1
|
Ma B, Wang W, Li Z, Zhong C, Zhou J, Yang B, Liu L, Wang Z, Yi X, Zheng Y, Wang Y. 4-Hydroxyderricin attenuates ischemic brain injury and neuroinflammation by upregulating haptoglobin expression in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156649. [PMID: 40117946 DOI: 10.1016/j.phymed.2025.156649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Angelica keiskei (Miq.) Koidz. is a traditional plant that is widely used in Asian countries because of its tonic, diuretic, and galactagogue properties. The chalcone compound 4-hydroxyderricin (4-HD), uniquely present in A. keiskei, has demonstrated inhibitory effects on inflammation in peripheral tissues. Nonetheless, its efficacy in central neuroinflammation and ischemic brain injury remains unclear. PURPOSE This study aims to assess the ability of 4-HD to alleviate acute ischemic brain injury and the associated inflammatory response, and to elucidate the underlying mechanisms. METHODS Mice underwent middle cerebral artery occlusion (MCAO) surgery to induce acute cerebral ischemic injury. The extent of brain injury was evaluated by TTC staining and neurological function scoring. Immunofluorescence was employed to observe glial cell activation, whereas ELISA and RT-PCR were used to quantify inflammatory cytokine expression in ischemic brain tissues. Oxygen-glucose deprivation (OGD) and lipopolysaccharide (LPS) stimulation of BV2 microglial cells were conducted in vitro to examine the direct impact of 4-HD on microglial inflammation. ELISA and RT-PCR were carried out to quantify inflammatory cytokine expression in BV2 cells. Western blotting and immunofluorescence techniques were used to detect protein expression and localization, respectively. Additionally, alterations in gene expression were measured using RNA-seq analysis profiling following 4-HD treatment of BV2 cells. A short hairpin RNA (shRNA) was used to silence the Haptoglobin (Hp) gene to elucidate the relationship between drug effects and Hp protein levels. RESULTS 4-HD effectively reduced the infarct area and enhanced neurological function 24 h post-MCAO surgery by lowering inflammatory cytokine levels and inhibiting microglia activation in ischemic brain tissues. In OGD and LPS-stimulated BV2 microglia, 4-HD decreased the levels of inflammatory cytokines. Mechanistic research indicated that 4-HD enhanced Hp and reduced HMGB1 expression in BV2 cells. Moreover, the activation of the NF-κB and MAPK signaling pathways, two key pro-inflammatory pathways downstream of HMGB1, was inhibited by 4-HD treatment. In BV2 cells with Hp gene knockdown, the inhibitory effect of HMGB1 disappeared, and its anti-inflammatory effect was also significantly weakened. CONCLUSION 4-HD has the potential to mitigate brain injury and neuroinflammation resulting from MCAO-induced acute ischemic damage. This neuroprotective effect is linked to the suppression of microglial activation and the inhibition of HMGB1 pro-inflammatory signaling, facilitated by the increased expression of the Hp protein. This study revealed, for the first time, the protective effects and mechanisms of 4-HD on ischemic brain injury. Additionally, we present the Hp protein as a new target for a small-molecule compound to protect against ischemic brain injury, offering a novel strategy for developing new neuroprotective drugs.
Collapse
Affiliation(s)
- Biying Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Wenqi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Zhongxia Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Chao Zhong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Jing Zhou
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Bo Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| | - Liying Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| | - Zhanqiu Wang
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Xiangjiao Yi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| | - Yanrong Zheng
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Yiqi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
2
|
Volarevic V, Randall Harrell C, Arsenijevic A, Djonov V. An Interplay Between Pericytes, Mesenchymal Stem Cells, and Immune Cells in the Process of Tissue Regeneration. Anal Cell Pathol (Amst) 2025; 2025:4845416. [PMID: 40241723 PMCID: PMC12003036 DOI: 10.1155/ancp/4845416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
Immediately after injury, damaged cells elicit tissue regeneration, a healing process that enables optimal renewal and regrowth of injured tissues. Results obtained in a large number of experimental studies suggested that the cross talk between pericytes, mesenchymal stem cells (MSC), tissue-resident stem cells, and immune cells has a crucially important role in the regeneration of injured tissues. Pericytes, MSCs, and immune cells secrete bioactive factors that influence each other's behavior and function. Immune cells produce inflammatory cytokines and chemokines that influence pericytes' migration, proliferation, and transition to MSC. MSC releases immunoregulatory factors that induce the generation of immunosuppressive phenotype in inflammatory immune cells, alleviating detrimental immune responses in injured tissues. MSC also produces various growth factors that influence the differentiation of tissue-resident stem cells into specific cell lineages, enabling the successful regeneration of injured tissues. A better understanding of molecular mechanisms that regulate crosstalk between pericytes, MSC, and immune cells in injured tissues would enable the design of new therapeutic approaches in regenerative medicine. Accordingly, in this review paper, we summarized current knowledge related to the signaling pathways that are involved in the pericytes' activation, pericytes-to-MSC transition, differentiation of tissue-resident stem cells, and MSC-dependent modulation of immune cell-driven inflammation, which are crucially responsible for regeneration of injured tissues.
Collapse
Affiliation(s)
- Vladislav Volarevic
- Center for Harm Reduction of Biological and Chemical Hazards, Department of Genetics and Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Carl Randall Harrell
- Regenerative Processing Plant, LLC 34176, US Highway 19 N, Palm Harbor, Florida, USA
| | - Aleksandar Arsenijevic
- Center for Harm Reduction of Biological and Chemical Hazards, Department of Genetics and Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2 3012, Bern, Switzerland
| |
Collapse
|
3
|
Wang J, Gao S, Cui Y, Liu XZ, Chen XX, Hang CH, Li W. Remote Organ Damage Induced by Stroke: Molecular Mechanisms and Comprehensive Interventions. Antioxid Redox Signal 2025. [PMID: 40170638 DOI: 10.1089/ars.2024.0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Significance: Damage after stroke is not only limited to the brain but also often occurs in remote organs, including the heart, lung, liver, kidney, digestive tract, and spleen, which are frequently affected by complex pathophysiological changes. The organs in the human body are closely connected, and signals transmitted through various molecular substances could regulate the pathophysiological changes of remote organs. Recent Advances: The latest studies have shown that inflammatory response plays an important role in remote organ damage after stroke, and can aggravate remote organ damage by activating oxidative stress, sympathetic axis, and hypothalamic axis, and disturbing immunological homeostasis. Remote organ damage can also cause damage to the brain, aggravating inflammatory response and oxidative damage. Critical Issues: Therefore, an in-depth exploration of inflammatory and oxidative mechanisms and adopting corresponding comprehensive intervention strategies have become necessary to reduce damage to remote organs and promote brain protection. Future Directions: The comprehensive intervention strategy involves multifaceted treatment methods such as inflammation regulation, antioxidants, and neural stem cell differentiation. It provides a promising treatment alternative for the comprehensive recovery of stroke patients and an inspiration for future research and treatment. The various organs of the human body are interconnected at the molecular level. Only through comprehensive intervention at the molecular and organ levels can we save remote organ damage and protect the brain after stroke to the greatest extent. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Yue Cui
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Kim D, Morikawa S, Nakagawa T, Okano H, Kase Y. Advances in brain ischemia mechanisms and treatment approaches: Recent insights and inflammation-driven risks. Exp Neurol 2025; 386:115177. [PMID: 39922448 DOI: 10.1016/j.expneurol.2025.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
The application of existing radical treatments for stroke is limited to a small number of cases, with current practices predominantly focusing on conservative therapy. This review examines the pathophysiology of excitotoxicity, oxidative stress, and inflammation during brain ischemia caused by stroke, highlighting insights into each pathology and reporting the latest therapeutic developments that are expected to serve as new treatment options. Finally, we outline the recent attention given to the relationship between periodontal disease and stroke. We propose addressing the limitations of existing treatments for stroke and suggest novel therapeutic approaches while also presenting the potential contribution of periodontal disease treatment to the prevention of stroke.
Collapse
Affiliation(s)
- Doyoon Kim
- Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Regenerative Medicine Research Center, Keio University; 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki-shi, 210-0821, Japan; Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University; 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi 470-1192, Japan
| | - Yoshitaka Kase
- Department of Dentistry and Oral Surgery, Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Regenerative Medicine Research Center, Keio University; 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki-shi, 210-0821, Japan; Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University; 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi 470-1192, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
5
|
Hermann DM, Wang C, Mohamud Yusuf A, Herz J, Doeppner TR, Giebel B. Extracellular vesicles lay the ground for neuronal plasticity by restoring mitochondrial function, cell metabolism and immune balance. J Cereb Blood Flow Metab 2025:271678X251325039. [PMID: 40072028 PMCID: PMC11904928 DOI: 10.1177/0271678x251325039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/15/2025] [Accepted: 02/14/2025] [Indexed: 03/15/2025]
Abstract
Extracellular vesicles (EVs) convey complex signals between cells that can be used to promote neuronal plasticity and neurological recovery in brain disease models. These EV signals are multimodal and context-dependent, making them unique therapeutic principles. This review analyzes how EVs released from various cell sources control neuronal metabolic function, neuronal survival and plasticity. Preferential sites of EV communication in the brain are interfaces between pre- and postsynaptic neurons at synapses, between astrocytes and neurons at plasma membranes or tripartite synapses, between oligodendrocytes and neurons at axons, between microglial cells/macrophages and neurons, and between cerebral microvascular cells and neurons. At each of these interfaces, EVs support mitochondrial function and cell metabolism under physiological conditions and orchestrate neuronal survival and plasticity in response to brain injury. In the injured brain, the promotion of neuronal survival and plasticity by EVs is tightly linked with EV actions on mitochondrial function, cell metabolism, oxidative stress and immune responses. Via the stabilization of cell metabolism and immune balance, neuronal plasticity responses are activated and functional neurological recovery is induced. As such, EV lay the ground for neuronal plasticity.
Collapse
Affiliation(s)
- Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Chen Wang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thorsten R Doeppner
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Department of Neurology, University Hospital Gießen and Marburg, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
6
|
Lapin D, Sharma A, Wang P. Extracellular cold-inducible RNA-binding protein in CNS injury: molecular insights and therapeutic approaches. J Neuroinflammation 2025; 22:12. [PMID: 39838468 PMCID: PMC11752631 DOI: 10.1186/s12974-025-03340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Central nervous system (CNS) injuries, such as ischemic stroke (IS), intracerebral hemorrhage (ICH) and traumatic brain injury (TBI), are a significant global burden. The complex pathophysiology of CNS injury is comprised of primary and secondary injury. Inflammatory secondary injury is incited by damage-associated molecular patterns (DAMPs) which signal a variety of resident CNS cells and infiltrating immune cells. Extracellular cold-inducible RNA-binding protein (eCIRP) is a DAMP which acts through multiple immune and non-immune cells to promote inflammation. Despite the well-established role of eCIRP in systemic and sterile inflammation, its role in CNS injury is less elucidated. Recent literature suggests that eCIRP is a pleiotropic inflammatory mediator in CNS injury. eCIRP is also being evaluated as a clinical biomarker to indicate prognosis in CNS injuries. This review provides a broad overview of CNS injury, with a focus on immune-mediated secondary injury and neuroinflammation. We then review what is known about eCIRP in CNS injury, and its known mechanisms in both CNS and non-CNS cells, identifying opportunities for further study. We also explore eCIRP's potential as a prognostic marker of CNS injury severity and outcome. Next, we provide an overview of eCIRP-targeting therapeutics and suggest strategies to develop these agents to ameliorate CNS injury. Finally, we emphasize exploring novel molecular mechanisms, aside from neuroinflammation, by which eCIRP acts as a critical mediator with significant potential as a therapeutic target and prognostic biomarker in CNS injury.
Collapse
Affiliation(s)
- Dmitriy Lapin
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
7
|
Shen P, Zhang L, Jiang X, Raj R, Yu B, Zhang J. Polygala tenuifolia root extract attenuates ischemic stroke by inhibiting HMGB1 trigger neuroinflammation. Fitoterapia 2025; 180:106280. [PMID: 39476989 DOI: 10.1016/j.fitote.2024.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Polygala tenuifolia Willd., a famous traditional Chinese medicine, has been widely applied to treat central nervous system diseases. In this study, P. tenuifolia root extract exhibited a moderate anti-ischemic effect on in-vitro oxygen-glucose deprivation/reperfusion (OGD/R) model. In transient middle cerebral artery occlusion (tMCAO) rats, P. tenuifolia root extract significantly attenuated brain infarction and neurological deficits in a dose-dependent manner. Compared with the sham group, the release of damage-associated molecular patterns (DAMPs)-HMGB1 in the ischemic brain was significantly higher, which was inhibited by P. tenuifolia root extract. To further explore such neuroprotective effects whether associated with aseptic inflammation, HMGB1-activated BV2 microglial cells model was established. The extract of P. tenuifolia was found to inhibit the downstream inflammatory response driven by HMGB1, with an IC50 value of 49.46 μg/mL. In addition, the extract was also found to be able to directly interact with HMGB1 in the surface plasmon resonance (SPR) experiment. Phytochemical studies showed that the extract of P. tenuifolia root contains a large number of terpenoids, oligosaccharides and phenolic compounds, which likely contribute to the above observed biological activities. Our results not only provide some data support for the clinical application of P. tenuifolia against cerebral ischemia, but also clarify the potential target of P tenuifolia's anti-inflammatory properties.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Richa Raj
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
8
|
Wang S, He Q, Qu Y, Yin W, Zhao R, Wang X, Yang Y, Guo ZN. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy. Neural Regen Res 2024; 19:2430-2443. [PMID: 38526280 PMCID: PMC11090435 DOI: 10.4103/1673-5374.391313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 03/26/2024] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide, with limited treatment options available in clinical practice. The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function. Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect. Neural stem cells regulate multiple physiological responses, including nerve repair, endogenous regeneration, immune function, and blood-brain barrier permeability, through the secretion of bioactive substances, including extracellular vesicles/exosomes. However, due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation, limitations in the treatment effect remain unresolved. In this paper, we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke, review current neural stem cell therapeutic strategies and clinical trial results, and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells. We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
Collapse
Affiliation(s)
- Siji Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qianyan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenjing Yin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuyutian Wang
- Department of Breast Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
9
|
Wang D, Zhao J, Zhang J, Lv C, Bao S, Gao P, He M, Li L, Zhao H, Zhang C. Targeting TNF-α: The therapeutic potential of certolizumab pegol in the early period of cerebral ischemia reperfusion injury in mice. Int Immunopharmacol 2024; 137:112498. [PMID: 38908079 DOI: 10.1016/j.intimp.2024.112498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
The neuroinflammatory response triggered by cerebral ischemia-reperfusion injury (CIRI) is characterized by the upsurge of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, which promote leukocyte infiltration and subsequent accumulation in the ischemic zone. This accumulation further intensifies inflammation and aggravates ischemic damage. Certolizumab pegol (CZP), a monoclonal antibody targeting TNF-α, is widely used in treating various inflammatory diseases. This study explored the therapeutic potential of CZP in a mouse model of CIRI, induced by middle cerebral artery occlusion (MCAO), focusing on its influence on the microglial inflammatory response. In vitro analyses revealed that CZP markedly inhibits TNF-α-stimulated inflammation in primary microglia with an EC50 of 1.743 ng/mL. In vivo, MCAO mice treated with CZP (10 μg/mouse, i.p.) for 3 days showed reduced infarct volume, partially improved neurological function, and diminished blood-brain barrierdisruption. Additionally, CZP treatment curtailed microglial activation and the release of pro-inflammatory mediators in the early stages of stroke. It also favorably modulated microglial M1/M2 polarization, rebalanced Th17/Treg cells dynamics, and inhibited Caspase-8-mediated GSDMD cleavage, preventing microglial pyroptosis. Collectively, this study described that the treatment with CZP reversed damaging process caused by CIRI, offering a promising therapeutic strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Jingyu Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Changling Lv
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Shuangyan Bao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Miao He
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Lijuan Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; School of Public Health, Dali University, Dali, PR China.
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
10
|
Zhang MR, Fang LL, Guo Y, Wang Q, Li YJ, Sun HF, Xie SY, Liang Y. Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy. Int J Nanomedicine 2024; 19:3387-3404. [PMID: 38617801 PMCID: PMC11012697 DOI: 10.2147/ijn.s454004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Meng-Ru Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
- Department of Clinical Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Lin-Lin Fang
- RemeGen Co., Ltd, YanTai, ShanDong, 264000, People’s Republic of China
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| |
Collapse
|
11
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
12
|
Li M, Yao M, Shao K, Shen X, Li Y, Ge Z. Serum cold-inducible RNA-binding protein (CIRP) levels as a prognostic indicator in patients with acute ischemic stroke. Front Neurol 2023; 14:1211108. [PMID: 37521290 PMCID: PMC10381024 DOI: 10.3389/fneur.2023.1211108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Acute ischemic stroke (AIS) is the leading cause of morbidity and mortality among cerebrovascular diseases. While animal studies have suggested a correlation between cold-inducible RNA-binding protein (CIRP) serum levels and the severity and prognosis of cerebral infarction, there has been a lack of research exploring this association in humans with cerebral infarction. Materials and methods A total of 148 patients diagnosed with AIS within 7 days from symptom onset were included in this study. Comprehensive information regarding the patients' basic demographics, medical history, clinical parameters, the severity of cerebral infarction, and serum CIRP levels was collected. Follow-up data were obtained through telephonic interviews or by reviewing clinical notes for 3 months after the patients were discharged to assess the functional outcomes of treatment. Results The findings of this study demonstrated a significant increase in serum CIRP levels during the early stages of AIS, followed by a gradual decline after 3 days. Significant differences were observed in the serum CIRP levels between the 1-day group and the 4-7 day group (P < 0.0047), as well as between the 2-3 day group and the 4-7 day group (P < 0.0006). Moreover, a significant positive correlation was observed between the serum CIRP levels and the severity of cerebral infarction. Higher serum CIRP levels were associated with more severe National Institutes of Health Stroke Scale scores (P < 0.05) and larger cerebral infarction volumes (P < 0.05). Furthermore, patients with higher serum CIRP levels exhibited poorer modified Rankin scale scores (P < 0.05). These findings indicate that serum CIRP serves as an essential pro-inflammatory mediator and a valuable biomarker for assessing brain injury in patients with AIS. Conclusion The findings of this study suggest an elevation in serum CIRP levels among patients with AIS. These levels are positively correlated with the severity of AIS and serve as indicators of a poor prognosis. Therefore, CIRP could serve as a target for early clinical intervention while managing AIS, and further research should explore serum CIRP levels as prognostic indicators in AIS.
Collapse
Affiliation(s)
- Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, China
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, China
| | - Min Yao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Kangmei Shao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xueyang Shen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, China
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
13
|
Magnus T, Liesz A. Unveiling the immunopathology of stroke: a comprehensive view on brain-immune interaction. Semin Immunopathol 2023; 45:279-280. [PMID: 37335353 DOI: 10.1007/s00281-023-00995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Affiliation(s)
- Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Medical Center Munich, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
14
|
Chen X, Zhang Y, Ding Q, He Y, Li H. Role of IL-17A in different stages of ischemic stroke. Int Immunopharmacol 2023; 117:109926. [PMID: 37012860 DOI: 10.1016/j.intimp.2023.109926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/01/2023] [Accepted: 02/18/2023] [Indexed: 03/16/2023]
Abstract
Interleukin-17A (IL-17A) plays an important role in the progression of ischemic stroke. IL-17A mediates the endothelial inflammatory response, promotes water and sodium retention, and changes the electrophysiological structure of the atrium, accelerating the progression of ischemic stroke risk factors such as atherosclerotic plaques, hypertension, and atrial fibrillation. In the acute phase of ischemic stroke, IL-17A mediates neuronal injury through neutrophil chemotaxis to the site of injury, the induction of neuronal apoptosis, and activation of the calpain-TRPC-6 (transient receptor potential channel-6) pathway. During ischemic stroke recovery, IL-17A, which is mainly derived from reactive astrocytes, promotes and maintains the survival of neural precursor cells (NPCs) in the subventricular zone (SVZ), neuronal differentiation, and synapse formation and participates in the repair of neurological function. Therapies targeting IL-17A-associated inflammatory signaling pathways can reduce the risk of ischemic stroke and neuronal damage and are a new therapeutic strategy for ischemic stroke and its risk factors. In this paper, we will briefly discuss the pathophysiological role of IL-17A in ischemic stroke risk factors, acute and chronic inflammatory responses, and the potential therapeutic value of targeting IL-17A.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yi Zhang
- Department of General Medicine, Jiangkou Town Center Hospital, Ganxian 341100, China
| | - Qian Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin 300052, China
| | - Yanru He
- Medical Insurance Department, Mingya Insurance Brokers Co., Ltd., Beijing 100020, China
| | - Hui Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|