1
|
Bazargani A, Hejazi M, Fernandez M, Cordeiro A, Tsala Ebode J, Lewinski N, da Rocha S, Golshahi L. PEGylated solid lipid nanoparticles for the intranasal delivery of combination antiretroviral therapy composed of Atazanavir and Elvitegravir to treat NeuroAIDS. Int J Pharm 2025; 670:125166. [PMID: 39761706 DOI: 10.1016/j.ijpharm.2025.125166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/14/2025]
Abstract
Intranasal drug administration offers a promising strategy for delivering combination antiretroviral therapy (cART) directly to the central nervous system to treat NeuroAIDS, leveraging the nose-to-brain route to bypass the blood-brain barrier. However, challenges such as enzymatic degradation in the nasal mucosa, low permeability, and mucociliary clearance within the nasal cavity must first be addressed to make this route feasible. To overcome these barriers, this study developed solid lipid nanoparticles (SLNs) with varying PEGylation levels (0 %, 5 %, 10 %, and 15 % w/w of PEGylated lipid), co-encapsulated with Elvitegravir (EVG) and Atazanavir (ATZ) as an integrase and protease inhibitor, respectively. Pre-formulation studies confirmed the compatibility of the drugs with the excipients. Characterization showed that PEGylation reduces SLN size by approximately up to 12 % while maintaining monodispersity and a high encapsulation efficiency of over 99 % for both EVG and ATZ in their amorphous forms. Incubation of the formulations in artificial nasal mucus revealed that increased PEGylation consistently reduces nanoparticle aggregation and mean aggregate size, suggesting improved SLN stability in the mucus. Importantly, higher PEGylation levels significantly enhanced model drug permeability across the nasal mucus barrier by up to 10-fold. Lastly, cellular uptake studies using the RPMI 2650 nasal epithelial cell line indicated that PEGylation does not reduce nanoparticle uptake rates. These findings highlight the potential of PEGylated SLNs as an effective vehicle for enhancing the intranasal delivery of cART to treat NeuroAIDS. However, further in vivo studies are needed to confirm the brain targeting potential of this formulation.
Collapse
Affiliation(s)
- Arya Bazargani
- College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; School of Pharmacy, Virginia Commonwealth University, 410 N 12th St, Richmond, VA 23298, USA.
| | - Mohammad Hejazi
- College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA.
| | - Matthew Fernandez
- School of Pharmacy, Virginia Commonwealth University, 410 N 12th St, Richmond, VA 23298, USA.
| | - Arthur Cordeiro
- School of Pharmacy, Virginia Commonwealth University, 410 N 12th St, Richmond, VA 23298, USA.
| | - Johanna Tsala Ebode
- College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA.
| | - Nastassja Lewinski
- College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA.
| | - Sandro da Rocha
- School of Pharmacy, Virginia Commonwealth University, 410 N 12th St, Richmond, VA 23298, USA.
| | - Laleh Golshahi
- College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
2
|
Boustani A, Ford MK, Kulbe JR, Laird AE, Shu L, Spencer M, Avalos B, Walter KC, Ellis RJ, Fields JA. Increased Growth Differentiation Factor 15 Levels Are Associated with HIV-Associated Neurocognitive Impairment: A Pilot Study. Brain Sci 2025; 15:49. [PMID: 39851417 PMCID: PMC11763450 DOI: 10.3390/brainsci15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: HIV-associated neurocognitive impairment (NCI) remains a prevalent issue among people with HIV (PWH) despite advancements in antiretroviral therapy (ART). The pathogenesis of HIV-associated NCI is linked to chronic neuroinflammation caused by HIV, even in those with successful viral suppression. Growth Differentiation Factor 15 (GDF15), a protein involved in inflammatory and metabolic stress responses, has emerged as a key player and potential biomarker for various neurological conditions. This study investigates the relationship between GDF15 expression and HIV-associated NCI. Methods: PWH from the California NeuroAIDS Tissue Network (CNTN) underwent comprehensive neuropsychological exams within 12 months before death and were categorized based on cognitive performance. We examined GDF15 levels in their CSF (Cerebrospinal Fluid) and brain tissues using immunoblotting, immunohistochemistry, double immunolabeling, and ELISA. Results: The cohort was of a similar age across HIV-associated NCI statuses (mean = 40.5), with a predominance of males (77%). The mean plasma viral load was 3.56 log10 copies/mL for Neurocognitively Unimpaired (NUI) PWH and 5.38 log10 copies/mL for people with HIV-associated NCI. GDF15 protein levels were significantly elevated in the frontal cortices of PWH with NCI compared to NUI PWH. Conclusions: The findings indicate that GDF15 may play a role in the pathogenesis of HIV-associated NCI, possibly through neuroinflammatory mechanisms. The strong association between GDF15 levels and cognitive impairment severity suggests its potential as a biomarker for the early detection and monitoring of NCI in PWH.
Collapse
Affiliation(s)
- Ali Boustani
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (A.B.); (M.K.F.); (J.R.K.); (A.E.L.); (L.S.); (M.S.); (B.A.); (K.C.W.)
| | - Mary K. Ford
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (A.B.); (M.K.F.); (J.R.K.); (A.E.L.); (L.S.); (M.S.); (B.A.); (K.C.W.)
| | - Jacqueline R. Kulbe
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (A.B.); (M.K.F.); (J.R.K.); (A.E.L.); (L.S.); (M.S.); (B.A.); (K.C.W.)
| | - Anna E. Laird
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (A.B.); (M.K.F.); (J.R.K.); (A.E.L.); (L.S.); (M.S.); (B.A.); (K.C.W.)
| | - Leeann Shu
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (A.B.); (M.K.F.); (J.R.K.); (A.E.L.); (L.S.); (M.S.); (B.A.); (K.C.W.)
| | - Matthew Spencer
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (A.B.); (M.K.F.); (J.R.K.); (A.E.L.); (L.S.); (M.S.); (B.A.); (K.C.W.)
| | - Bryant Avalos
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (A.B.); (M.K.F.); (J.R.K.); (A.E.L.); (L.S.); (M.S.); (B.A.); (K.C.W.)
| | - Kyle C. Walter
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (A.B.); (M.K.F.); (J.R.K.); (A.E.L.); (L.S.); (M.S.); (B.A.); (K.C.W.)
| | - Ronald J. Ellis
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (A.B.); (M.K.F.); (J.R.K.); (A.E.L.); (L.S.); (M.S.); (B.A.); (K.C.W.)
| |
Collapse
|
3
|
Moschopoulos CD, Alford K, Antoniadou A, Vera JH. Cognitive impairment in people living with HIV: mechanisms, controversies, and future perspectives. Trends Mol Med 2024; 30:1076-1089. [PMID: 38955654 DOI: 10.1016/j.molmed.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Despite the dramatic decrease in HIV-associated neurocognitive impairment (NCI) in the combined antiretroviral treatment (cART) era, subtler neuropsychological complications remain prevalent. In this review, we discuss the changing pathophysiology of HIV-associated NCI, considering recent evidence of HIV neuropathogenesis, and the pivotal role of cART. Furthermore, we address the multifactorial nature of NCI in people living with HIV, including legacy and ongoing insults to the brain, as well as host-specific factors. We also summarize the ongoing debate about the refinement of diagnostic criteria, exploring the strengths and limitations of these recent approaches. Finally, we present current research in NCI management in people living with HIV and highlight the need for using both pharmacological and nonpharmacological pathways toward a holistic approach.
Collapse
Affiliation(s)
- Charalampos D Moschopoulos
- Fourth Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece.
| | - Kate Alford
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Anastasia Antoniadou
- Fourth Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; Department of Medicine, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| |
Collapse
|
4
|
Wagner TA, Tierney C, Huang S, Nichols S, Malee KM, Montañez NA, Coletti A, Spiegel HM, Krotje C, Bone F, Wilkins M, Abuogi L, Purswani M, Bearden A, Wiznia A, Agwu A, Chadwick EG, Richman D, Gandhi M, Mehta P, Macatangay B, Spector SA, Spudich S, Persaud D, Chahroudi A. Prevalence of detectable HIV-DNA and HIV-RNA in cerebrospinal fluid of youth with perinatal HIV and impaired cognition on antiretroviral therapy. AIDS 2024; 38:1494-1504. [PMID: 38814693 PMCID: PMC11239098 DOI: 10.1097/qad.0000000000003937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE Central nervous system (CNS) HIV infection can impact cognition and may be an obstacle to cure in adolescents and young adults with perinatal HIV (AYAPHIV). IMPAACT2015 enrolled AYAPHIV on suppressive antiretroviral therapy (ART) with cognitive impairment to detect and quantify HIV in blood and cerebrospinal fluid (CSF). DESIGN IMPAACT2015 was a U.S.-based multi-site, exploratory, observational study. METHODS Cognitive impairment was defined as NIH Toolbox Fluid Cognition Composite score (FCCS) more than 1 standard deviation below age-adjusted normative group mean. Cell-free HIV-RNA and cell-associated HIV pol/gag -DNA and 10 biomarkers of inflammation/neuronal injury were measured in paired CSF and blood. ART exposure concentrations were quantified in hair. RESULTS Among 24 participants, 20 had successful CSF collection and 18 also met viral suppression criteria. Nine of 18 (50%) were female sex-at-birth, and 14 of 18 (78%) were black. Median (range) age was 20 years (13-27), time on ART was 18.3 years (8.0-25.5), and FCCS was 68 (53-80). HIV-DNA was detected in PBMCs from all participants. In CSF, two of 18 (11%, 95% CI: 1.4-34.7%) participants had detectable cell-free HIV-RNA, while HIV gag or pol -DNA was detectable in 13 of 18 (72%, 95% confidence interval: 47-90). Detectable HIV-DNA in CSF was associated with male sex-at-birth ( P = 0.051), lower CD4 + cell count at enrollment ( P = 0.016), and higher PBMC HIV pol -DNA copies ( P = 0.058). Hair antiretroviral concentrations and biomarkers were not associated with CSF HIV-DNA detection. CONCLUSION We found that a high proportion of AYAPHIV with neurocognitive impairment had CSF cells harboring HIV-DNA during long-term virologic suppression. This evidence of persistent HIV-DNA in CSF suggests that the CNS should be considered in treatment and cure studies.
Collapse
Affiliation(s)
- Thor A. Wagner
- University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Camlin Tierney
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sharon Huang
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Kathleen M. Malee
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | | | - Hans M.L. Spiegel
- Kelly Government Solutions, Contractor to NIAID/NIH/HHS, Rockville, MD, USA
| | | | | | - Megan Wilkins
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lisa Abuogi
- University of Colorado Denver, Denver, CO, USA
| | | | | | | | - Allison Agwu
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ellen G. Chadwick
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | - Monica Gandhi
- University of California San Francisco, San Francisco, CA, USA
| | - Patrick Mehta
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Stephen A. Spector
- University of California San Diego, San Diego, CA, USA
- Rady Children's Hospital, San Diego, San Diego, CA, USA
| | | | | | - Ann Chahroudi
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
5
|
Liu Z, Julius P, Mudenda V, Kang G, Del Valle L, West JT, Wood C. Limited HIV-associated neuropathologies and lack of immune activation in sub-saharan African individuals with late-stage subtype C HIV-1 infection. J Neurovirol 2024; 30:303-315. [PMID: 38943022 DOI: 10.1007/s13365-024-01219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Although previous studies have suggested that subtype B HIV-1 proviruses in the brain are associated with physiological changes and immune activation accompanied with microgliosis and astrogliosis, and indicated that both HIV-1 subtype variation and geographical location might influence the neuropathogenicity of HIV-1 in the brain. The natural course of neuropathogenesis of the most widespread subtype C HIV-1 has not been adequately investigated, especially for people living with HIV (PLWH) in sub-Saharan Africa. To characterize the natural neuropathology of subtype C HIV-1, postmortem frontal lobe and basal ganglia tissues were collected from nine ART-naïve individuals who died of late-stage AIDS with subtype C HIV-1 infection, and eight uninfected deceased individuals as controls. Histological staining was performed on all brain tissues to assess brain pathologies. Immunohistochemistry (IHC) against CD4, p24, Iba-1, GFAP, and CD8 in all brain tissues was conducted to evaluate potential viral production and immune activation. Histological results showed mild perivascular cuffs of lymphocytes only in a minority of the infected individuals. Viral capsid p24 protein was only detected in circulating immune cells of one infected individual, suggesting a lack of productive HIV-1 infection of the brain even at the late-stage of AIDS. Notably, similar levels of Iba-1 or GFAP between HIV + and HIV- brain tissues indicated a lack of microgliosis and astrogliosis, respectively. Similar levels of CD8 + cytotoxic T lymphocyte (CTL) infiltration between HIV + and HIV- brain tissues indicated CTL were not likely to be involved within subtype C HIV-1 infected participants of this cohort. Results from this subtype C HIV-1 study suggest that there is a lack of productive infection and limited neuropathogenesis by subtype C HIV-1 even at late-stage disease, which is in contrast to what was reported for subtype B HIV-1 by other investigators.
Collapse
Affiliation(s)
- Zhou Liu
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Peter Julius
- Department of Pathology and Microbiology, University of Zambia School of Medicine, Lusaka, Zambia
| | - Victor Mudenda
- Department of Pathology, University Teaching Hospital, Lusaka, Zambia
| | - Guobin Kang
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Luis Del Valle
- Department of Pathology and Medicine, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - John T West
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Charles Wood
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- , 1700 Tulane Avenue, LCRC Rm 614, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
Fernandes JP, Branton WG, Cohen EA, Koopman G, Kondova I, Gelman BB, Power C. Caspase cleavage of gasdermin E causes neuronal pyroptosis in HIV-associated neurocognitive disorder. Brain 2024; 147:717-734. [PMID: 37931057 PMCID: PMC10834258 DOI: 10.1093/brain/awad375] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Despite effective antiretroviral therapies, 20-30% of persons with treated HIV infection develop a neurodegenerative syndrome termed HIV-associated neurocognitive disorder (HAND). HAND is driven by HIV expression coupled with inflammation in the brain but the mechanisms underlying neuronal damage and death are uncertain. The inflammasome-pyroptosis axis coordinates an inflammatory type of regulated lytic cell death that is underpinned by the caspase-activated pore-forming gasdermin proteins. The mechanisms driving neuronal pyroptosis were investigated herein in models of HAND, using multi-platform molecular and morphological approaches that included brain tissues from persons with HAND and simian immunodeficiency virus (SIV)-infected non-human primates as well as cultured human neurons. Neurons in the frontal cortices from persons with HAND showed increased cleaved gasdermin E (GSDME), which was associated with β-III tubulin degradation and increased HIV levels. Exposure of cultured human neurons to the HIV-encoded viral protein R (Vpr) elicited time-dependent cleavage of GSDME and Ninjurin-1 (NINJ1) induction with associated cell lysis that was inhibited by siRNA suppression of both proteins. Upstream of GSDME cleavage, Vpr exposure resulted in activation of caspases-1 and 3. Pretreatment of Vpr-exposed neurons with the caspase-1 inhibitor, VX-765, reduced cleavage of both caspase-3 and GSDME, resulting in diminished cell death. To validate these findings, we examined frontal cortical tissues from SIV-infected macaques, disclosing increased expression of GSDME and NINJ1 in cortical neurons, which was co-localized with caspase-3 detection in animals with neurological disease. Thus, HIV infection of the brain triggers the convergent activation of caspases-1 and -3, which results in GSDME-mediated neuronal pyroptosis in persons with HAND. These findings demonstrate a novel mechanism by which a viral infection causes pyroptotic death in neurons while also offering new diagnostic and therapeutic strategies for HAND and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jason P Fernandes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Eric A Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques Montreal (IRCM), Montreal, QC H2W 1R7, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk 2280 GH, The Netherlands
| | - Ivanela Kondova
- Department of Animal Science, Biomedical Primate Research Centre (BPRC), Rijswijk 2280 GH, The Netherlands
| | - Benjamin B Gelman
- Departments of Pathology and Neurobiology, University of Texas Medical Branch, Galveston, TX 77555-0569, USA
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2R7, Canada
| |
Collapse
|
7
|
Veksler V, Calderon TM, Berman JW. The contribution of myeloid cells to HIV neuropathogenesis. HIV-ASSOCIATED NEUROCOGNITIVE DISORDERS 2024:225-238. [DOI: 10.1016/b978-0-323-99744-7.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Kang J, Wang Z, Zhou Y, Wang W, Wen Y. Learning from cerebrospinal fluid drug-resistant HIV escape-associated encephalitis: a case report. Virol J 2023; 20:292. [PMID: 38072961 PMCID: PMC10712177 DOI: 10.1186/s12985-023-02255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In the era of antiretroviral therapy (ART), central nervous system (CNS) complications in patients with human immunodeficiency virus (HIV) infection are sometimes associated with cerebrospinal fluid (CSF) viral escape. Here, we reported a case of persistent CNS viral escape with recurrent symptomatic encephalitis, which had ultimate stabilization achieved by a combination of ART adjustment and corticosteroids. CASE PRESENTATION A 27-year-old man with HIV infection complained of recurrent headaches during the last year. His magnetic resonance imaging (MRI) presented diffused bilateral white matter lesions, and laboratory tests confirmed elevated CSF protein level, lymphocytic pleocytosis, and detectable CSF HIV RNA (774 copies/mL). Plasma HIV RNA was well suppressed with tenofovir, lamivudine, and lopinavir/ritonavir. Prednisone 60 mg once daily was initiated to reduce intracranial inflammation, followed by a good clinical response, with CSF HIV RNA still detectable (31.1 copies/mL). During the gradual tapering of prednisone, his headache relapsed, and booming viral loads were detected in both CSF (4580 copies/mL) and plasma (340 copies/mL) with consistent drug-resistant mutations. Thereupon, prednisone was resumed and the ART regimen was switched to zidovudine, lamivudine, and dolutegravir according to drug resistance tests. Persistent clinical recovery of symptoms, neuroimaging, and laboratory abnormalities were observed in the follow-up visits. CONCLUSION CSF and plasma HIV RNA and further drug resistance tests should be monitored in HIV-infected patients with neurologic symptoms, as opportunistic infections or tumors can be ruled out. ART optimization using a sensitive regimen may be crucial for addressing CSF viral escape and the related encephalitis.
Collapse
Affiliation(s)
- Jing Kang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ziqiu Wang
- Dongguan Institute for Microscale and Precision Medical Measurement, Dongguan, China
| | - Ying Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Wen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Ying Wen
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
9
|
Gu F, Boisjoli M, Naghavi MH. HIV-1 promotes ubiquitination of the amyloidogenic C-terminal fragment of APP to support viral replication. Nat Commun 2023; 14:4227. [PMID: 37454116 PMCID: PMC10349857 DOI: 10.1038/s41467-023-40000-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
HIV-1 replication in macrophages and microglia involves intracellular assembly and budding into modified subsets of multivesicular bodies (MVBs), which support both viral persistence and spread. However, the cellular factors that regulate HIV-1's vesicular replication remain poorly understood. Recently, amyloid precursor protein (APP) was identified as an inhibitor of HIV-1 replication in macrophages and microglia via an unknown mechanism. Here, we show that entry of HIV-1 Gag into MVBs is blocked by the amyloidogenic C-terminal fragment of APP, "C99", but not by the non-amyloidogenic product, "C83". To counter this, Gag promotes multi-site ubiquitination of C99 which controls both exocytic sorting of MVBs and further processing of C99 into toxic amyloids. Processing of C99, entry of Gag into MVBs and release of infectious virus could be suppressed by expressing ubiquitination-defective C99 or by γ-secretase inhibitor treatment, suggesting that APP's amyloidogenic pathway functions to sense and suppress HIV-1 replication in macrophages and microglia.
Collapse
Affiliation(s)
- Feng Gu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marie Boisjoli
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
10
|
Dutta D, Liu J, Xiong H. The Impact of COVID-19 on People Living with HIV-1 and HIV-1-Associated Neurological Complications. Viruses 2023; 15:1117. [PMID: 37243203 PMCID: PMC10223371 DOI: 10.3390/v15051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of the coronavirus disease 2019 (COVID-19) pandemic, a fatal respiratory illness. The associated risk factors for COVID-19 are old age and medical comorbidities. In the current combined antiretroviral therapy (cART) era, a significant portion of people living with HIV-1 (PLWH) with controlled viremia is older and with comorbidities, making these people vulnerable to SARS-CoV-2 infection and COVID-19-associated severe outcomes. Additionally, SARS-CoV-2 is neurotropic and causes neurological complications, resulting in a health burden and an adverse impact on PLWH and exacerbating HIV-1-associated neurocognitive disorder (HAND). The impact of SARS-CoV-2 infection and COVID-19 severity on neuroinflammation, the development of HAND and preexisting HAND is poorly explored. In the present review, we compiled the current knowledge of differences and similarities between SARS-CoV-2 and HIV-1, the conditions of the SARS-CoV-2/COVID-19 and HIV-1/AIDS syndemic and their impact on the central nervous system (CNS). Risk factors of COVID-19 on PLWH and neurological manifestations, inflammatory mechanisms leading to the neurological syndrome, the development of HAND, and its influence on preexisting HAND are also discussed. Finally, we have reviewed the challenges of the present syndemic on the world population, with a particular emphasis on PLWH.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
11
|
Hafler DA, Sansing LH. Neuroimmune interactions in health and disease. Semin Immunopathol 2022; 44:565-567. [PMID: 36171280 DOI: 10.1007/s00281-022-00963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- David A Hafler
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA. .,Department of Neurology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Lauren H Sansing
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA. .,Department of Neurology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Donoso M, D’Amico D, Valdebenito S, Hernandez CA, Prideaux B, Eugenin EA. Identification, Quantification, and Characterization of HIV-1 Reservoirs in the Human Brain. Cells 2022; 11:2379. [PMID: 35954221 PMCID: PMC9367788 DOI: 10.3390/cells11152379] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The major barrier to cure HIV infection is the early generation and extended survival of HIV reservoirs in the circulation and tissues. Currently, the techniques used to detect and quantify HIV reservoirs are mostly based on blood-based assays; however, it has become evident that viral reservoirs remain in tissues. Our study describes a novel multi-component imaging method (HIV DNA, mRNA, and viral proteins in the same assay) to identify, quantify, and characterize viral reservoirs in tissues and blood products obtained from HIV-infected individuals even when systemic replication is undetectable. In the human brains of HIV-infected individuals under ART, we identified that microglia/macrophages and a small population of astrocytes are the main cells with integrated HIV DNA. Only half of the cells with integrated HIV DNA expressed viral mRNA, and one-third expressed viral proteins. Surprisingly, we identified residual HIV-p24, gp120, nef, vpr, and tat protein expression and accumulation in uninfected cells around HIV-infected cells suggesting local synthesis, secretion, and bystander uptake. In conclusion, our data show that ART reduces the size of the brain's HIV reservoirs; however, local/chronic viral protein secretion still occurs, indicating that the brain is still a major anatomical target to cure HIV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX 77555, USA; (M.D.); (D.D.); (S.V.); (C.A.H.); (B.P.)
| |
Collapse
|