaterial and medical device communities.
Collapse
Affiliation(s)
- Thijs S Conner
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Livia Angeloni
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands; Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands.
| |
Collapse
|
12
|
He Y, Liu T, Peng X, Yao C, Zhou D, Song C, Wei Z, Chen J, Liu Z, Jiang F. Molecular mechanism of mitochondrial autophagy mediating impaired energy metabolism leading to osteoporosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167685. [PMID: 39842521 DOI: 10.1016/j.bbadis.2025.167685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Osteoporosis (OP) is a bone metabolic disease caused by decreased bone mass leading to destruction of bone microstructure. Treatment of OP is characterized by a lifelong nature, causing extreme financial and psychological burdens to patients. Hormonal abnormalities, cellular autophagy, Ferroptosis, and oxidative stress are all part of the intricate and varied pathophysiology of OP. Recent research has revealed that mitochondrial dysfunction is a significant factor in the onset and progression of OP. By regulating bone marrow mesenchymal stem cell differentiation through various signaling pathways and cytokines, abnormal mitochondrial energy metabolism brought on by oxidative stress processes impacts osteoblast and osteoclast proliferation and differentiation, causing an imbalance in bone metabolism that ultimately results in OP. Therefore, one possible method to prevent and manage OP may be to use mitochondria as a carrier to trigger osteogenic differentiation of bone marrow mesenchymal stem cells from mitochondrial energy consumption, oxidative stress, autophagy, and osteoclast death. In order to offer some theoretical references and therapeutic approaches for the clinical prevention and treatment of OP, we will examine the pathophysiology of OP from mitochondrial dysfunction in this work.
Collapse
Affiliation(s)
- Yuheng He
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China; College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xin Peng
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China; College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chaorui Yao
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China; College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chao Song
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China; Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zhangchao Wei
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jinwen Chen
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China; Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan Province, China.
| | - Feng Jiang
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
13
|
Li Y, Cai M, Qin Y, Dai X, Liang L, Li Z, Wen X, Jin H, Yang C, Chen Z. MTHFD2 promotes osteoclastogenesis and bone loss in rheumatoid arthritis by enhancing CKMT1-mediated oxidative phosphorylation. BMC Med 2025; 23:124. [PMID: 40016725 PMCID: PMC11866863 DOI: 10.1186/s12916-025-03945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by disrupted bone homeostasis. This study investigated the effect and underlying mechanisms of one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) on osteoclast differentiation and bone loss in RA. METHODS The expression of MTHFD2 was examined in CD14 + monocytes and murine bone marrow-derived macrophages (BMMs). RNA-sequencing was performed to evaluate the regulatory mechanisms of MTHFD2 on osteoclastogenesis. Extracellular flux assay, JC-1 staining, and transmission electron microscopy were used to detect mitochondrial function and energy metabolism changes during osteoclast formation. Collagen-induced arthritis (CIA) mice were used to evaluate the therapeutic effect of MTHFD2 knockdown on bone loss. Bone volume and osteoclast counts were quantified by μCT and histomorphometry. RESULTS Elevated MTHFD2 was observed in RA patients and CIA mice with a positive correlation to bone resorption parameters. During osteoclast formation, MTHFD2 was significantly upregulated in both human CD14 + monocytes and murine BMMs. The application of MTHFD2 inhibitor and MTHFD2 knockdown suppressed osteoclastogenesis, while MTHFD2 overexpression promoted osteoclast differentiation in vitro. RNA-sequencing revealed that MTHFD2 inhibition blocked oxidative phosphorylation (OXPHOS) in osteoclasts, leading to decreased adenosine triphosphate (ATP) production and mitochondrial membrane potential without affecting mitochondrial biogenesis. Mechanistically, inhibition of MTHFD2 downregulated the expression of mitochondrial creatine kinase 1 (CKMT1), which in turn affected phosphocreatine energy shuttle and OXPHOS during osteoclastogenesis. Further, a therapeutic strategy to knock down MTHFD2 in knee joint in vivo ameliorated bone loss in CIA mice. CONCLUSIONS Our findings demonstrate that MTHFD2 is upregulated in RA with relation to joint destruction. MTHFD2 promotes osteoclast differentiation and arthritic bone erosion by enhancing mitochondrial energy metabolism through CKMT1. Thus, targeting MTHFD2 may provide a potential new therapeutic strategy for tackling osteoclastogenesis and bone loss in RA.
Collapse
Affiliation(s)
- Yujing Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Minglong Cai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yi Qin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiaojuan Dai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Liyuan Liang
- The MED-X Institute, Center for Cancer Precision Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China
| | - Zhenyu Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xi Wen
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Huizhi Jin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Chao Yang
- Department of Rheumatology and Immunology and The MED-X institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China.
| | - Zhu Chen
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
14
|
Zhang Z, Shang W, Lin L. Hydroxyapatite Chitosan Gradient Pore Scaffold Activates Oxidative Phosphorylation Pathway to Induce Bone Formation. FRONT BIOSCI-LANDMRK 2025; 30:26299. [PMID: 39862088 DOI: 10.31083/fbl26299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds. METHODS The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated in vitro and in vivo for biocompatibility, biological activity, and regulatory mechanisms. RESULTS The porosity of the four scaffolds was more than 80%. The 50% and 70% HAMT-CHS scaffolds formed an excellent gradient pore structure, with interconnected pores. Furthermore, the 70% HAMT-CHS scaffold showed better anti-compressive deformation ability. In vitro experiments indicated that the scaffolds had good biocompatibility, promoted the expression of osteogenesis-related genes and proteins, and activated the oxidative phosphorylation pathway to promote bone regeneration. Eight weeks after implanting the HAMT-CHS scaffold in rat skull defects, new bone formation was observed in vivo by micro-computed tomographic (CT) staining. The obtained data were statistically analyzed, and the p-value < 0.05 was statistically significant. CONCLUSION HAMT-CHS scaffolds can accelerate osteogenesis in bone defects, potentially through the activation of the oxidative phosphorylation pathway. These results highlight the potential therapeutic application of HAMT-CHS scaffolds.
Collapse
Affiliation(s)
- Zeliang Zhang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, 350001 Fuzhou, Fujian, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Heping Hospital of Changzhi Medical College, 046000 Changzhi, Shanxi, China
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China
| |
Collapse
|
15
|
Becker J, Bühren V, Schmelzer L, Reckert A, Eickhoff SB, Ritz S, Naue J. Molecular age prediction using skull bone samples from individuals with and without signs of decomposition: a multivariate approach combining analysis of posttranslational protein modifications and DNA methylation. Int J Legal Med 2025; 139:157-174. [PMID: 39256256 PMCID: PMC11732915 DOI: 10.1007/s00414-024-03314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024]
Abstract
The prediction of the chronological age of a deceased individual at time of death can provide important information in case of unidentified bodies. The methodological possibilities in these cases depend on the availability of tissues, whereby bones are preserved for a long time due to their mineralization under normal environmental conditions. Age-dependent changes in DNA methylation (DNAm) as well as the accumulation of pentosidine (Pen) and D-aspartic acid (D-Asp) could be useful molecular markers for age prediction. A combination of such molecular clocks into one age prediction model seems favorable to minimize inter- and intra-individual variation. We therefore developed (I) age prediction models based on the three molecular clocks, (II) examined the improvement of age prediction by combination, and (III) investigated if samples with signs of decomposition can also be examined using these three molecular clocks. Skull bone from deceased individuals was collected to obtain a training dataset (n = 86), and two independent test sets (without signs of decomposition: n = 44, with signs of decomposition: n = 48). DNAm of 6 CpG sites in ELOVL2, KLF14, PDE4C, RPA2, TRIM59 and ZYG11A was analyzed using massive parallel sequencing (MPS). The D-Asp and Pen contents were analyzed by high performance liquid chromatography (HPLC). Age prediction models based on ridge regression were developed resulting in mean absolute errors (MAEs)/root mean square errors (RMSE) of 5.5years /6.6 years (DNAm), 7.7 years /9.3 years (Pen) and 11.7 years /14.6 years (D-Asp) in the test set. Unsurprisingly, a general lower accuracy for the DNAm, D-Asp, and Pen models was observed in samples from decomposed bodies (MAE: 7.4-11.8 years, RMSE: 10.4-15.4 years). This reduced accuracy could be caused by multiple factors with different impact on each molecular clock. To acknowledge general changes due to decomposition, a pilot model for a possible age prediction based on the decomposed samples as training set improved the accuracy evaluated by leave-one-out-cross validation (MAE: 6.6-12 years, RMSE: 8.1-15.9 years). The combination of all three molecular age clocks did reveal comparable MAE and RMSE results to the pure analysis of the DNA methylation for the test set without signs of decomposition. However, an improvement by the combination of all three clocks was possible for the decomposed samples, reducing especially the deviation in case of outliers in samples with very high decomposition and low DNA content. The results demonstrate the general potential in a combined analysis of different molecular clocks in specific cases.
Collapse
Affiliation(s)
- J Becker
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - V Bühren
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - L Schmelzer
- Institute of Forensic Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - A Reckert
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - S B Eickhoff
- Institute for Systems Neuroscience, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich, 52428, Juelich, Germany
| | - S Ritz
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany.
| | - J Naue
- Institute of Forensic Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
16
|
Jia X, Zhang G, Yu D. Application of extracellular vesicles in diabetic osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1466775. [PMID: 39720256 PMCID: PMC11666354 DOI: 10.3389/fendo.2024.1466775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/26/2024] Open
Abstract
As the population ages, the occurrence of osteoporosis is becoming more common. Diabetes mellitus is one of the factors in the development of osteoporosis. Compared with the general population, the incidence of osteoporosis is significantly higher in diabetic patients. Diabetic osteoporosis (DOP) is a metabolic bone disease characterized by abnormal bone tissue structure due to hyperglycemia and insulin resistance, reduced bone strength and increased risk of fractures. This is a complex mechanism that occurs at the cellular level due to factors such as blood vessels, inflammation, and hyperglycemia and insulin resistance. Although the application of some drugs in clinical practice can reduce the occurrence of DOP, the incidence of fractures caused by DOP is still very high. Extracellular vesicles (EVs) are a new communication mode between cells, which can transfer miRNAs and proteins from mother cells to target cells through membrane fusion, thereby regulating the function of target cells. In recent years, the role of EVs in the pathogenesis of DOP has been widely demonstrated. In this article, we first describe the changes in the bone microenvironment of osteoporosis. Second, we describe the pathogenesis of DOP. Finally, we summarize the research progress and challenges of EVs in DOP.
Collapse
Affiliation(s)
- Xiaopeng Jia
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gongzi Zhang
- Department of Rehabilitation Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Deshui Yu
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
17
|
Yan Q, Liu H, Zhu R, Zhang Z. Contribution of macrophage polarization in bone metabolism: A literature review. Cytokine 2024; 184:156768. [PMID: 39340960 DOI: 10.1016/j.cyto.2024.156768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Macrophage polarization divides macrophages into two main cell subpopulations, classically and alternatively activated macrophages (M1 and M2, respectively). M1 polarization promotes osteoclastogenesis, while M2 polarization promotes osteogenesis. The physiological homeostasis of bone metabolism involves a high dynamic balance between osteoclastic-mediated bone resorption and formation. Reportedly, M1/M2 imbalance causes the onset and persistence of inflammation-related bone diseases. Therefore, understanding the research advances in functions and roles of macrophages in such diseases will provide substantial guidance for improved treatment of bone diseases. In this review, we underscore and summarize the research advances in macrophage polarization, and bone-related diseases, such as rheumatoid arthritis, osteoarthritis, and osteoporosis, over the last 5 years. Our findings showed that targeting macrophages and balancing macrophage polarization can effectively reduce inflammation and decrease bone destruction while promoting bone formation and vascular repair. These results indicate that regulating macrophage and macrophage polarization to restore homeostasis is a prospective approach for curing bone-related diseases.
Collapse
Affiliation(s)
- Qiqi Yan
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Haixia Liu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ruyuan Zhu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Kaneko K, Tsai J, Meñez D, Oh B, Suh AJ, Bae S, Mizuno M, Umemoto A, Giannopoulou E, Fujii T, Zhang Y, Stein EM, Bockman RS, Park-Min KH. Cellular signatures in human blood track bone mineral density in postmenopausal women. JCI Insight 2024; 9:e178977. [PMID: 39576015 PMCID: PMC11601907 DOI: 10.1172/jci.insight.178977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
Osteoclasts are the sole bone-resorbing cells and are formed by the fusion of osteoclast precursor cells (OCPs) derived from myeloid lineage cells. Animal studies reveal that circulating OCPs (cOCPs) in blood travel to bone and fuse with bone-resident osteoclasts. However, the characteristics of human cOCPs and their association with bone diseases remain elusive. We have identified and characterized human cOCPs and found a positive association between cOCPs and osteoclast activity. Sorted cOCPs have a higher osteoclastogenic potential than other myeloid cells and effectively differentiate into osteoclasts. cOCPs exhibit distinct morphology and transcriptomic signatures. The frequency of cOCPs in the blood varies among treatment-naive postmenopausal women and has an inverse correlation with lumbar spine bone density and a positive correlation with serum CTX, a bone resorption marker. The increased cOCPs in treatment-naive patients with osteoporosis were significantly diminished by denosumab, a widely used antiresorptive therapy. Our study reveals the distinctive identity of human cOCPs and the potential link between the dynamic regulation of cOCPs and osteoporosis and its treatment. Taken together, our study enhances our understanding of human cOCPs and highlights a potential opportunity to measure cOCPs through a simple blood test, which could potentially identify high-risk individuals.
Collapse
Affiliation(s)
- Kaichi Kaneko
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Division of Rheumatology, Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Chiba, Japan
| | - Jefferson Tsai
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Deniece Meñez
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Brian Oh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Andrew Junwoo Suh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Masataka Mizuno
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Akio Umemoto
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Eugenia Giannopoulou
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
| | - Takayuki Fujii
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Yaxia Zhang
- Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, New York, USA
- Pathology and Clinical Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Emily M. Stein
- Endocrine Service, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Richard S. Bockman
- Endocrine Service, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
19
|
Chen L, Su Y, Wang C, Huang Q, Chen W, Hai N, Wang J, Lian H, Zhao J, Xu J, Liu Q. Rc3h1 negatively regulates osteoclastogenesis by limiting energy metabolism. Theranostics 2024; 14:7554-7568. [PMID: 39659568 PMCID: PMC11626950 DOI: 10.7150/thno.99565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Osteoclasts are giant bone-resorbing cells that need vigorous mitochondrial respiration to support their activation. Rc3h1, an RNA-binding protein, precisely governs the homeostasis of mRNA. However, the precise role of Rc3h1 in regulating iron metabolism and mitochondrial respiration in osteoclasts is not yet understood. Methods: We generated Rc3h1-deficient mice in osteoclast precursors and mature osteoclasts. The bone mass and osteoclast activity in bone tissues were evaluated. Moreover, we assessed the differentiation, bone resorption, iron content, and mitochondrial function of osteoclasts in vitro. In the end, the target gene of Rc3h1 and its role in mediating the effect of Rc3h1 on mitochondrial respiration in osteoclasts were further investigated. Results: Mice lacking Rc3h1 exhibit low bone mass. In addition, Rc3h1 deletion in osteoclasts significantly promotes osteoclast activation. Mechanistically, Rc3h1 post-transcriptionally represses the expression of transferrin receptor 1 (Tfr1), restricting iron absorption and mitochondrial respiration in osteoclasts. Inhibition of Tfr1 in Rc3h1-deficient osteoclasts diminishes excessive osteoclast formation and mitochondrial respiration. Conclusion: These findings suggest that Rc3h1 has a negative effect on osteoclast activation via limiting iron resorption and mitochondrial respiration. Finally, targeting the Rc3h1/Tfr1 axis might represent a potential therapeutic approach for bone-loss diseases.
Collapse
Affiliation(s)
- Liuyuan Chen
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chaofeng Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qian Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Na Hai
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jikang Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiake Xu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, and Chinese Academy of Sciences, Shenzhen, China
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
20
|
Singh M, Singh P, Singh B, Sharma K, Kumar N, Singh D, Mastana S. Molecular Signaling Pathways and MicroRNAs in Bone Remodeling: A Narrative Review. Diseases 2024; 12:252. [PMID: 39452495 PMCID: PMC11507001 DOI: 10.3390/diseases12100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Bone remodeling is an intricate process executed throughout one's whole life via the cross-talk of several cellular events, progenitor cells and signaling pathways. It is an imperative mechanism for regaining bone loss, recovering damaged tissue and repairing fractures. To achieve this, molecular signaling pathways play a central role in regulating pathological and causal mechanisms in different diseases. Similarly, microRNAs (miRNAs) have shown promising results in disease management by mediating mRNA targeted gene expression and post-transcriptional gene function. However, the role and relevance of these miRNAs in signaling processes, which regulate the delicate balance between bone formation and bone resorption, are unclear. This review aims to summarize current knowledge of bone remodeling from two perspectives: firstly, we outline the modus operandi of five major molecular signaling pathways, i.e.,the receptor activator of nuclear factor kappa-B (RANK)-osteoprotegrin (OPG) and RANK ligand (RANK-OPG-RANKL), macrophage colony-stimulating factor (M-CSF), Wnt/β-catenin, Jagged/Notch and bone morphogenetic protein (BMP) pathways in regards to bone cell formation and function; and secondly, the miRNAs that participate in these pathways are introduced. Probing the miRNA-mediated regulation of these pathways may help in preparing the foundation for developing targeted strategies in bone remodeling, repair and regeneration.
Collapse
Affiliation(s)
- Monica Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Baani Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Kirti Sharma
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Nitin Kumar
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Deepinder Singh
- VardhmanMahavir Health Care, Urban Estate Ph-II, Patiala 147002, India;
| | - Sarabjit Mastana
- Human Genomics Laboratory, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| |
Collapse
|
21
|
Li D, Li J, Li Y, Dong W, Lin Z. Association between the cardiometabolic index and osteoporosis: a cross-sectional study of the NHANES. Front Public Health 2024; 12:1462169. [PMID: 39421824 PMCID: PMC11484830 DOI: 10.3389/fpubh.2024.1462169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Background The cardiometabolic index (CMI) is a novel metabolic biomarker, but research on its association with osteporosis (OP) is limited. The objective of this research was to clarify the relationship between CMI and OP in the older adult population of the United States. Methods This study conducted a cross-sectional analysis using NHANES data 2007-2018 with exclusion of 2011-2012 and 2015-2016 cycles. Logistic regression was used to investigate the relationship between CMI and OP prevalence. Restricted cubic spline curve (RCS) and threshold saturation analyses were performed to explore the nonlinear association between CMI and OP prevalence. Subgroup analyses, sensitivity analyses, and additional analyses were conducted to ensure the robustness and reliability of the findings. Results The study included 4,191 participants, revealing that those with OP had significantly lower CMI levels. Logistic regression revealed a strong inverse correlation between Log CMI and OP (OR = 0.72, 95% CI = 0.59-0.88), which persisted after adjusting for covariates. RCS analysis revealed a nonlinear inverse relationship with the critical threshold at CMI = 0.93. Below this threshold, each unit increase in CMI was associated with a 37% reduction in OP prevalence, but changes above this threshold were not significant. Subgroup and sensitivity analyses confirmed the robustness of the findings. Conclusion Elevated CMI exhibited a robust inverse correlation with the prevalence of OP in the older adult U.S. population. Maintaining a moderate CMI significantly diminishes the risk of developing OP.
Collapse
Affiliation(s)
- Deyan Li
- Department of Orthopedics, Bao’an Clinical Institute of Shantou University Medical College, Shantou, Guangdong, China
- Department of Orthopedics, Shenzhen Bao’an Shiyan People’s Hospital, Shenzhen, Guangdong, China
| | - Jinli Li
- Department of Orthopedics, Bao’an Clinical Institute of Shantou University Medical College, Shantou, Guangdong, China
- Department of Orthopedics, Shenzhen Bao’an Shiyan People’s Hospital, Shenzhen, Guangdong, China
| | - Yijun Li
- Department of Orthopedics, Shenzhen Bao’an Shiyan People’s Hospital, Shenzhen, Guangdong, China
| | - Wei Dong
- Department of Orthopedics, Bao’an Clinical Institute of Shantou University Medical College, Shantou, Guangdong, China
- Department of Orthopedics, Shenzhen Bao’an Shiyan People’s Hospital, Shenzhen, Guangdong, China
| | - Zhuofeng Lin
- Department of Orthopedics, Bao’an Clinical Institute of Shantou University Medical College, Shantou, Guangdong, China
- Department of Orthopedics, Shenzhen Bao’an Shiyan People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Chu W, Peng W, Lu Y, Liu Y, Li Q, Wang H, Wang L, Zhang B, Liu Z, Han L, Ma H, Yang H, Han C, Lu X. PRMT6 Epigenetically Drives Metabolic Switch from Fatty Acid Oxidation toward Glycolysis and Promotes Osteoclast Differentiation During Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403177. [PMID: 39120025 PMCID: PMC11516099 DOI: 10.1002/advs.202403177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Epigenetic regulation of metabolism profoundly influences cell fate commitment. During osteoclast differentiation, the activation of RANK signaling is accompanied by metabolic reprogramming, but the epigenetic mechanisms by which RANK signaling induces this reprogramming remain elusive. By transcriptional sequence and ATAC analysis, this study identifies that activation of RANK signaling upregulates PRMT6 by epigenetic modification, triggering a metabolic switching from fatty acids oxidation toward glycolysis. Conversely, Prmt6 deficiency reverses this shift, markedly reducing HIF-1α-mediated glycolysis and enhancing fatty acid oxidation. Consequently, PRMT6 deficiency or inhibitor impedes osteoclast differentiation and alleviates bone loss in ovariectomized (OVX) mice. At the molecular level, Prmt6 deficiency reduces asymmetric dimethylation of H3R2 at the promoters of genes including Ppard, Acox3, and Cpt1a, enhancing genomic accessibility for fatty acid oxidation. PRMT6 thus emerges as a metabolic checkpoint, mediating metabolic switch from fatty acid oxidation to glycolysis, thereby supporting osteoclastogenesis. Unveiling PRMT6's critical role in epigenetically orchestrating metabolic shifts in osteoclastogenesis offers a promising target for anti-resorptive therapy.
Collapse
Affiliation(s)
- Wenxiang Chu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Weilin Peng
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Yingying Lu
- Obstetrics and Gynecology HospitalFudan UniversityShanghai200011China
| | - Yishan Liu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Qisheng Li
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haibin Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Liang Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Bangke Zhang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Zhixiao Liu
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
| | - Lin Han
- Department of OrthopaedicsThird Affiliated Hospital of Naval Medical UniversityShanghai201805China
| | - Hongdao Ma
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haisong Yang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Chaofeng Han
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and Inflammation, Institute of ImmunologyNaval Medical UniversityShanghai200433China
| | - Xuhua Lu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| |
Collapse
|
23
|
Breivik TJ, Gjermo P, Gundersen Y, Opstad PK, Murison R, Hugoson A, von Hörsten S, Fristad I. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000 2024; 96:20-41. [PMID: 39233381 PMCID: PMC11579829 DOI: 10.1111/prd.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
This review highlights the significance of interactions between the microbiota, immune system, nervous and hormonal systems, and the brain on periodontal health and disease. Microorganisms in the microbiota, immune cells, and neurons communicate via homeostatic nervous and hormonal systems, regulating vital body functions. By modulating pro-inflammatory and anti-inflammatory adaptive immune responses, these systems control the composition and number of microorganisms in the microbiota. The strength of these brain-controlled responses is genetically determined but is sensitive to early childhood stressors, which can permanently alter their responsiveness via epigenetic mechanisms, and to adult stressors, causing temporary changes. Clinical evidence and research with humans and animal models indicate that factors linked to severe periodontitis enhance the responsiveness of these homeostatic systems, leading to persistent hyperactivation. This weakens the immune defense against invasive symbiotic microorganisms (pathobionts) while strengthening the defense against non-invasive symbionts at the gingival margin. The result is an increased gingival tissue load of pathobionts, including Gram-negative bacteria, followed by an excessive innate immune response, which prevents infection but simultaneously destroys gingival and periodontal tissues. Thus, the balance between pro-inflammatory and anti-inflammatory adaptive immunity is crucial in controlling the microbiota, and the responsiveness of brain-controlled homeostatic systems determines periodontal health.
Collapse
Affiliation(s)
- Torbjørn Jarle Breivik
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
| | - Yngvar Gundersen
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Kristian Opstad
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Robert Murison
- Department of Biological and Medical Psychology, Faculty of PsychologyUniversity of BergenBergenNorway
| | - Anders Hugoson
- Department of Periodontology, Institute of OdontologyThe Sahlgrenska Academy at University of Gothenburg and School of Health and WelfareGothenburgSweden
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| |
Collapse
|
24
|
Shi X, Gao T, Yu C, Fu S, Guo T, Xu W, Li X, Wang Y, Zhang J, Jia X, Mao Y. Oxysophocarpine attenuates inflammatory osteolysis by modulating the NF-κb pathway and the reactive oxygen species-related Nrf2 signaling pathway. Inflammopharmacology 2024; 32:3461-3474. [PMID: 39150492 DOI: 10.1007/s10787-024-01552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND AIM Inflammatory diseases often result in bone loss due to persistent inflammation, which activates osteoclasts and increases bone resorption. Oxysophocarpine (OSC), a bioalkaloid extracted from the roots of Sophora japonica and other leguminous plants, has neuroprotective and anti-tumor properties. However, it is still uncertain whether OSC can effectively inhibit the differentiation of osteoclasts and bone resorption. Therefore, this study explored the potential role of OSC in osteoclast formation and inflammatory osteolysis and its underlying mechanisms. EXPERIMENTAL PROCEDURE This study involved inducing primary mouse bone marrow macrophages (BMMs) into osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) and examined the effects of OSC on osteoclast (OC) differentiation, function, and intracellular reactive oxygen species (ROS) production. The impact of OSC on the expression of osteoclast-specific genes and inflammation-related factors was assessed using real-time quantitative PCR. Additionally, changes in oxidative stress-related factors, NF-κB, and MAPK signaling pathways were examined using western blotting. Finally, this study investigated the influence of OSC on a mouse cranial bone resorption model induced by titanium (Ti) particles in vivo. RESULTS OSC inhibited OC differentiation and resorption and reduces intracellular ROS levels. Moreover, OSC suppressed IL-1β, TNF-α, IL-6, and osteoclast-specific gene transcription while increasing Nrf2 and HO-1 protein expression. Furthermore, OSC inhibited the expression and autoregulation of the NFATc1 gene, ultimately leading to a reduction in Ti particle-induced bone resorption in mice. CONCLUSION OSC could be regarded as an innovative medication for the treatment of osteoclast-associated inflammatory osteolytic diseases.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Tian Gao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Chaohong Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Shaotian Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Tingxian Guo
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Wei Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaojun Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yitian Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Jingwei Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Xinlin Jia
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
25
|
Li D, Zhang Z, Wang L. Emerging role of tumor microenvironmental nutrients and metabolic molecules in ferroptosis: Mechanisms and clinical implications. Biomed Pharmacother 2024; 179:117406. [PMID: 39255738 DOI: 10.1016/j.biopha.2024.117406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
In recent years, ferroptosis has gradually attracted increasing attention because of its important role in tumors. Ferroptosis resistance is an important cause of tumor metastasis, recurrence and drug resistance. Exploring the initiating factors and specific mechanisms of ferroptosis has become a key strategy to block tumor progression and improve drug sensitivity. As the external space in direct contact with tumor cells, the tumor microenvironment has a great impact on the biological function of tumor cells. The relationships between abnormal environmental characteristics (hypoxia, lactic acid accumulation, etc.) in the microenvironment and ferroptosis of tumor cells has not been fully characterized. This review focuses on the characteristics of the tumor microenvironment and summarizes the mechanisms of ferroptosis under different environmental factors, aiming to provide new insights for subsequent targeted therapy. Moreover, considering the presence of anticancer drugs in the microenvironment, we further summarize the mechanisms of ferroptosis to provide new strategies for the sensitization of tumor cells to drugs.
Collapse
Affiliation(s)
- Dongyu Li
- Department of VIP In-Patient Ward, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
26
|
Hu B, Chen Y, Li Y, Deng C, Niu Y, Hu Z, Li Y, Sun S, Huang Y, Deng X, Wei Y. Substrate-Mediated Regulation of Src Expression Drives Osteoclastogenesis Divergence. Genes (Basel) 2024; 15:1217. [PMID: 39336808 PMCID: PMC11431296 DOI: 10.3390/genes15091217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Glass, bone, and dentin are commonly applied substrates for osteoclast cultures; however, the impact of these substrates on osteoclastogenesis remains underexplored. This study aimed to address a significant gap in understanding how different substrates influence the process of osteoclastogenesis. METHODS RAW 264.7 cells were cultured and induced with RANKL on glass, bone, and dentin slides. Histological and molecular techniques were used to identify patterns and differences in osteoclast behavior on each substrate. RESULTS Osteoclasts cultured on glass slides possessed the greatest number of nuclei and the highest expression levels of ACP5 (TRAP) and CTSK, with osteoclasts on bone and dentin slides displaying progressively lower levels. Src expression was also most pronounced in osteoclasts on glass slides, with decreased levels observed on bone and dentin. This variation in Src expression likely contributed to differences in cytoskeletal remodeling and oxidative phosphorylation (OXPHOS), resulting in substrate-dependent divergences in osteoclastogenesis. CONCLUSIONS Glass slides were the most favorable substrate for inducing osteoclastogenesis, while bone and dentin slides were less effective. The substrate-induced expression of Src played a fundamental role in shaping the phenotypic divergence of osteoclasts. These insights fill important knowledge gaps and have significant implications for the development and selection of in vitro models for bone-related diseases and drug screening platforms.
Collapse
Affiliation(s)
- Bo Hu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yiming Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yuman Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
| | - Chenyu Deng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China;
| | - Yuting Niu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Zhewen Hu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
| | - Yao Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Shiyu Sun
- Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China;
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (B.H.); (Y.C.); (Y.L.); (Y.N.); (Z.H.); (Y.L.); (Y.H.); (X.D.)
| |
Collapse
|
27
|
Kamei K, Yahara Y, Kim JD, Tsuji M, Iwasaki M, Takemori H, Seki S, Makino H, Futakawa H, Hirokawa T, Nguyen TCT, Nakagawa T, Kawaguchi Y. Impact of the SIK3 pathway inhibition on osteoclast differentiation via oxidative phosphorylation. J Bone Miner Res 2024; 39:1340-1355. [PMID: 39030684 DOI: 10.1093/jbmr/zjae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
Maintenance of bone homeostasis and the balance between bone resorption and formation are crucial for maintaining skeletal integrity. This study sought to investigate the role of salt-inducible kinase 3 (SIK3), a key regulator in cellular energy metabolism, during the differentiation of osteoclasts. Despite osteoclasts being high energy-consuming cells essential for breaking down mineralized bone tissue, the specific function of SIK3 in this process remains unclear. To address this issue, we generated osteoclast-specific SIK3 conditional knockout mice and assessed the impact of SIK3 deletion on bone homeostasis. Our findings revealed that SIK3 conditional knockout mice exhibited increased bone mass and an osteopetrosis phenotype, suggesting a pivotal role for SIK3 in bone resorption. Moreover, we assessed the impact of pterosin B, a SIK3 inhibitor, on osteoclast differentiation. The treatment with pterosin B inhibited osteoclast differentiation, reduced the numbers of multinucleated osteoclasts, and suppressed resorption activity in vitro. Gene expression analysis demonstrated that SIK3 deletion and pterosin B treatment influence a common set of genes involved in osteoclast differentiation and bone resorption. Furthermore, pterosin B treatment altered intracellular metabolism, particularly affecting key metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation. These results provide valuable insights into the involvement of SIK3 in osteoclast differentiation and the molecular mechanisms underlying osteoclast function and bone diseases.
Collapse
Affiliation(s)
- Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yasuhito Yahara
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jun-Dal Kim
- Division of Complex Bioscience Research, Department of Research and Development, Institute of National Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Mamiko Tsuji
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mami Iwasaki
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shoji Seki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroto Makino
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hayato Futakawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tatsuro Hirokawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tran Canh Tung Nguyen
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Trauma and Orthopaedic Surgery, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshiharu Kawaguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
28
|
Chen CM, Huang WT, Sung SF, Hsu CC, Hsu YH. Statin use associated with a reduced risk of hip fracture in patients with gout. Bone Rep 2024; 22:101799. [PMID: 39252698 PMCID: PMC11381807 DOI: 10.1016/j.bonr.2024.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/27/2024] [Accepted: 08/18/2024] [Indexed: 09/11/2024] Open
Abstract
Studies show that statins users are at reduced risk of fracture and improved bone mineral density. However, the clinical effectiveness of statin use in patients with gout has not been investigated. This retrospective cohort study used data from Taiwan's National Health Insurance Research Database, consisting of 3443 patients with gout using statins aged 50 years and above and 6886 gout patients of non-statin users matched by sex, age and propensity score. The Cox proportional hazards regression analysis showed that statin use was associated with a reduced risk of hip fracture (adjusted hazard ratio [aHR] = 0.78, 95 % confidence interval [CI] = 0.64-0.94) after controlling for potential confounding factors. The association was significant in both genders aged 50-64 years, with aHRs of near 0.35, but not in the elderly. In addition, women aged 50-64 years who used statins also exhibited a lower risk of vertebral fracture (aHR = 0.70, 95 % CI = 0.50-0.99), but not men. In conclusion, the stating use in gout patients could reduce fracture risk for younger patients. Further research is warranted to confirm these findings.
Collapse
Affiliation(s)
- Chun-Ming Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Wan-Ting Huang
- Clinical Medicine Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Sheng-Feng Sung
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Department of Beauty & Health Care, Min-Hwei Junior College of Health Care Management, Tainan 73658, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan 33044, Taiwan
| | - Yueh-Han Hsu
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan 73658, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
29
|
Deng D, Liu X, Huang W, Yuan S, Liu G, Ai S, Fu Y, Xu H, Zhang X, Li S, Xu S, Bai X, Zhang Y. Osteoclasts control endochondral ossification via regulating acetyl-CoA availability. Bone Res 2024; 12:49. [PMID: 39198395 PMCID: PMC11358419 DOI: 10.1038/s41413-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoclast is critical in skeletal development and fracture healing, yet the impact and underlying mechanisms of their metabolic state on these processes remain unclear. Here, by using osteoclast-specific small GTPase Rheb1-knockout mice, we reveal that mitochondrial respiration, rather than glycolysis, is essential for cathepsin K (CTSK) production in osteoclasts and is regulated by Rheb1 in a mechanistic target of rapamycin complex 1 (mTORC1)-independent manner. Mechanistically, we find that Rheb1 coordinates with mitochondrial acetyl-CoA generation to fuel CTSK, and acetyl-CoA availability in osteoclasts is the central to elevating CTSK. Importantly, our findings demonstrate that the regulation of CTSK by acetyl-CoA availability is critical and may confer a risk for abnormal endochondral ossification, which may be the main cause of poor fracture healing on alcohol consumption, targeting Rheb1 could successfully against the process. These findings uncover a pivotal role of mitochondria in osteoclasts and provide a potent therapeutic opportunity in bone disorders.
Collapse
Affiliation(s)
- Daizhao Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xianming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenlan Huang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Sirui Yuan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Genming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shanshan Ai
- Department of Physiology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yijie Fu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haokun Xu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xinyi Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shihai Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Song Xu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yue Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
30
|
Xiao H, Li W, Qin Y, Lin Z, Qian C, Wu M, Xia Y, Bai J, Geng D. Crosstalk between Lipid Metabolism and Bone Homeostasis: Exploring Intricate Signaling Relationships. RESEARCH (WASHINGTON, D.C.) 2024; 7:0447. [PMID: 39165638 PMCID: PMC11334918 DOI: 10.34133/research.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Bone is a dynamic tissue reshaped by constant bone formation and bone resorption to maintain its function. The skeletal system accounts for approximately 70% of the total volume of the body, and continuous bone remodeling requires quantities of energy and material consumption. Adipose tissue is the main energy storehouse of the body and has a strong adaptive capacity to participate in the regulation of various physiological processes. Considering that obesity and metabolic syndrome have become major public health challenges, while osteoporosis and osteoporotic fractures have become other major health problems in the aging population, it would be interesting to explore these 2 diseases together. Currently, an increasing number of researchers are focusing on the interactions between multiple tissue systems, i.e., multiple organs and tissues that are functionally coordinated together and pathologically pathologically interact with each other in the body. However, there is lack of detailed reviews summarizing the effects of lipid metabolism on bone homeostasis and the interactions between adipose tissue and bone tissue. This review provides a detailed summary of recent advances in understanding how lipid molecules and adipose-derived hormones affect bone homeostasis, how bone tissue, as a metabolic organ, affects lipid metabolism, and how lipid metabolism is regulated by bone-derived cytokines.
Collapse
Affiliation(s)
- Haixiang Xiao
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230022, China
| | - Wenming Li
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yi Qin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhixiang Lin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chen Qian
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Mingzhou Wu
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yu Xia
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, Jingjiang People’s Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu Province, China
| | - Dechun Geng
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
31
|
Tao H, Zhu P, Xia W, Chu M, Chen K, Wang Q, Gu Y, Lu X, Bai J, Geng D. The Emerging Role of the Mitochondrial Respiratory Chain in Skeletal Aging. Aging Dis 2024; 15:1784-1812. [PMID: 37815897 PMCID: PMC11272194 DOI: 10.14336/ad.2023.0924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of mitochondrial homeostasis is crucial for ensuring healthy mitochondria and normal cellular function. This process is primarily responsible for regulating processes that include mitochondrial OXPHOS, which generates ATP, as well as mitochondrial oxidative stress, apoptosis, calcium homeostasis, and mitophagy. Bone mesenchymal stem cells express factors that aid in bone formation and vascular growth. Positive regulation of hematopoietic stem cells in the bone marrow affects the differentiation of osteoclasts. Furthermore, the metabolic regulation of cells that play fundamental roles in various regions of the bone, as well as interactions within the bone microenvironment, actively participates in regulating bone integrity and aging. The maintenance of cellular homeostasis is dependent on the regulation of intracellular organelles, thus understanding the impact of mitochondrial functional changes on overall bone metabolism is crucially important. Recent studies have revealed that mitochondrial homeostasis can lead to morphological and functional abnormalities in senescent cells, particularly in the context of bone diseases. Mitochondrial dysfunction in skeletal diseases results in abnormal metabolism of bone-associated cells and a secondary dysregulated microenvironment within bone tissue. This imbalance in the oxidative system and immune disruption in the bone microenvironment ultimately leads to bone dysplasia. In this review, we examine the latest developments in mitochondrial respiratory chain regulation and its impacts on maintenance of bone health. Specifically, we explored whether enhancing mitochondrial function can reduce the occurrence of bone cell deterioration and improve bone metabolism. These findings offer prospects for developing bone remodeling biology strategies to treat age-related degenerative diseases.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| |
Collapse
|
32
|
Zhang L, Wang Z, Zhang Y, Ji R, Li Z, Zou J, Gao B. Regulatory cellular and molecular networks in the bone microenvironment during aging. LIFE MEDICINE 2024; 3:lnae019. [PMID: 39871887 PMCID: PMC11749081 DOI: 10.1093/lifemedi/lnae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 01/29/2025]
Abstract
Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging. Age-related bone degradation primarily manifests as reduced bone formation and the increased accumulation of bone marrow fat. Cellular senescence diminishes bone cell vitality, thereby disrupting the balance of bone remodeling. Intensive osteoclast differentiation leads to the generation of more osteoclasts and increased bone resorption. This review provides insight into the impact of aging on bone, encompassing bone cell states during the aging process and bone signaling pathway transformations. It primarily delves into aging-related signaling pathways, such as the bone morphogenetic protein/Smad, Wnt/β-catenin, osteoprotegerin/receptor activator of NF-κB ligand/receptor activator of NF-κB, connexin43/miR21, and nuclear factor erythroid 2-related factor 2/antioxidant response element pathways, seeking to enhance our comprehension of crucial bone cells and their secretory phenotypes during aging. Furthermore, the precise molecular regulatory mechanisms underlying the interactions between bone signaling pathways and aging are investigated.
Collapse
Affiliation(s)
- Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yuan Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Rui Ji
- Department of Orthopedic Surgery, Xijing Hospital, Airforce Medical University, Xi'an 710032, China
| | - Zhiben Li
- Department of Orthopedic Surgery, Xijing Hospital, Airforce Medical University, Xi'an 710032, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Airforce Medical University, Xi'an 710032, China
| |
Collapse
|
33
|
Marques-Carvalho A, Silva B, Pereira FB, Kim HN, Almeida M, Sardão VA. Oestradiol and osteoclast differentiation: Effects on p53 and mitochondrial metabolism. Eur J Clin Invest 2024; 54:e14195. [PMID: 38519718 DOI: 10.1111/eci.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Oestrogen deficiency increases bone resorption, contributing to osteoporosis development. Yet, the mechanisms mediating the effects of oestrogen on osteoclasts remain unclear. This study aimed to elucidate the early metabolic alteration induced by RANKL, the essential cytokine in osteoclastogenesis and 17-beta-oestradiol (E2) on osteoclast progenitor cells, using RAW 264.7 macrophage cell line and primary bone marrow-derived macrophages as biological models. RESULTS This research demonstrated that, in osteoclast precursors, RANKL stimulates complex I activity, oxidative phosphorylation (OXPHOS) and mitochondria-derived ATP production as early as 3 h of exposure. This effect on mitochondrial bioenergetics is associated with an increased capacity to oxidize TCA cycle substrates, fatty acids and amino acids. E2 inhibited all effects of RANKL on mitochondria metabolism. In the presence of RANKL, E2 also decreased cell number and stimulated the mitochondrial-mediated apoptotic pathway, detected as early as 3 h. Further, the pro-apoptotic effects of E2 during osteoclast differentiation were associated with an accumulation of p392S-p53 in mitochondria. CONCLUSIONS These findings elucidate the early effects of RANKL on osteoclast progenitor metabolism and suggest novel p53-mediated mechanisms that contribute to postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Adriana Marques-Carvalho
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Beatriz Silva
- Centre for Informatics and Systems, University of Coimbra, Coimbra, Portugal
| | - Francisco B Pereira
- Centre for Informatics and Systems, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Coimbra, Portugal
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Aging (MIA-Portugal), University of Coimbra, Portugal
| |
Collapse
|
34
|
Huang X, Lan Y, Shen J, Zhao X, Zhou Y, Wu W, Mao J, Wu Y, Xie Z, Chen Z. M2 macrophages secrete glutamate-containing extracellular vesicles to alleviate osteoporosis by reshaping osteoclast precursor fate. Mol Ther 2024; 32:1158-1177. [PMID: 38332583 PMCID: PMC11163204 DOI: 10.1016/j.ymthe.2024.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Osteoclast precursors (OCPs) are thought to commit to osteoclast differentiation, which is accelerated by aging-related chronic inflammation, thereby leading to osteoporosis. However, whether the fate of OCPs can be reshaped to transition into other cell lineages is unknown. Here, we showed that M2 macrophage-derived extracellular vesicles (M2-EVs) could reprogram OCPs to downregulate osteoclast-specific gene expression and convert OCPs to M2 macrophage-like lineage cells, which reshaped the fate of OCPs by delivering the molecular metabolite glutamate. Upon delivery of glutamate, glutamine metabolism in OCPs was markedly enhanced, resulting in the increased production of α-ketoglutarate (αKG), which participates in Jmjd3-dependent epigenetic reprogramming, causing M2-like macrophage differentiation. Thus, we revealed a novel transformation of OCPs into M2-like macrophages via M2-EVs-initiated metabolic reprogramming and epigenetic modification. Our findings suggest that M2-EVs can reestablish the balance between osteoclasts and M2 macrophages, alleviate the symptoms of bone loss, and constitute a new approach for bone-targeted therapy to treat osteoporosis.
Collapse
Affiliation(s)
- Xiaoyuan Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China
| | - Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China
| | - Xiaomin Zhao
- Department of Stomatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China
| | - Jiajie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China
| | - Yuzhu Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China.
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China.
| |
Collapse
|
35
|
Li Y, Liu W, Zhao R, An Y, Zhang M, Ren X, He H. Yunnan Baiyao Inhibits Periodontitis by Suppressing the Autophagic Flux. Int Dent J 2024; 74:284-293. [PMID: 37852809 PMCID: PMC10988253 DOI: 10.1016/j.identj.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Yunnan Baiyao (YNBY), a traditional Chinese medicine, is renowned for its anti-inflammatory properties. Recent studies have suggested that YNBY plays a significant role in inhibiting osteoclast differentiation and autophagy, which are essential processes in inflammation and bone resorption associated with periodontitis. However, the precise relationship between autophagy and the mechanism by which YNBY inhibits osteoclastogenesis remains unexplored.The primary objective of this study was to investigate the inhibitory effects of YNBY on the process of osteoclastogenesis and its potential in preventing inflammatory bone loss. METHODS The animals were subjected to sacrifice at intervals of 2, 4, and 6 weeks postintervention whilst under deep anaesthesia, and specimens were subsequently collected. The specimens were subjected to hematoxylin and eosin (HE) staining, in addition to tartrate-resistant acid phosphatase (TRAP) staining and subsequently imaged employing a digital scanner. The confirmation of osteoclast (OC) differentiation and autophagic flux was achieved through various techniques, including western blotting, transmission electron microscopy (TEM), TRAP staining, pit formation assay, and immunofluorescence. RESULTS The microcomputed tomography images provided evidence of the effective inhibition of alveolar bone absorption at 2, 4, and 6 weeks following YNBY treatment. Additionally, the histomorphometric evaluations of tissue segments stained with HE and TRAP, which involved measuring the distance between the alveolar bone crest (ABC) and cementoenamel junction (CEJ) and quantifying TRAP-positive OCs, yielded comparable results to those obtained through computed tomography analysis. YNBY treatment resulted in a decrease in the CEJ-ABC distance and inhibition of OC differentiation. Furthermore, in vitro studies showed that the autophagy modulators rapamycin (RAP) and 3-methyladenine (3-MA) significantly affected OC differentiation and function. YNBY attenuated the impact of RAP on the differentiation of OCs, autophagy-related factor activation, and bone resorption. CONCLUSIONS We hypothesise that YNBY suppresses the differentiation of OC and bone resorption by blocking autophagy. This study reveals that targeting autophagy might be a new alternative treatment methodology for periodontitis treatment.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Wang Liu
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Ruoyu Zhao
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yuanyuan An
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Mingzhu Zhang
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Xiaobin Ren
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Hongbing He
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China.
| |
Collapse
|
36
|
Weng S, Fu H, Xu S, Li J. Validating core therapeutic targets for osteoporosis treatment based on integrating network pharmacology and informatics. SLAS Technol 2024; 29:100122. [PMID: 38364892 DOI: 10.1016/j.slast.2024.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Our goal was to find metabolism-related lncRNAs that were associated with osteoporosis (OP) and construct a model for predicting OP progression using these lncRNAs. METHODS The GEO database was employed to obtain gene expression profiles. The WGCNA technique and differential expression analysis were used to identify hypoxia-related lncRNAs. A Lasso regression model was applied to select 25 hypoxia-related genes, from which a classification model was created. Its robust classification performance was confirmed with an area under the ROC curve close to 1, as verified on the validation set. Concurrently, we constructed a ceRNA network based on these genes to unveil potential regulatory processes. Biologically active compounds of STZYD were identified using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) database. BATMAN was used to identify its targets, and we obtained OP-related genes from Malacards and DisGeNET, followed by identifying intersection genes with metabolism-related genes. A pharmacological network was then constructed based on the intersecting genes. The pharmacological network was further integrated with the ceRNA network, resulting in the creation of a comprehensive network that encompasses herb-active components, pathways, lncRNAs, miRNAs, and targets. Expression levels of hypoxia-related lncRNAs in mononuclear cells isolated from peripheral blood of OP and normal patients were subsequently validated using quantitative real-time PCR (qRT-PCR). Protein levels of RUNX2 were determined through a western blot assay. RESULTS CBFB, GLO1, NFKB2 and PIK3CA were identified as central therapeutic targets, and ADD3-AS1, DTX2P1-UPK3BP1-PMS2P11, TTTY1B, ZNNT1 and LINC00623 were identified as core lncRNAs. CONCLUSIONS Our work uncovers a possible therapeutic mechanism for STZYD, providing a potential therapeutic target for OP. In addition, a prediction model of metabolism-related lncRNAs of OP progression was constructed to provide a reference for the diagnosis of OP patients.
Collapse
Affiliation(s)
- Shiyang Weng
- Department of Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Huichao Fu
- Department of Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Shengxiang Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310009, China.
| | - Jieruo Li
- Department of Sport Medicine, Institute of Orthopedics Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Peng X, Wang T, Wang Q, Zhao Y, Xu H, Yang H, Gu Y, Tao Y, Yan B, Xu Y, Geng D. Pan-histone deacetylase inhibitor vorinostat suppresses osteoclastic bone resorption through modulation of RANKL-evoked signaling and ameliorates ovariectomy-induced bone loss. Cell Commun Signal 2024; 22:160. [PMID: 38439009 PMCID: PMC10913587 DOI: 10.1186/s12964-024-01525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/11/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Estrogen deficiency-mediated hyperactive osteoclast represents the leading role during the onset of postmenopausal osteoporosis. The activation of a series of signaling cascades triggered by RANKL-RANK interaction is crucial mechanism underlying osteoclastogenesis. Vorinostat (SAHA) is a broad-spectrum pan-histone deacetylase inhibitor (HDACi) and its effect on osteoporosis remains elusive. METHODS The effects of SAHA on osteoclast maturation and bone resorptive activity were evaluated using in vitro osteoclastogenesis assay. To investigate the effect of SAHA on the osteoclast gene networks during osteoclast differentiation, we performed high-throughput transcriptome sequencing. Molecular docking and the assessment of RANKL-induced signaling cascades were conducted to confirm the underlying regulatory mechanism of SAHA on the action of RANKL-activated osteoclasts. Finally, we took advantage of a mouse model of estrogen-deficient osteoporosis to explore the clinical potential of SAHA. RESULTS We showed here that SAHA suppressed RANKL-induced osteoclast differentiation concentration-dependently and disrupted osteoclastic bone resorption in vitro. Mechanistically, SAHA specifically bound to the predicted binding site of RANKL and blunt the interaction between RANKL and RANK. Then, by interfering with downstream NF-κB and MAPK signaling pathway activation, SAHA negatively regulated the activity of NFATc1, thus resulting in a significant reduction of osteoclast-specific gene transcripts and functional osteoclast-related protein expression. Moreover, we found a significant anti-osteoporotic role of SAHA in ovariectomized mice, which was probably realized through the inhibition of osteoclast formation and hyperactivation. CONCLUSION These data reveal a high affinity between SAHA and RANKL, which results in blockade of RANKL-RANK interaction and thereby interferes with RANKL-induced signaling cascades and osteoclastic bone resorption, supporting a novel strategy for SAHA application as a promising therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Tianhao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214000, Jiangsu, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Ye Gu
- Department of Orthopedics, Changshu First People's Hospital Affiliated to Soochow University, Changshu, 215500, Jiangsu, China
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Bangsheng Yan
- Department of Orthopedics, Huishan Second People's Hospital, Wuxi, 214174, China.
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
38
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
39
|
Peng R, Dong Y, Zheng M, Kang H, Wang P, Zhu M, Song K, Wu W, Li F. IL-17 promotes osteoclast-induced bone loss by regulating glutamine-dependent energy metabolism. Cell Death Dis 2024; 15:111. [PMID: 38316760 PMCID: PMC10844210 DOI: 10.1038/s41419-024-06475-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Osteoclasts consume an amount of adenosine triphosphate (ATP) to perform their bone resorption function in the development of osteoporosis. However, the mechanism underlying osteoclast energy metabolism has not been fully elucidated. In addition to glucose, glutamine (Glu) is another major energy carrier to produce ATP. However, the role of Glu metabolism in osteoclasts and the related molecular mechanisms has been poorly elucidated. Here we show that Glu is required for osteoclast differentiation and function, and that Glu deprivation or pharmacological inhibition of Glu transporter ASCT2 by V9302 suppresses osteoclast differentiation and their bone resorptive function. In vivo treatment with V9302 improved OVX-induced bone loss. Mechanistically, RNA-seq combined with in vitro and in vivo experiments suggested that Glu mediates the role of IL-17 in promoting osteoclast differentiation and in regulating energy metabolism. In vivo IL-17 treatment exacerbated OVX-induced bone loss, and this effect requires the participation of Glu or its downstream metabolite α-KG. Taken together, this study revealed a previously unappreciated regulation of IL-17 on energy metabolism, and this regulation is Glu-dependent. Targeting the IL-17-Glu-energy metabolism axis may be a potential therapeutic strategy for the treatment of osteoporosis and other IL-17 related diseases.
Collapse
Affiliation(s)
- Renpeng Peng
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zheng
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Pengju Wang
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meipeng Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Wu
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Feng Li
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Canalis E, Schilling L, Yu J, Denker E. NOTCH2 promotes osteoclast maturation and metabolism and modulates the transcriptome profile during osteoclastogenesis. J Biol Chem 2024; 300:105613. [PMID: 38159855 PMCID: PMC10837628 DOI: 10.1016/j.jbc.2023.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
Notch signaling plays a key regulatory role in bone remodeling and NOTCH2 enhances osteoclastogenesis, an effect that is mostly mediated by its target gene Hes1. In the present study, we explored mechanisms responsible for the enhanced osteoclastogenesis in bone marrow-derived macrophages (BMM) from Notch2tm1.1Ecan, harboring a NOTCH2 gain-of-function mutation, and control mice. Notch2tm1.1Ecan mice are osteopenic and have enhanced osteoclastogenesis. Bulk RNA-Seq and gene set enrichment analysis of Notch2tm1.1Ecan BMMs cultured in the presence of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand revealed enrichment of genes associated with enhanced cell metabolism, aerobic respiration, and mitochondrial function, all associated with osteoclastogenesis. These pathways were not enhanced in the context of a Hes1 inactivation. Analysis of single cell RNA-Seq data of pooled control and Notch2tm1.1Ecan BMMs treated with M-CSF or M-CSF and receptor activator of NF-κB ligand for 3 days identified 11 well-defined cellular clusters. Pseudotime trajectory analysis indicated a trajectory of clusters expressing genes associated with osteoclast progenitors, osteoclast precursors, and mature cells. There were an increased number of cells expressing gene markers associated with the osteoclast and with an unknown, albeit related, cluster in Notch2tm1.1Ecan than in control BMMs as well as enhanced expression of genes associated with osteoclast progenitors and precursors in Notch2tm1.1Ecan cells. In conclusion, BMM cultures display cellular heterogeneity, and NOTCH2 enhances osteoclastogenesis, increases mitochondrial and metabolic activity of osteoclasts, and affects cell cluster allocation in BMMs.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; Department of Medicine, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA.
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Emily Denker
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
41
|
Zhang Z, Meng Y, Lin T, Zhang Z, Tao Z, Yin H, Yang F, Zhou X. Dancr-BRG1 regulates Nfatc1 transcription and Pgc1β-dependent metabolic shifts in osteoclastogenesis. Proc Natl Acad Sci U S A 2024; 121:e2313656121. [PMID: 38252822 PMCID: PMC10835043 DOI: 10.1073/pnas.2313656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Long non-coding RNA (lncRNA) serves as a vital regulator of bone metabolism, but its role in pathologically overactive osteoclast differentiation remains elusive. Here, we identify lncRNA Dancr (Differentiation Antagonizing Non-protein Coding RNA) as a critical suppressor of osteoclastogenesis and bone resorption, which is down-regulated in response to estrogen deficiency. Global or osteoclast-specific Dancr Knockout mice display significant trabecular bone deterioration and enhanced osteoclast activity, but minimal alteration of bone formation. Moreover, the bone-targeted delivery of Dancr by Adeno-associated viral remarkably attenuates ovariectomy-induced osteopenia in mice. Mechanistically, Dancr establishes a direct interaction with Brahma-related gene 1 to prevent its binding and preserve H3K27me3 enrichment at the nuclear factor of activated T cells 1 and proliferator-activated receptor gamma coactivator 1-beta promoters, thereby maintaining appropriate expression of osteoclastic genes and metabolic programs during osteoclastogenesis. These results demonstrate that Dancr is a key molecule maintaining proper osteoclast differentiation and bone homeostasis under physiological conditions, and Dancr overexpression constitutes a potential strategy for treating osteoporosis.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
- Department of Orthopedic rehabilitation, Qingdao Special Servicemen Recuperation Center of People's Liberation Army Navy, Qingdao266000, China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Tao Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Zhanrong Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Zhengbo Tao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Haozan Yin
- Department of Medical Genetics, Second Military Medical University (Naval Medical University), Shanghai200433, China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai200433, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
- Translational research center of orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai201600, China
| |
Collapse
|
42
|
Zhang J, Zhang L, Yao G, Zhao H, Qiao P, Wu S. lncRNA-Gm5532 regulates osteoclast differentiation through the miR-125a-3p/TRAF6 axis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:54-61. [PMID: 38098360 PMCID: PMC10875346 DOI: 10.3724/abbs.2023245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/27/2023] [Indexed: 01/26/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of bone metabolism. In this study, lncRNA microarray analysis was used to identify differentially expressed lncRNAs in differentiated osteoclasts. lncRNA-Gm5532 is highly expressed during osteoclast differentiation. lncRNA-Gm5532 knockdown impairs osteoclast formation and bone resorption. Mechanistic experiments show that lncRNA-Gm5532 functions as a competing endogenous RNA (ceRNA) and acts as a sponge for miR-125a-3p, which promotes TNF receptor-associated factor 6 (TRAF6) expression. miR-125a-3p mimics suppress osteoclast differentiation and TAK1/NF-κB/MAPK signaling. The miR-125a-3p inhibitor reverses the negative effects of siGm5532 on osteoclast differentiation. In summary, our study reveals that lncRNA-Gm5532 functions as an activator in osteoclast differentiation by targeting the miR-125a-3p/TRAF6 axis, making it a novel biomarker and potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Jian Zhang
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Lingyan Zhang
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Gang Yao
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Hai Zhao
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Penghai Qiao
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Shuguang Wu
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| |
Collapse
|
43
|
Chen Y, Lin L, Ruan S, Ye J, Dai Z, Mao G, Xi Y, Wang C, Zhao Q. DNA Demethylation of Promoter Region Facilitates Atoh-1-Induced Interleukin-19 Expression Activation in Bone Marrow Monocytes of Old Mice. Aging Dis 2024; 16:AD.2024.0108. [PMID: 38300634 PMCID: PMC11745455 DOI: 10.14336/ad.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
With increasing age, there is a notable increase in the differentiation of bone marrow-derived mononuclear cells (BMMs) into osteoclasts, accompanied by a concurrent rise in both osteoclast quantity and activity. This escalation in osteoclastic activity accelerates bone resorption, which in turn contributes to age-related bone loss and metabolic bone disorders, notably osteoporosis. Our study confirms that elevated IL-19 expression promotes aging-induced bone loss in aged mice and sheds light on the regulatory mechanisms upstream of IL-19 expression and secretion. Primarily, it is the methylation status of the IL-19 gene's promoter region that impacts Atonal BHLH Transcription Factor 1 (Atoh1)'s ability to bind to the promoter. We found that this specific mechanism involves reduced expression and binding affinity of Dnmt1 to the IL-19 promoter region. The findings of our study suggest that targeting IL-19 could be a potential strategy for managing bone loss-related conditions and enhance the current understanding of how DNA methylation levels contribute to age-related bone loss.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Longshuai Lin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shengzhe Ruan
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianxin Ye
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhicheng Dai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guangzhen Mao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Yongming Xi
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changping Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Zhang T, Wang L, Duan X, Niu Y, Li M, Yun L, Sun H, Ma Y, Guo Y. Sirtuins mediate mitochondrial quality control mechanisms: a novel therapeutic target for osteoporosis. Front Endocrinol (Lausanne) 2024; 14:1281213. [PMID: 38264287 PMCID: PMC10805026 DOI: 10.3389/fendo.2023.1281213] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024] Open
Abstract
Mitochondria plays a role in cell differentiation and apoptosis processes. Maintaining mitochondrial function is critical, and this involves various aspects of mitochondrial quality control such as protein homeostasis, biogenesis, dynamics, and mitophagy. Osteoporosis, a metabolic bone disorder, primarily arises from two factors: the dysregulation between lipogenic and osteogenic differentiation of aging bone marrow mesenchymal stem cells, and the imbalance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Mitochondrial quality control has the potential to mitigate or even reverse the effects. Among the Sirtuin family, consisting of seven Sirtuins (SIRT1-7), SIRT1-SIRT6 play a crucial role in maintaining mitochondrial quality control. Additionally, SIRT1, SIRT3, SIRT6, and SIRT7 are directly involved in normal bone development and homeostasis by modulating bone cells. However, the precise mechanism by which these Sirtuins exert their effects remains unclear. This article reviews the impact of various aspects of mitochondrial quality control on osteoporosis, focusing on how SIRT1, SIRT3, and SIRT6 can improve osteoporosis by regulating mitochondrial protein homeostasis, biogenesis, and mitophagy. Furthermore, we provide an overview of the current state of clinical and preclinical drugs that can activate Sirtuins to improve osteoporosis. Specific Sirtuin-activating compounds are effective, but further studies are needed. The findings of this study may offer valuable insights for future research on osteoporosis and the development of clinical prevention and therapeutic target strategies.
Collapse
Affiliation(s)
- Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiping Duan
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Yun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haitao Sun
- Department of Orthopedic, Wuxi Huishan District People’s Hospital, Wuxi, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
45
|
Cao S, Li Y, Song R, Meng X, Fuchs M, Liang C, Kachler K, Meng X, Wen J, Schlötzer-Schrehardt U, Taudte V, Gessner A, Kunz M, Schleicher U, Zaiss MM, Kastbom A, Chen X, Schett G, Bozec A. L-arginine metabolism inhibits arthritis and inflammatory bone loss. Ann Rheum Dis 2024; 83:72-87. [PMID: 37775153 PMCID: PMC10803985 DOI: 10.1136/ard-2022-223626] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES To investigate the effect of the L-arginine metabolism on arthritis and inflammation-mediated bone loss. METHODS L-arginine was applied to three arthritis models (collagen-induced arthritis, serum-induced arthritis and human TNF transgenic mice). Inflammation was assessed clinically and histologically, while bone changes were quantified by μCT and histomorphometry. In vitro, effects of L-arginine on osteoclast differentiation were analysed by RNA-seq and mass spectrometry (MS). Seahorse, Single Cell ENergetIc metabolism by profilIng Translation inHibition and transmission electron microscopy were used for detecting metabolic changes in osteoclasts. Moreover, arginine-associated metabolites were measured in the serum of rheumatoid arthritis (RA) and pre-RA patients. RESULTS L-arginine inhibited arthritis and bone loss in all three models and directly blocked TNFα-induced murine and human osteoclastogenesis. RNA-seq and MS analyses indicated that L-arginine switched glycolysis to oxidative phosphorylation in inflammatory osteoclasts leading to increased ATP production, purine metabolism and elevated inosine and hypoxanthine levels. Adenosine deaminase inhibitors blocking inosine and hypoxanthine production abolished the inhibition of L-arginine on osteoclastogenesis in vitro and in vivo. Altered arginine levels were also found in RA and pre-RA patients. CONCLUSION Our study demonstrated that L-arginine ameliorates arthritis and bone erosion through metabolic reprogramming and perturbation of purine metabolism in osteoclasts.
Collapse
Affiliation(s)
- Shan Cao
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixuan Li
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Song
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianyi Meng
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Maximilian Fuchs
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Chunguang Liang
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Bioinformatics, Biocenter, University of Würzburg Am Hubland, Würzburg, Germany
| | - Katerina Kachler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Xinyu Meng
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinming Wen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Core Facility for Metabolomics, Department of Medicine, Philipps University of Marburg, Marburg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Alf Kastbom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| |
Collapse
|
46
|
Zhang L, Kwack KH, Thiyagarajan R, Mullaney KK, Lamb NA, Bard JE, Sohn J, Seldeen KL, Arao Y, Blackshear PJ, Abrams SI, Troen BR, Kirkwood KL. Tristetraprolin regulates the skeletal phenotype and osteoclastogenic potential through monocytic myeloid-derived suppressor cells. FASEB J 2024; 38:e23338. [PMID: 38038723 PMCID: PMC11128769 DOI: 10.1096/fj.202301703r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Tristetraprolin (TTP; also known as NUP475, GOS24, or TIS11), encoded by Zfp36, is an RNA-binding protein that regulates target gene expression by promoting mRNA decay and preventing translation. Although previous studies have indicated that TTP deficiency is associated with systemic inflammation and a catabolic-like skeletal phenotype, the mechanistic underpinnings remain unclear. Here, using both TTP-deficient (TTPKO) and myeloid-specific TTPKO (cTTPKO) mice, we reveal that global absence or loss of TTP in the myeloid compartment results in a reduced bone microarchitecture, whereas gain-of-function TTP knock-in (TTPKI) mice exhibit no significant loss of bone microarchitecture. Flow cytometry analysis revealed a significant immunosuppressive immune cell phenotype with increased monocytic myeloid-derived suppressor cells (M-MDSCs) in TTPKO and cTTPKO mice, whereas no significant changes were observed in TTPKI mice. Single-cell transcriptomic analyses of bone marrow myeloid progenitor cell populations indicated a dramatic increase in early MDSC marker genes for both cTTPKO and TTPKO bone marrow populations. Consistent with these phenotypic and transcriptomic data, in vitro osteoclastogenesis analysis of bone marrow M-MDSCs from cTTPKO and TTPKO displayed enhanced osteoclast differentiation and functional capacity. Focused transcriptomic analyses of differentiated M-MDSCs showed increased osteoclast-specific transcription factors and cell fusion gene expression. Finally, functional data showed that M-MDSCs from TTP loss-of-function mice were capable of osteoclastogenesis and bone resorption in a context-dependent manner. Collectively, these findings indicate that TTP plays a central role in regulating osteoclastogenesis through multiple mechanisms, including induction of M-MDSCs that appear to regulate skeletal phenotype.
Collapse
Affiliation(s)
| | - Kyu Hwan Kwack
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Ramkumar Thiyagarajan
- Departments of Medicine, University at Buffalo, Buffalo, NY, USA
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, USA
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, USA
| | - Kylie K. Mullaney
- Departments of Oral Biology, University at Buffalo, Buffalo, NY, USA
| | - Natalie A. Lamb
- Departments of Biochemistry, University at Buffalo, Buffalo, NY, USA
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jonathan E. Bard
- Departments of Biochemistry, University at Buffalo, Buffalo, NY, USA
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jiho Sohn
- Departments of Oral Biology, University at Buffalo, Buffalo, NY, USA
- Departments of Medicine, University at Buffalo, Buffalo, NY, USA
| | - Kenneth L. Seldeen
- Departments of Medicine, University at Buffalo, Buffalo, NY, USA
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, USA
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, USA
| | - Yukitomo Arao
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Departments of Biochemistry & Medicine, Duke University Medical Center, Durham, NC, USA
| | - Scott I. Abrams
- Departments of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Bruce R. Troen
- Departments of Medicine, University at Buffalo, Buffalo, NY, USA
- Departments of Biochemistry, University at Buffalo, Buffalo, NY, USA
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, USA
| | - Keith L. Kirkwood
- Departments of Oral Biology, University at Buffalo, Buffalo, NY, USA
- Head & Neck/Plastic & Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
47
|
Sun D, Chang Q, Lu F. Immunomodulation in diabetic wounds healing: The intersection of macrophage reprogramming and immunotherapeutic hydrogels. J Tissue Eng 2024; 15:20417314241265202. [PMID: 39071896 PMCID: PMC11283672 DOI: 10.1177/20417314241265202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Diabetic wound healing presents a significant clinical challenge due to the interplay of systemic metabolic disturbances and local inflammation, which hinder the healing process. Macrophages undergo a phenotypic shift from M1 to M2 during wound healing, a transition pivotal for effective tissue repair. However, in diabetic wounds, the microenvironment disrupts this phenotypic polarization, perpetuating inflammation, and impeding healing. Reprograming macrophages to restore their M2 phenotype offers a potential avenue for modulating the wound immune microenvironment and promoting healing. This review elucidates the mechanisms underlying impaired macrophage polarization toward the M2 phenotype in diabetic wounds and discusses novel strategies, including epigenetic and metabolic interventions, to promote macrophage conversion to M2. Hydrogels, with their hydrated 3D cross-linked structure, closely resemble the physiological extracellular matrix and offer advantageous properties such as biocompatibility, tunability, and versatility. These characteristics make hydrogels promising candidates for developing immunomodulatory materials aimed at addressing diabetic wounds. Understanding the role of hydrogels in immunotherapy, particularly in the context of macrophage reprograming, is essential for the development of advanced wound care solutions. This review also highlights recent advancements in immunotherapeutic hydrogels as a step toward precise and effective treatments for diabetic wounds.
Collapse
Affiliation(s)
- Dan Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Riddle RC, Choquette GM. Serine synthesis promotes bone degradation. Nat Metab 2024; 6:8-9. [PMID: 38200113 DOI: 10.1038/s42255-023-00949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Affiliation(s)
- Ryan C Riddle
- Division of Musculoskeletal Science, Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
- Research and Development Service, Baltimore VA Medical Center, Baltimore, MD, USA.
| | - Gillian M Choquette
- Division of Musculoskeletal Science, Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Wu B, Chen M, Meng L, Tian Q, Dong Z. Osteoclasts Link Dysregulated Peripheral Degradation Processes and Accelerated Progression in Alzheimer's Disease. J Alzheimers Dis 2024; 99:773-785. [PMID: 38701149 DOI: 10.3233/jad-240096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background The amyloid-β (Aβ) enhances the number and activity of blood monocyte-derived osteoclasts (OCs). Individuals with osteoporosis (OP) face an increased risk of developing dementia or Alzheimer's disease (AD). Despite this association, the contribution of bone-resorbing OCs to the progression of AD pathology remains unclear. Objective Our objective was to investigate the potential impacts of OCs on the development of AD pathology. Methods We conducted targeted analysis of publicly available whole blood transcriptomes from patients with AD to characterize the blood molecular signatures and pathways associated with hyperactive OCs. In addition, we used APP23 transgenic (APP23 TG) AD mouse model to assess the effects of OCs pharmacological blockade on AD pathology and behavior. Results Patients with AD exhibited increased osteoclastogenesis signature in their blood cells, which appears to be positively correlated with dysfunction of peripheral clearance of Aβ mediated by immune cells. Long-term anti-resorptive intervention with Alendronate inhibited OC activity in APP23 mice, leading to improvements in peripheral monocyte Aβ-degrading enzyme expression, Aβ-deposition, and memory decline. Conclusions Our findings suggest that OCs have a disease-promoting role in the development and progression of AD, possibly linked to their modulation of peripheral immunity. These findings guide future research to further elucidate the connection between OP and AD pathogenesis, highlighting the potential benefits of preventing OP in alleviating cognitive burden.
Collapse
Affiliation(s)
- Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mulan Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Meng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Qiuyun Tian
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Ramos-Junior ES, Dawson S, Ryan W, Clinebell B, Serrano-Lopez R, Russell M, Brumbaugh R, Zhong R, Gonçalves Fernandes J, Shaddox LM, Cutler CW, Morandini AC. The protective role of CD73 in periodontitis: preventing hyper-inflammatory fibroblasts and driving osteoclast energy metabolism. FRONTIERS IN ORAL HEALTH 2023; 4:1308657. [PMID: 38152410 PMCID: PMC10751373 DOI: 10.3389/froh.2023.1308657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Periodontitis is an immune-mediated inflammatory disease affecting almost half of the adult population and is the leading cause of tooth loss in the United States. The role of extracellular nucleotide signaling including nucleotide metabolizing enzyme CD73 adds an important layer of interaction of purine mediators capable of orchestrating inflammatory outcomes. CD73 is able to catabolize 5'-adenosine monophosphate into adenosine at the extracellular level, playing a critical role in regulating many processes under physiological and pathological conditions. Here, we explored the role of CD73 in ligature-induced periodontitis in vivo comparing wild-type C57Bl/6J and CD73-deficient mice. Methods We assessed gingival levels of inflammatory cytokines in vivo and in murine gingival fibroblasts in vitro, as well as bone loss, and RANKL-induced osteoclastogenesis. We have also analyzed CD73 mRNA in samples derived from patients diagnosed with severe periodontitis. Results Our results in mice show that lack of CD73 resulted in increased inflammatory cytokines and chemokines such as IL-1β, IL-17, Cxcl1 and Cxcl2 in diseased gingiva relative to the healthy-controls and in comparison with the wild type. CD73-deficient gingival fibroblasts also manifested a defective healing response with higher MMP-13 levels. CD73-deficient animals also showed increased osteoclastogenesis in vitro with increased mitochondrial metabolism typified by excessive activation of oxidative phosphorylation, increased mitochondrial membrane potential and accumulation of hydrogen peroxide. Micro-CT analysis revealed that lack of CD73 resulted in decreased bone mineral density, decreased trabecular bone volume and thickness as well as decreased bone volume in long bones. CD73 deficiency also resulted in increased alveolar bone loss in experimental periodontitis. Correlative studies of gingival samples from severe (Grade C) periodontitis showed decreased levels of CD73 compared to healthy controls, further supporting the relevance of our murine results. Conclusion In conclusion, CD73 appears to play a protective role in the gingival periodontal tissue and bone homeostasis, regulating hyper-inflammatory state of stromal fibroblasts and osteoclast energy metabolism and being an important candidate for future target therapies to prevent or control immune-mediated inflammatory and osteolytic diseases.
Collapse
Affiliation(s)
- Erivan S. Ramos-Junior
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Shantiece Dawson
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Weston Ryan
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Braden Clinebell
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Rogelio Serrano-Lopez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Marsha Russell
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Rylee Brumbaugh
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Roger Zhong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jussara Gonçalves Fernandes
- Division of Periodontology and Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Luciana M. Shaddox
- Division of Periodontology and Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Christopher W. Cutler
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Ana Carolina Morandini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|